SUMMARY OF CORRECTIVE MEASURES **Ameren Missouri Meramec Energy Center Surface Impoundments** | Alternative | Remedial
Alternative
Description | THRESHOLD CRITERIA | | | | | BALANCING CRITERIA | | | |-------------|---|--|---|---|---|---|---|--|---| | | | Be Protective
of Human
Health and the
Environment | Attain the
Groundwater
Protective
Standard | Control
the Source
of
Releases | Remove as much
material from
the environment
released from
the CCR unit as
is feasible | Management of
waste all
applicable RCRA
requirements | CATEGORY 1 Long- and Short Term Effectiveness, Protectiveness and Certainty of Success | CATEGORY 2 Effectiveness in Controlling the Source to Reduce Further Releases | CATEGORY 3 The ease or difficulty of implementation | | 1 | Closure In Place
(CIP) with
Capping and
Monitored
Natural
Attenuation
(MNA) | √ | √ | √ | √ | √ | No current risk Low permeability cap isolates CCR and reduces infiltration Long-term GW monitoring and cap maintenance No external community impacts; traffic safety concerns Achieves GWPS in approximately 27 years Minimal barriers to implementation Long-term reliability | Low permeability cap decreases infiltration No active groundwater treatment required | Minimal barriers to implementation Proven approach; conducive GW conditions Straightforward permitting/regulatory approvals No specialty equipment No removal and off-site disposal | | 2 | CIP with
Capping and In-
Situ
Groundwater
Treatment | √ | √ | ✓ | √ | √ | No current risk Low permeability cap isolates CCR and reduces infiltration. Long-term GW monitoring and cap maintenance No external community impacts; traffic safety concerns Achieves GWPS in approximately 11 years (or earlier) Long-term reliability | Low permeability cap decreases infiltration Groundwater treatment completed in-situ No secondary waste stream | Minimal barriers to implementation Bench scale testing to demonstrate reliability is underway Permitting likely needed for in-situ amendments No specialty equipment No removal and off-site disposal | | 3 | CIP with Capping and Hydraulic Containment through Groundwater Pumping and Ex-Situ Treatment | √ | √ | 1 | √ | √ | No current risk Low permeability cap isolates CCR and reduces infiltration Long-term O&M No external community impacts; traffic safety concerns Generates secondary waste stream Lengthy design phase, testing, permitting Long-term reliability | Low permeability cap decreases infiltration Groundwater treatment completed ex-situ Secondary waste stream requires disposal | Minimal barriers to implementation Proven technology but not commonly used for large-scale CCR unit closure Permitting needed to discharge treated groundwater Some specialty equipment Pilot testing likely Management/treatment of large volume effluent created | | 4 | Closure by
Removal (CBR)
with MNA | √ | √ | √ | √ | √ | Highest risk to human health and environment Low long-term residual risk Logistically complex Highest short-term impacts (noise, emissions & fugitive dust) Long removal duration (time exceeds CCR Rule) High potential for external community impacts; traffic safety concerns | No active groundwater treatment Source removed Removal will take over 20 years; CCR units remains open and exposed during excavation timeframe | Significant barriers to implementation Technical and logistical challenges Long project duration and uncertain haul productivity rates Transportation of 5.2 MM CY over local roadways Disposal capacity potential concern given concurrent CCR unit closures | Favorable when compared to other alternatives Slightly unfavorable when compared to other alternatives Unfavorable when compared to other alternatives