REPORT 2023012434

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNIT SCPD 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

Prepared by

October 2024

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	SIOUX ENERGY CENTER CCR UNITS	2
2.1	Owner and Operator	2
2.2	CCR Unit Location	2
2.3	CCR Unit Identification and Purpose	2
2.4	CCR Unit Watershed	3
2.5	Geomorphology and Foundation Geology	3
2.6	Surveillance, Maintenance and Repair of the CCR Units	4
3.0	SCPD (CELL 2)	8
3.1	History of Construction	8
3.2	Modifications to Embankment Geometry and Operation	8
3.3	Foundation and Abutment Geology	8
3.4	Embankment Material	9
3.5	Operating Pool Surface Elevations	9
3.6	CCR Unit Outlet Works	9
3.7	Impounded CCR	10
3.8	Instrumentation	10
3.9	Structural Instability	10
4.0	HAZARD POTENTIAL CLASSIFICATION ASSESSMENT	1
5.0	STRUCTURAL STABILITY ASSESSMENT	12
6.0	SAFETY FACTOR ASSESSMENT	13
7.0	HYDROLOGIC AND HYDRAULIC CAPACITY REQUIREMENTS	14
8.0	CLOSURE	15
9.0	REFERENCES1	16

Section

LIST OF FIGURES

Figure 1	Site Map
0	
	SCPD Area-Capacity Curve

LIST OF TABLES

Table 1	Sioux Energy Center CCR Units
Table 2	Ameren Missouri Dam Safety Inspection Condition Codes
Table 3	
Table 5	SCPD (Cell 2) CCR

LIST OF APPENDICES

APPENDIX A	OPERATION AND MAINTENANCE MANUAL FOR CELLS 1 & 4A AND RECYCLE POND
	SCPD AS-BUILT DRAWINGS
	AMEREN MISSOURI SIOUX ENERGY CENTER CONSTRUCTION PERMIT MODIFICATION FOR PERMITTED UTILITY WASTE LANDFILL (PERMIT NO. 0918301), ST. CHARLES COUNTY, MISSOURI, REVISED GEOTECHNICAL ENGINEERING REPORT, JANUARY 24, 2020
APPENDIX B	PERIODIC HAZARD CLASSIFICATION
APPENDIX C	PERIODIC STRUCTURAL STABILITY ASSESSMENT
APPENDIX D	PERIODIC SAFETY FACTOR ASSESSMENT
APPENDIX E	HYDROLOGY AND HYDRAULICS

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS ST. CHARLES COUNTY, MISSOURI

1.0 INTRODUCTION

The Sioux Energy Center (SEC) is located in northeast St. Charles County, Missouri along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River and approximately 3 miles east of Portage de Sioux, Missouri. The SEC is located within the floodplain of the Mississippi and Missouri Rivers and has one active CCR surface impoundment that is approximately 40-acres in size. The CCR surface impoundment, designated as Cell 2 (SCPD), is used for managing coal combustion residuals (CCR). SCPA, SCPB and SCPC no longer receive CCRs, have been dewatered, and are closed. SCPD is currently receiving CCRs. Decant water in SCPD discharges into the Recycle Pond where pumps recirculate the water back to the power plant. Cell 2 is permitted by the Missouri Department of Natural Resources Solid Waste Management Program (MDNR-SWMP) as a Solid Waste Disposal Area under Operating Permit Number 0918301. A map showing the location of the surface impoundment and the Recycle Pond is attached as Figure 1.

1.1 Purpose

The purpose of this report is to document evaluations and assessments completed for the Ameren Missouri Sioux Energy Center active CCR Units as required by select sections within 40 CFR Part 257, the final rule to regulate the disposal of CCR as solid waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA). Specifically, Reitz & Jens completed assessments and evaluations as required by:

- A. §257.73(c)(1), History of Construction
- B. §257.74(a)(2), Periodic Hazard Potential Classification
- C. §257.74(d)(1), Periodic Structural Stability Assessment
- D. §257.74(e)(1), Periodic Safety Factor Assessment
- E. §257.82, Initial Hydrologic and Hydraulic Capacity Requirements, and
- F. §257.83(b), Inspection Requirements for CCR Surface Impoundments

The evaluations and assessments required by 257.73(c)(1) are discussed in the body of this report. The evaluations and assessments required by the remaining applicable sections of 40 CFR Part 257 are contained in the Appendices.

2.0 SIOUX ENERGY CENTER CCR UNITS

2.1 Owner and Operator

The CCR Units at the Sioux Energy Center (SEC) are owned and operated by Ameren Missouri. The SEC plant personnel have the primary responsibility for CCR unit operation. The SEC is located at 8501 North State Route 94, West Alton, Missouri 63386. The Ameren Missouri Dam Safety Group performs CCR unit inspections and reviews all updates to the Operations and Maintenance (O&M) Manual. A copy of the most recent O&M manual is included in Appendix A. The Ameren Missouri Dam Safety Group is located at 11149 Lindberg Business Court, St. Louis, Missouri 63127.

2.2 CCR Unit Location

The CCR Units are located as identified on the most recent USGS 7.5-minute Elsah, IL topographic quadrangle map in Township 48N, and Range 6E of the 5th Principal Meridian. A partial plot of the USGS topographic quadrangle map showing the location of the SEC is attached as Figure 2.

2.3 CCR Unit Identification and Purpose

There is one surface impoundment and the Recycle Pond at the SEC. The surface impoundment is used to store CCR. The Recycle Pond collects decant water from SCPD, which is recirculated back to the power plant. The name of the unit, type of impounded CCR, and operational status are listed in Table 1.

Table 1 – Sioux Energy Center CCR Units

CCR Unit	CCR Type	Operational Status
Cell 2 (SCPD)	Gypsum	Active

2.4 CCR Unit Watershed

The Sioux Energy Center is located along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River. According to the current Flood Insurance Rate Map, the regulatory 100-year flood elevation at the site is about el. 437 to 438. SCPD is mapped within the 100-year floodplain. The Mississippi River is immediately to the north of the SEC and the Missouri River is about 1 mile to the south of the SEC. Poeling Lake, which connects to the Mississippi River, is located immediately to the west of the closed SCPA and SCPB. The Mississippi River has a watershed area of approximately 170,000 square miles at the site and the Missouri River has a watershed area of approximately 500,000 square miles at their confluence. The SCPD does not receive rainfall run-off from areas outside of the CCR Unit.

2.5 Geomorphology and Foundation Geology

The geology at the Sioux Energy Center consists of natural alluvium, approximately 100 to 120 feet thick, deposited by the Mississippi and Missouri Rivers and sedimentary rocks of the Paleozoic era.

The alluvium consists of four somewhat distinct, sometimes discontinuous, coarse- to fine-grained deposits. The lower unit of considerable thickness once comprised the active channel for either or both bounding rivers and are called "channel deposits". This unit contains primarily fine to coarse sands with occasional silt interlaying and fine gravel fragments.

As river floodplains developed beyond the active channels, additional deposits of medium to fine sand occurred along the banks of the active channels. They also formed within the floodplain areas due to hydraulic variations within the active channels. They periodically diverted or retarded intermittent active channel flow and are thus termed "natural levee deposits".

The upper or near-surface unit contains primarily silts and clays, often intermixed or interbedded with fine to medium sands. The intermediate sandy unit is typically interlayered, whereas the upper more fine-grained unit is typically interbedded. The predominate particle or grain size reflects the water velocity at the time of settling and deposition. More coarse-grained soils "settle out" at faster water velocities; the upper fine-grained materials "settle out" in a low-flow to stagnant water environment. These interlayered and interbedded deposits of varying lithologies, are more recent deposits, and are termed "floodplain deposits". They may also contain remnants of decomposing root fibers indicating a period of exposure when surface vegetation thrived.

The upper-most alluvial unit are flood basin deposits. The typical thickness of the upper or near-surface unit is about 5 to 10 feet. This unit typically comprises very fine-grained clays with some silt intermixture.

Sedimentary bedrock lithology of the region consists of limestones, dolomites, sandstones and shales. The bedrock is of the Carboniferous Period and Mississippian System. The lowest unit is the Osagean Series, Burlington-Keokuk limestone formation, which is commonly the combination of the Burlington formation and the overlying Keokuk formation. Total thickness of the formation may range from 150 to 250 feet while consisting of a white to light buff, coarsely crystalline limestone with some chert sparsely intermixed throughout. The overlying Meramecian Series, Warsaw formation consists of fine- to coarsecrystalline limestone with chert, dolomite and shale intermixed throughout. This formation is typically 40 to 50 feet thick and is differentiated from the underlying Burlington-Keokuk limestone by the inclusion of often dark to black and sometimes fissured shale. The upper-most bedrock unit is the Meramecian Series, Salem formation with similar lithology to the underlying Warsaw formation. This formation is about 40 to 60 feet thick containing a buff limestone with dolomitic limestone, dolomite and shale.

Groundwater levels at the Sioux Energy Center closely follow the stage of the adjacent Mississippi River, and to a lesser extent the stage of the Missouri Rivers. The direction of groundwater flow is generally southward from the Mississippi River to the Missouri River.

2.6 Surveillance, Maintenance and Repair of the CCR Units

The Sioux UWL Cells 1, 2 & 4A and Recycle Pond O&M manual outline objectives, responsibilities, and procedures for Ameren personnel who are responsible for the management of the Sioux CCR units. The embankments of the CCR units are visually inspected weekly by Ameren plant operations staff. Ameren Missouri Dam Safety Group personnel perform annual inspections and periodic inspections or assessments with plant operations staff. In addition, the Ameren Missouri Dam Safety Group may conduct unannounced safety inspections. Descriptions of each type of inspection or assessment are included in the following sections. Checklists used during inspection of the CCR Units are included in the attached O&M manuals in Appendix A.

2.6.1 Surveillance

2.6.1.1 Weekly Inspections

Weekly inspections are conducted by plant staff or support staff familiar with the ponds/ash pond embankments. The weekly inspections consist of visually inspecting the crest and slopes of each ash pond embankment to identify new or changed conditions. Checklists are completed and are made available to the Dam Safety Group for review.

2.6.1.2 Annual Inspection

These inspections are conducted annually by the plant staff and the Ameren Missouri Dam Safety Group staff. The annual inspection is a detailed visual inspection of the ash pond embankment crest, interior and exterior slopes, downstream toe area, inlet/outlet works, and appurtenant structures.

An inspection report is to be prepared by the Ameren Missouri Dam Safety Group staff that includes a description of the observations of the visual inspection, photographs of the facilities taken during the inspection, and a written evaluation of the results. A record of maintenance activities for the ash pond embankments is also kept current by the Ameren Missouri Dam Safety Group.

2.6.1.3 Periodic Structural Stability Assessments

The Periodic Structural Stability Assessments are conducted every 5 years by the Ameren Missouri Dam Safety Group staff to document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein in general accordance with 40 CFR Part §257.73(d)(1).

Ameren Missouri Dam Safety Group staff will prepare a periodic structural stability assessment report which at a minimum will document whether the CCR unit has been designed, constructed, operated, and maintained with:

- i. Stable foundations and abutments;
- ii. Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown;
- iii. Dikes (embankments) mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit;
- iv. Vegetated slopes of dikes and surrounding areas not to exceed a height of 6 inches above the slope of the dike, except for slopes which have an alternate form of slope protection;
- v. A single spillway or a combination of spillways designed, constructed, operated, and maintained to adequately manage flow during and following the peak discharge from the design flood event. The spillways must be either of non-erodible construction and designed to carry sustained flows; or earth or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected;
- vi. Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure;
- vii. For CCR units with downstream slopes which can be inundated by the pool level of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

If a deficiency or a release is identified during the periodic assessment, Ameren Missouri will remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.

2.6.1.4 Periodic Hazard Potential Classification

Ameren Missouri Dam Safety Group staff will update the hazard potential classification every 5 years in general accordance with 40 CFR Part §257.74(a)(2). Ameren Missouri Dam Safety Group staff will prepare documentation of the hazard potential classification of each CCR unit as either high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment, and the basis for each hazard potential classification. Ameren Missouri Dam Safety Group staff will prepare and maintain a written Emergency Action Plan if it is determined that a CCR unit is either a high hazard potential surface impoundment or a significant hazard surface impoundment.

2.6.1.5 Periodic Safety Factor Assessment

Ameren Missouri Dam Safety Group staff will conduct periodic safety factor assessments every 5 years in general accordance with 40 CFR Part §257.73(e)(1). The periodic safety factor assessments will be conducted for each CCR unit and will document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in §257.73(e)(1) for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments will be supported by appropriate engineering calculations.

2.6.1.6 Periodic Inflow Design Flood Control System Plan

Ameren Missouri Dam Safety Group staff will prepare an inflow design flood control system plan every 5 years in general accordance with 40 CFR Part §257.82. The plan will document how the inflow design flood control system has been designed, constructed, operated and maintained to adequately manage flow into the CCR surface impoundment during and following the peak discharge of the inflow design flood. The inflow design flood is the probable maximum flood for a high hazard potential CCR surface impoundment, the 1000-year flood for a significant hazard potential CCR surface impoundment, the 100-year flood for a surface impoundment, and the 25-year flood for an incised surface impoundment.

2.6.1.7 Special Inspections

Special inspections are conducted when extreme events which may impact stability (seismic activity, severe flooding, etc.) occur. Special inspections are like the annual inspection but may be focused on a particular area. If conditions are discovered during a weekly or annual inspection which create concern for the SEC plant, personnel, or surrounding properties, a special inspection will be conducted. Responsibility for performance of special inspections will be evaluated based on the severity of the event and potential damage.

2.6.1.8 Unannounced Inspections

The Ameren Missouri Chief Dam Safety Engineer (CDSE) may conduct unannounced inspections at the site as deemed appropriate. The inspection may include a visual inspection of the facility, a review of the inspection documentation, and interviews with plant personnel to review their understanding of the required inspection procedures.

2.6.1.9 Inspection Findings

Observations made during the inspections are rated with a condition code as shown in the following Table 2. The timeliness of response to deficiencies observed depends on the severity of the condition.

Condition Code	Description
EC	Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, emergency repairs, work stoppage, plant stoppage.
IM	Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.
MM	Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.
ОВ	Condition requires regular observation and potential future minor maintenance.
GC	Good Condition.
NO	No observation possible.
NI	Not Inspected. State reason in comment column.

Table 2 - Ameren Missouri Dam Safety Inspection Condition Codes

2.6.2 Maintenance and Repair of the CCR Units

The O&M manual requires that timely repairs must be made after problem areas are identified. The plant engineer is to specify the work to be completed using Ameren's Work Control Process and provide direction to correct items noted in the operation and maintenance, and engineering inspections. The work request by the plant engineer will be reviewed with the Dam Safety Group to ensure proper emphasis has been placed on the request. The O&M manual specifies the minimum maintenance activities and requires that maintenance activities be documented. The O&M manual further specifies that no alterations or repairs to structural elements should be made without the approval of the Chief Dam Safety Engineer.

3.0 SCPD (CELL 2)

3.1 History of Construction

The SCPD was brought online in 2022. The CCR Unit was constructed in two parts, consisting of two connected cells, labeled "Interim" and "Primary". The Interim and Primary cells are separated by a lined embankment but connected with a spillway through the embankment. The Interim cell was completed in 2022, and the Primary cell was completed in 2023. As-built drawings are presented in Appendix A. The Flue Gas Desulfurization (FGD) system produces gypsum as a byproduct. The FGD gypsum slurry is pumped to SCPD where it is managed for long-term or permanent storage. The SCPD does not receive any additional stormwater run-off outside its bounded area. The gypsum slurry discharges into the cell at the approximate midpoint of the west embankment. The gypsum settles out into SCPD and the decant water flows into the Recycle Pond through a set of triple box culverts. SCPD and the Recycle Pond are separated by an embankment. The bottom and side slopes of SCPD are lined with 80-mil HDPE liner, which was constructed over 24 inches of compacted, impervious clay. The SCPD embankment upstream and downstream slopes have a steepness of 3H to 1V and the crest elevation is approximately 446 feet.

A summary of pertinent data for SCPD is summarized in Table 3.

Table 3 - SCPD (Cell 2)

CCR Unit	Maximum Pond Area (acres)	Maximum Dam Height (feet)	Minimum Crest Width (feet)	Length (feet)	Upstream Slope Steepness (H:V)	Downstream Slope Steepness (H:V)
SCPD (Cell 2)	40.3	24.0	12	5,283	3:1	3:1

3.2 Modifications to Embankment Geometry and Operation

There have been no modifications to the SCPD embankment geometry since the original construction of the impoundment in 2023.

3.3 Foundation and Abutment Geology

Geotechnical investigations in 2005 for SCPD document the impoundment foundation material and are presented in Appendix A. The uppermost stratum is generally clays and silty clays with scattered seams and layers of low plastic silt, underlain by silts. The thickness of these fine-grain deposits ranged from 0 to 24 feet, but generally between about 5 to 10 feet. Clay soils are almost all high plastic. The fine-grain soils are firm to stiff, with undrained cohesive shear strengths of 500 psf to over 2000 psf.

The upper fine-grain soils are underlain by sandy silts, silty fine sands, and fine sands, generally to a depth of 30 feet. These upper sandy soils are generally loose to medium-dense. The upper sandy soils are

underlain by fine to coarse, poorly graded sands and well-graded sands, with some silty sands and gravelly sands at greater depths. Limestone bedrock is at a depth of about 115 feet. The lower sands generally ranged from medium dense to very dense, increasing in density with increasing depth.

3.4 Embankment Material

Embankment fill consists of compacted layers of clay and silt with varying amounts of sand. Fill material was compacted to a minimum of 95% of the maximum dry unit weight determined from the Standard Proctor Moisture-Density Test (ASTM D698). Fill placement was monitored, and moisture-density tests were obtained during construction. The upstream and downstream slopes have a steepness of 3H to 1V. The crest elevation of the embankment for SCPD is approximately elevation 446 feet.

The bottom of SCPD and the upstream slopes are covered with 2 feet of compacted clay liner that has a maximum hydraulic conductivity of 1×10^{-7} cm/sec. Clay for the liner was obtained on site. The compaction criteria for the clay liner were developed using the "Daniel Method." Fill placement was monitored and moisture-density tests were obtained during construction.

3.5 Operating Pool Surface Elevations

The normal operating pool level for SCPD is elevation 441.1 feet. Assuming there is no flow from the triple box culvert spillway, the maximum surcharge pool elevation during the 100-year, 24-hour storm in SCPD is 442.0 feet. An area-capacity curve for SCPD is shown in Figure 3.

3.6 CCR Unit Outlet Works

The principal spillway for SCPD is a set of three box culverts. Each box culvert has a width of 6 feet and height of 3 feet. The flowline of the box culverts is at elevation 441 feet. The box culverts discharge into the Recycle Pond. The spillway construction drawings are presented in Appendix A.

SCPD also has two broad crested weir emergency spillway located near the northeast corner of the impoundment. The spillway is lined with concrete. The spillway invert elevation is at 445.0 feet. At the invert elevation the spillway has a width of 12 feet, and the sides are tapered up to the top of the embankment elevation over a distance of 12 feet. A typical cross-section of the emergency spillway is shown in the construction drawings presented in Appendix A.

Summarized in Table 4 are pertinent data for the SCPD outlet works.

Table 4 – SCPD (Cell 2) Outlet Works

CCR Unit	Description	Туре	Upstream Invert Elevation (feet)	Downstream Invert Elevation (feet)
SCPD (Cell 2)	Principal Spillway	Triple box culverts	441.0	440.5
SCPD (Cell 2) - Primary	Emergency Spillway	Broad Crested Weir	445.0	NA
SCPD (Cell 2) - Interim	Emergency Spillway	Broad Crested Weir	445.0	NA

3.7 Impounded CCR

SCPD impounds gypsum and the estimated volume and depth as of October 2023 are shown in Table 5.

Table 5 – SCPD (Cell 2) CCR

CCR Unit	Est. Volume of CCR (CY)	Approximate Bottom Elev. of CCR Unit (feet)	Est. Maximum CCR Elev. (feet)	Est. Average Depth of CCR (feet)	Est. Maximum Depth of CCR (feet)
SCPD (Cell 2 – Gypsum)	54,500	432	441.1	1.0	8.1

Typical wet FGD gypsum is characterized by a moderately low hydraulic conductivity. The angle of internal friction (ϕ) for gypsum is typically assumed to be about 40 to 42 degrees.

3.8 Instrumentation

There is no staff gage in SCPD. Given the large capacity of the box culverts, the water level within the pond is nearly constant at the invert of the culverts. The water level in the Recycle Pond is continuously monitored by Plant operation personnel using level sensors installed at the east end of the Recycling Pond.

3.9 Structural Instability

There are no records of structural instability for SCPD.

4.0 HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

40 CFR Part 257 Hazard Potential Classification Assessments for CCR Surface Impoundments §257.74(a)(2)

The Hazard Potential Classification Assessment was conducted for active CCR surface impoundment SCPD (Cell 2) at the Sioux Energy Center. The CCR surface impoundment is low hazard potential because failure of the impoundment is not expected to cause a loss of human life, and the economic, environmental and lifeline losses are expected to be low and generally limited to the owner. The hazard potential classification was completed in general accordance with Federal Guidelines for Dam Safety: Hazard Potential Classification for Dams by the Federal Emergency Management Agency (January 2004).

CCR Unit	Hazard Potential Classification
SCPD (Cell 2 – Gypsum)	Low

Refer to Appendix B for the Hazard Potential Classification report. The subsequent assessment of the hazard potential must be conducted within 5 years of this assessment.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 31, 2024

5.0 STRUCTURAL STABILITY ASSESSMENT

40 CFR Part 257 Structural Stability Assessment for CCR Surface Impoundments §257.74(d)

The Structural Stability Assessment was conducted for the active CCR surface impoundment SCPD (Cell 2) at the Sioux Energy Center. The structural stability assessment was completed in general accordance with 40 CFR Part §257.73(d). Assessment of all three CCR Units found no structural stability deficiencies, no significant issues with the current operations and maintenance, and that the design and construction are adequate, however some corrective measures were recommended.

Requirement	SCPD (Cell 2 - Gypsum)
Initial periodic assessment was completed in general accordance with the requirements of 40 CFR Part §257.73(d)	Yes

Refer to Appendix C for the Structural Stability Assessment report. The subsequent Periodic Structural Stability Assessment must be conducted within 5 years of this assessment.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 31, 2024

6.0 SAFETY FACTOR ASSESSMENT

40 CFR Part 257 Safety Factor Assessment for CCR Surface Impoundments §257.74(e)

The Safety Factor Assessment was conducted for the active CCR surface impoundment SCPD (Cell 2) at the Sioux Energy Center. The Safety Factor Assessment shows that the critical cross section for this Unit meet or exceed the minimum factors of safety specified in 40 CFR Part §257.74(e) as summarized below.

Requirement	SCPD
The calculated static factor of safety under the long- term, maximum storage pool loading condition must equal or exceed 1.50.	≥1.50
The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.	≥1.40
The calculated seismic factor of safety must equal or exceed 1.00.	≥1.00
The calculated liquefaction factor of safety must equal or exceed 1.20.	≥1.20

Refer to Appendix D for the Safety Factor Assessment report. The subsequent Periodic Safety Factor Assessment must be conducted within 5 years of this assessment.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 31, 2024

7.0 HYDROLOGIC AND HYDRAULIC CAPACITY REQUIREMENTS

40 CFR Part 257

Initial Hydrologic and Hydraulic Capacity Requirements for CCR Surface Impoundment §257.82

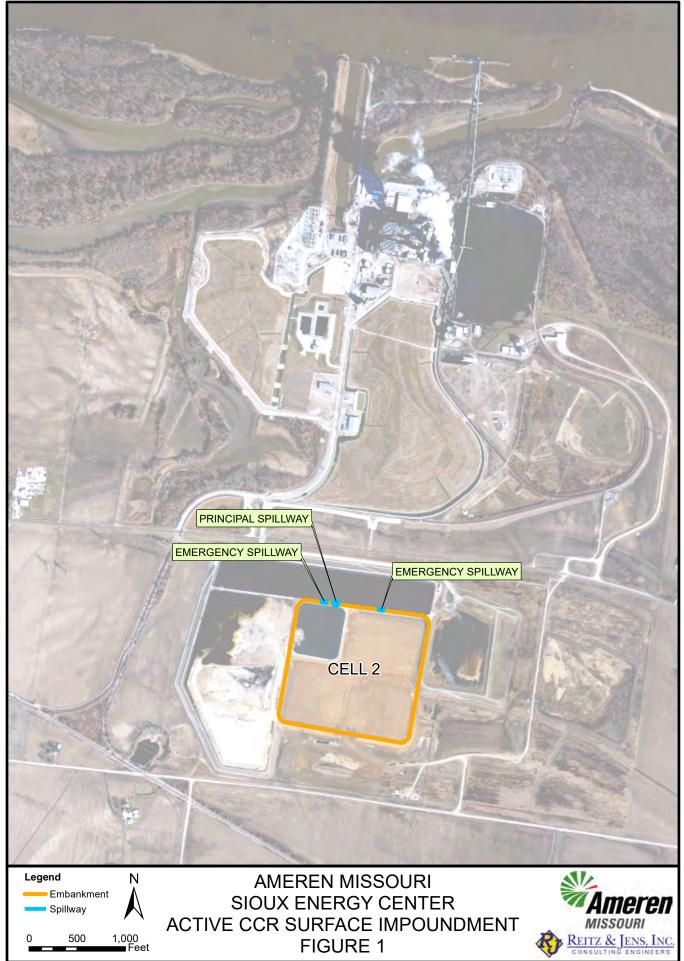
The inflow design flood control system plan was completed for the active CCR surface impoundment SCPD (Cell 2) at the Sioux Energy Center. The initial inflow design flood control system plan was completed in general accordance with 40 CFR Part §257(e)(1) using the 100-year design flood for low hazard potential CCR surface impoundments.

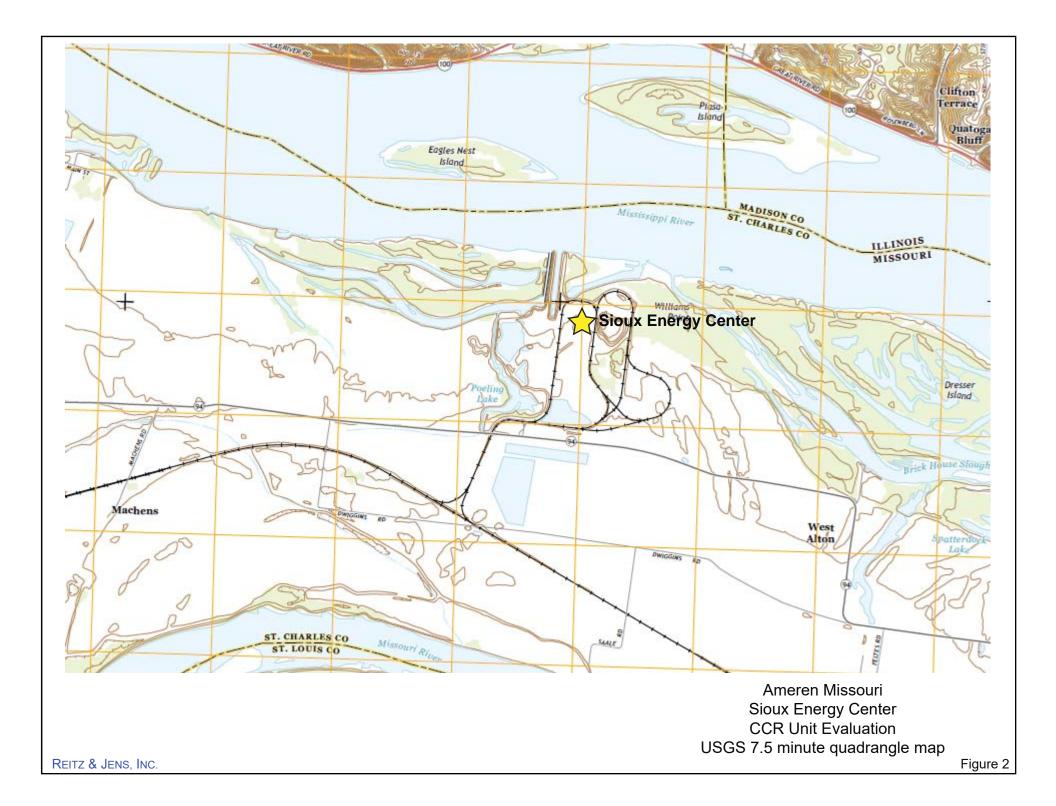
Requirement	Requirement	SCPD (Cell 2)
The initial inflow design flood control system plan meets the requirements of 40 CFR Part §257.82	Yes	Yes

Refer to Appendix E for the Inflow Design Flood Control System Plan report. The owner or operator must prepare periodic inflow design flood control system plans every five years, or whenever there is a change in conditions that would substantially affect the plan.

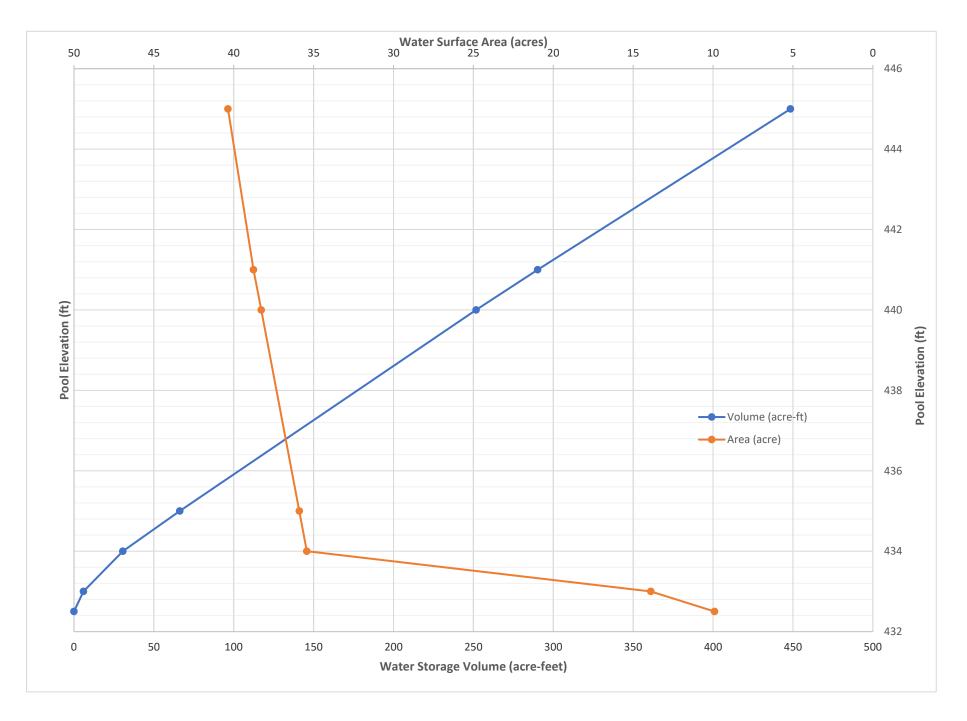
Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 31, 2024


8.0 CLOSURE


The preceding history of construction is regarded as a living document. If there is a significant change to any information or there are periodic updates, Ameren must update the relevant information and place it in the facility's operating record.

9.0 **REFERENCES**


Ameren Missouri. (2024). "Operation and Maintenance Manual for Cells 1,2 & 4A and Recycle Pond, Sioux Energy Center Utility Waste Landfill, St. Charles County, Missouri." Power Operations Services, St. Louis, Missouri.

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

SCPD AREA-CAPACITY CURVE

Ameren Missouri Sioux Energy Center Evaluation of CCR Units October 2024

APPENDIX A

OPERATION AND MAINTENANCE MANUAL FOR CELLS 1 & 4A AND RECYCLE POND

SCPD AS-BUILT DRAWINGS

AMEREN MISSOURI SIOUX ENERGY CENTER CONSTRUCTION PERMIT MODIFICATION FOR PERMITTED UTILITY WASTE LANDFILL (PERMIT NO. 0918301), ST. CHARLES COUNTY, MISSOURI, REVISED GEOTECHNICAL ENGINEERING REPORT, JANUARY 24, 2020

GREDELL Engineering Resources, Inc.

ENVIRONMENTAL ENGINEERING LAND - AIR-WATER

Project Engineering Team

Operation and Maintenance Manual for Cells 1 & 4A and Recycle Pond Sioux Energy Center Utility Waste Landfill St. Charles County, Missouri

Prepared for:

Ameren Missouri Power Operations Services 3700 South Lindbergh Blvd. St. Louis, Missouri 63127

April 2011 (Revised October 2015)

Ameren Missouri Sioux Energy Center Utility Waste Landfill Cells 1 & 4A and Recycle Pond Operation and Maintenance Manual

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 GENERAL DESCRIPTION OF UTILITY WASTE LANDFILL	1
1.2 SCOPE OF O&M MANUAL	
1.3 AMEREN DAM SAFETY PROGRAM	2
1.4 OVERVIEW OF UWL	2
1.4.1 Cell 1	
1.4.2 Recycle Pond	4
1.4.3 Cell 4A 1.5 STATE AND LOCAL PERMITS	5
2.0 OPERATIONS	, 8
2.0 OPERATIONS 2.1 PERSONNEL	-
2.2 EQUIPMENT	
2.3 ROUTINE GYPSUM MANAGEMENT	
2.3.1 Siphoning	
2.3.2 Berm and Rim Ditch Construction	9
2.3.3 Gypsum Stacking Operations	
2.4 ROUTINE DRY CELL MANAGEMENT	
2.4.1 Leachate Collection System	
2.4.2 Storm Water Pump 2.5 ROUTINE OPERATION OF THE RECYCLE POND	11
3.0 EMBANKMENT INSPECTIONS	. 11
3.1 DESCRIPTIONS OF CERTAIN ANOMALIES	
3.2 WEEKLY INSPECTIONS	
3.3 SPECIAL INCIDENT INSPECTION	
3.4 ANNUAL INSPECTION	
4.0 MAINTENANCE ACTIVITIES	10
4.1 ROUTINE MAINTENANCE PROCEDURES	
4.2 SPECIAL INCIDENT MAINTENANCE PROCEDURES	
5.0 EMERGENCY ACTION PLANS	20
5.1 BREACH OF EMBANKMENT	20
5.2 DISCHARGE THROUGH EMERGENCY SPILLWAY	21
5.3 FLOODING SURROUNDING EMBANKMENTS (Rev. October 2015)	21
5.4 FIRE, MEDICAL OR OTHER	22
5.5 CONTACTS	23
6.0 PERMIT REQUIREMENTS, RECORD KEEPING AND DISTRIBUTION	24
6.1 INTERNAL AMEREN COMMUNICATIONS	
6.2 MDNR SOLID WASTE CONSTRUCTION PERMIT	25
6.3 MDNR SOLID WASTE OPERATING PERMIT	-
6.3.1 MDNR-SWMP Recordkeeping Requirements	
6.3.2 UWL Survey Requirements	27
6.3.3 Biennial Airspace Estimate	21

6.4 MDNR DAM AND RESERVOIR SAFETY DAM CONSTRUCTION PERMIT	27
6.5 ST. CHARLES COUNTY SOLID WASTE OPERATING LICENSE	29
6.5.1 St. Charles County Recordkeeping Requirements	30
6.5.2 St. Charles County Annual Report	32
6.6 ST. CHARLES COUNTY WASTE FACILITY PLAN	32
7.0 REFERENCE DOCUMENTS	33

LIST OF FIGURES

	<u>Figure</u>
General Plan of Utility Waste Landfill	1
Plan of Cells 1 & 4A and Recycle Pond	2
Typical Cross-Section of Cell 1 and Recycle Pond Perimeter Berm	3
Typical Cross-Section of Cell 4A Soil Perimeter Berm and CCP Berm	4
Cell 1 Start-Up Stage	5
Cell 1, Stage 1	
Cell 1, Stage 2	
Cell 1, Stage 3	
Initial Filling of Cell 4A	9A
Location of Storm Water Sump and Pump Details	9B

LIST OF TABLES

	<u>Page</u>
Table 1 – Setting of Operating Levels on Cell 4A Leachate Collection Pump	
Table 2 – Recycle Pond Water Level Set Points	12
Table 3 – Important Contacts	23
Table 4 – Internal Distribution of Inspection Reports	24
Table 5 – Division of Responsibility	25

LIST OF APPENDICES

	<u>Appendix</u>
Inspection Forms	A
Maintenance of Protective Grass Cover	В
Gypsum Stacking Operations	C
State and Local Permits (Rev. October 2015)	

ABBREVIATIONS

BFEBase Flood Elevation, from FEMA Flood Insurance Study maps CCPsCoal combustion products (fly ash, bottom ash, and boiler slag) CDSEAmeren Missouri Chief Dam Safety Engineer CPAConstruction Permit Application CYCubic yard(s)
DRSP
DSI Detailed Site Investigation, part of the MDNR permitting process
DSP Ameren Missouri's Dam Safety Program (DSP 003)
EIP Ameren Emergency Implementing Procedures
EPA Environmental Protection Agency
FEMA Federal Emergency Management Agency
FS Factor of Safety
HDPE High density polyethylene
MDNR Missouri Department of Natural Resources
O&M Operation and maintenance
PSI Preliminary Site Investigation
SCC St. Charles County
SWMC Soil Waste Management Code for St. Charles County
SWMP MDNR Solid Waste Management Program (as in MDNR-SWMP)
UWL Utility waste landfill
WFGD
WFP Waste Facility Plan, required by St. Charles County

Ameren Missouri Sioux Energy Center Utility Waste Landfill Cells 1 & 4A and Recycle Pond Operation and Maintenance Manual

1.0 INTRODUCTION

1.1 GENERAL DESCRIPTION OF UTILITY WASTE LANDFILL

The Ameren Missouri Sioux Energy Center ("Plant") Utility Waste Landfill (UWL) site is located in unincorporated St. Charles County within a tract of land totaling 398 acres, of which 183.5 acres are permitted for use as the active disposal area. The UWL site is adjacent to the Plant, located south of State Highway 94 and north of Dwiggins Road. The active disposal area will be divided into multiple disposal cells. A general plan of the UWL is shown in Figure 1. Cell 1, the Recycle Pond, and associated facilities were constructed between 2008 and 2010. Cell 4A was constructed in 2012 and 2013. A plan of Cell 1, Cell 4A and the Recycle Pond is shown in Figure 2. The remaining acreage includes area for future cells, soil-borrow areas, access roads, flood protection berms, buffer area, slurry pipes, and haul roads. Ameren leases as much of the unused acreage as possible for crop farming.

The UWL has been approved by the Missouri Department of Natural Resources (MDNR) to allow permanent disposal of both wet flue gas desulfurization (WFGD) gypsum using wet "gypsum stack" methods, and dry disposal of coal combustion products (CCPs) produced by the Sioux Energy Center. The purpose of the Cell 1 and future Cells 2 and 3 is storage of gypsum from the WFGD system. Cells 4 through 7 will store moisture-conditioned (i.e. "dry") CCPs. Only the western half of Cell 4 (Cell 4A) has been constructed. The purpose of a future individual cell may change before it is designed and constructed.

Only CCPs generated by Ameren Missouri's Sioux Energy Center will be accepted at the UWL. The total CCP volume estimated to be available at the site is 21,123,000 CY when all cells have been constructed. This equates to an estimated 20,532,000 tons of landfill capacity. Based on historical production and assumptions for future CCP generation, the calculated life expectancy of the landfill is approximately 48 years, reaching capacity in 2058.

1.2 SCOPE OF O&M MANUAL

This Operations and Maintenance (O&M) Manual is only for: Cell 1, Cell 4A, and the Recycle Pond <u>outside the Reclaim Water Pump House and associated Electrical Equipment Building</u>. This Manual does NOT include the operation and maintenance of the piping, mechanical or electrical systems that are located in the Plant; between the Plant and the Pump House; nor associated with the Pump House and the Electrical Building at the Recycle Pond.

Safety requirements and procedures are not included in this Manual. <u>Ameren Missouri and Sioux</u> <u>Energy Center health and safety rules and procedures must be followed</u>. In particular, working on or near the inside slopes of Cell 1 and the Recycle Pond requires special precautions, such as the use of floatation vests and a life line. The high density polyethylene (HDPE) liner is very slippery when wet. The effective timeframe of this O&M Manual began with start-up of the WFGD system in November 2010 until Ring Drain B will be installed. Ring Drain B will be required when enough gypsum solids have accumulated in Cell 1 for continued wet stack operation, which is at about el. 441 to 443. Based on an average monthly production rate of 7,000 to 9,000 tons of gypsum, Ring Drain B will not be required until 2020 to 2021 if gypsum stacking operations are performed. Plant operational, maintenance and construction activities required for the UWL beyond the installation of Ring Drain B in Cell 1 will need to be addressed at that time.

CCPs will be placed in Cell 4A as a construction contract periodically. Therefore, the daily operational procedures for the dry cell are not included in this O&M Manual. These procedures are stated in the St. Charles County Waste Facility Plan and the Construction Permit Application (CPA).

Because the effective timeframe of this O&M Manual spans several years, modifications made to processes or associated documents may necessitate revision and modification to this O&M Manual.

1.3 AMEREN DAM SAFETY PROGRAM

This operation, maintenance and inspection program for the Sioux UWL Cell 1 and Recycle Pond shall be in compliance with the current Ameren Missouri Procedure AUE-ADM-5103, "Dam Safety Program for Ameren Missouri Non-Hydroelectric Facilities." The Dam Safety Program does not apply to Cell 4A or the other dry CCP cells.

1.4 OVERVIEW OF UWL

The Utility Waste Landfill (UWL) is being constructed in phases (or cells) that will be designed and permitted to accept either gypsum or CCPs. The initial phase was the construction of Cell 1 and Recycle Pond, which are located within a 183.5-acre permit boundary within the 398 acre tract. The footprint of Cell 1 covers approximately 37.5 acres, and the Recycle Pond footprint is approximately 19.6 acres. Cell 1 was designed for wet gypsum stacking operation. Additional disposal capacity for both gypsum and CCPs will be created by adding additional disposal cells with prior regulatory approval. At this time, Cells 1, 2 and 3 will hold WFGD gypsum, and will total 96.9 acres. Cells 4 through 7 will hold CCPs and will total 86.6 acres. Cell 4A has been constructed with a footprint of about 15 acres. Preliminary approval for adding future cells has been obtained from both the Missouri Department of Natural Resources (MDNR) and St. Charles County. The present MDNR permit does not allow reclamation activities.

The existing topography of the site is very flat. The site is a part of the 100-year floodplain of the Mississippi and Missouri Rivers, but not in the floodway. There are two topographic ridges, each less than 3 feet high, and one shallow drainage feature that cross the site north of Dwiggins Road in a general east-west direction. The shallow drainage feature lies between the two ridges. The entire UWL site is protected from flooding on the Mississippi River by the L-15 agricultural levee system up to about el. 433, which is the 20-year flood event on the Mississippi River (i.e. on average would occur once in every 20 years). The 50-year flood event on the Mississippi River is el 435. The 100-year flood event on the Mississippi River is el. 438.7 (i.e. BFE). The railroad embankment protects the site from the 100-year flood event on the Missouri River. The site itself

generally drains from northwest to southeast. The Ameren spur railroad embankment to the west as well as roads on the north and south generally block surface water from flowing onto the UWL site.

A typical cross-section of a perimeter berm for Cell 1 and the Recycle Pond is shown in Figure 3. The top of the perimeter berms is at el. 446. A cross-section of the perimeter soil berms for Cell 4A (north, west and south berms) is shown in Figure 4. A cross-section of the east temporary CCP berm of Cell 4A is also shown in Figure 4. The interior floor and side slopes of Cells 1 and 4A and the Recycle Pond are lined with HDPE liner over 24 inches of high plastic clay. The HDPE and the compacted clay are collectively referred to as the "composite liner." The HDPE liner is held at the top of the interior slope by a 24-inch wide by 24-inch deep anchor trench. **IT IS CRITICAL THAT THE HDPE LINER IS NOT CUT, TORN OR PUNCTURED AT ANY POINT**. The HDPE liner must always be protected from damage. (The interior slope of the CCP berm does not have a HDPE liner.) The exterior of the western and southern Cell 1 and Recycle Pond perimeter berms are armored with riprap for flood protection in the remote event of a breach of the railroad embankment such as occurred in 1993.

Access to the UWL is limited to authorized Ameren personnel and contractors. Emergency vehicle access from the Sioux Energy Center to the UWL can be provided during a flood event via Highway 94 across from the Sioux Energy Center employee entrance. Access around the UWL is provided by gravel maintenance roads on the top of the perimeter berms and around the exterior toe of the perimeter berms. Another entrance was constructed to allow access via Highway 94 directly across from the Sioux Energy Center contractor's entrance. The entrance and associated haul road allows for CCP transportation from the Energy Center to the UWL.

Cells 1 and 4A and the Recycle Pond are surrounded by a seven-foot high security fence topped with barbed wire. Locked gates are located on the north side of the UWL at the entrance roads to control access to the disposal area. Ameren Sioux Energy Center security staff is on duty 24 hours per day and will provide additional security to the UWL through routine site monitoring.

1.4.1 Cell 1

The WFGD scrubber system installed at the Sioux Energy Center will reduce sulfur dioxide (SO₂) emissions. The by-product is gypsum (as found in wallboard), which is transported to the UWL as a slurry containing about 15% to 20% solids. Gypsum stored in the Gypsum Transfer Tank at the Plant is pumped from one of two gypsum transfer pumps located in the Plant's Gypsum Transfer Building through three underground HDPE pipelines. The piping connects the UWL system with the WFGD system at the Reclaim Water Pump House. These lines include gypsum transfer, reclaim water return, and a common spare that can be utilized for either gypsum transfer or reclaim water system. The pipelines cross under Highway 94 and enter through the north wall of the Pump House (shown in Figure 2).

The gypsum slurry is piped to Cell 1 through either one of two buried HDPE pipelines that run from the south wall of the Pump House, down the centers of the east embankment and the south embankment of the Recycle Pond, and down the center of the east embankment of Cell 1. The pipes discharge into Cell 1 at the approximate midpoint of the east embankment (Sta.

The gypsum slurry discharges into Cell 1, where the gypsum settles out and the "decant" water flows into the Recycle Pond. The water will normally flow by gravity through the triple box culverts ("Influent Structure") near the northwest corner of Cell 1, or it may be pumped or siphoned out of Cell 1 into the Recycle Pond. The flow line of the box culverts is at about el. 441 which controls the maximum water level in Cell 1.

Cell 1 is designed with two ring drains that are a key component to the long-term stability of the UWL during gypsum stacking operations. The positions of the two ring drains are illustrated in Figure C-1 in Appendix C. These ring drains are not critical to the stability or operation of Cell 1 until gypsum stacking operations reached above about el. 451. The outer ring drain is designated "Ring Drain A" and was installed on top of the HDPE liner at the bottom of Cell 1. Four outlet drain pipes have been installed for Ring Drain A as shown in Figure 2. As the height of the gypsum stack increases, the lower gypsum is compressed, forcing the water out. Some of this water will be forced through the ring drains and up and out of the outlet pipes, which will discharge into a future perimeter ditch formed in the gypsum (see Figure C-1). The outlet pipes discharge at el. 443.0. So the height of the gypsum will have to be 3 to 5 feet above the discharge of the outlet pipes, or at about el. 446 to 448, before water will flow from the outlet pipes. Therefore, Ring Drain A and its associated outlet pipes are not expected to function during the effective timeframe of this O&M Manual. Ring Drain B is not currently installed, but is designed to be installed at approximate el. 440 when the gypsum in Cell 1 has accumulated to about el. 441 to el. 443, at which point a stable working surface can be established (see Section 1.2). Ring Drain B consists of 6-inch diameter slotted pipe enclosed by drainage gravel blanket. The gravel blanket is 12 feet wide and 18 inches thick, and is wrapped with a filter fabric. The total length of Ring Drain B is about 3600 feet.

The available volume for gypsum in Cell 1 up to el. 441 is 856,000 CY. Gypsum stacking operations will be required shortly after the gypsum fills Cell 1 up to about el. 441 to 442, which is expected to be in the 2020 to 2021 timeframe. Gypsum stacking operations are presented in Appendix C. Gypsum stacking in Cell 1 may not be allowable depending on the outcome of pending regulations. Should regulations allow stacking, the available volume of gypsum in Cell 1 is about 2.8 million CY to a maximum elevation of 485 feet. Permitting and construction of Cell 2 will need to be complete and ready for operation by the time this elevation is reached in Cell 1 and possibly sooner depending on regulations.

The sump, located at the approximate center of the north end of Cell 1, is designed to allow a submersible pump to be installed at a later date near the bottom of Cell 1 to help drain Cell 1. For example, this might be done to repair a leak in the liner.

1.4.2 Recycle Pond

The landfill is designed as a no-discharge water management system. The excess slurry water and rainfall within the perimeter berms is collected in the Recycle Pond and pumped back to the WFGD system as reclaim water. The water in the Recycle Pond normally will flow

through the box culverts in the southwest corner to the east end, where two 48-inch diameter HDPE pump intakes manholes ("Effluent Structures") are located on the bottom of the Recycle Pond. The tops of the manholes are at el. 426.5, and the bases are at el. 422. Water will flow through the tops of the manholes. If the water in the Recycle Pond is drawn down below el. 426.5 under special circumstances, then there are holes in the side of both manholes which will allow water to flow into the manholes down to el. 425.

These pump intakes are connected to 2 reclaim pumps in the Pump House through 2 doublewall HDPE intake pipes that enter the west side of the Pump House. The flowline of the intake pipes is at el. 423 at the pump intake manholes. The pipes go through the west wall of the pump house at el. 426 and el. 427 (centerline). The pump intakes and exposed piping are held in place by a gravel blanket that also protects the HDPE liner during future maintenance activities. The pump intakes have mesh screens covering their open tops that are designed to keep large objects and debris out of the reclaim pumps in the Pump House.

The water levels within the Recycle Pond are continuously monitored by the Plant operation personnel. A series of redundant level sensors are installed at the east end of the Recycle Pond to allow continuous monitoring. These sensors are housed in five 4-inch diameter HDPE pipes that are installed on top of the HDPE liner on the slope of the east embankment (see detail in Figure 2). The three long pipes house pressure transducers which are continuously read water level sensors, while the two shorter pipes house water level probes with redundancy for the "high" and "high-high" water level alarms. The HDPE pipes housing the level sensors are anchored to the HDPE liner by HDPE "anchors" boxes that are filled with gravel and are welded to the HDPE liner.

A recirculation pipe exits the west side of the Pump House, just below the top of the east embankment, and discharges into the southeast end of the Recycle Pond. The Pump House also has a sump pit to remove water that may accumulate in the Pump House. The water is returned to the Recycle Pond through a buried pipe that exits the south side of the Pump House and also discharges into the southeast corner of the Recycle Pond.

There are two (2) Emergency Spillways located in the west perimeter embankment: one for the Recycle Pond and one for Cell 1. These spillways are a regulatory requirement of the Dam Construction Permit, to provide a controlled discharge in the unlikely event that the water levels in either the Recycle Pond or Cell 1 are close to overtopping the perimeter embankments. THE EMERGENCY SPILLWAYS ARE NEVER INTENDED TO BE USED UNDER NORMAL OPERATING CONDITIONS. Discharge of water from the Recycle Pond or Cell 1 into the area outside of the perimeter embankments is not allowed under existing State and County environmental permits.

1.4.3 Cell 4A

Cell 4A is designed for the storage of CCPs from the Sioux Energy Center. As noted previously, Cell 4A is the western one-half of the whole future Cell 4, that is when the eastern Cell 4B is constructed (see Figure 1). The design capacity of Cell 4A is 990,000 CY up to el.

514 (i.e. el. 515 minus 1 foot of soil cover). Cell 4B would have to be permitted and constructed so that it is operational before the CCPs in Cell 4A reach el. 514.

The east berm of Cell 4A is a "temporary interior" berm and was constructed with compacted CCPs from the ash pond at the Sioux Energy Center. Cell 4A has a blanket leachate collection system over the bottom and interior side slopes, and under the east CCP berm. Leachate is free water that drains to the bottom of the cell, either from water squeezed out of the CCPs by compression of its own weight or precipitation percolating through the CCP fill. The blanket leachate collection system is a geo-composite that consists of an expanded HDPE mesh topped with a non-woven filter fabric. The geo-composite drains to a central north-south leachate collection pipe, which conveys the leachate to a sump located at the north berm of Cell 4A. The entire geo-composite is covered with 12 inches of clean sand, to protect the geo-composite and to act as a filter to keep fly ash out of the leachate collection system.

A submersible leachate sump pump (EPG SurePump Model WSDPTSL 15-6) is located at the bottom of the sump in an 18-inch HDPE pipe that runs up the interior slope to the leachate sump pump vault (see Figure 2). The north-south leachate collection pipe also extends up the interior slope to the vault, and has a cleanout. The leachate sump pump can be pulled up the sloping 18-inch pipe with a cable and pulley for maintenance. The controls for the leachate sump pump are located within a control panel (PG PumpMaster Series L925PT) mounted outside of the vault. The leachate sump pump is equipped with a pressure sensor and operates automatically to control the fluid pressure or "head" in the leachate collection system. Per MDNR-SWMP regulations, no more than one foot of water can remain on the HDPE liner outside of the sump area. The leachate sump pump discharges through a flexible hose, which connects inside the vault to a buried 6-inch HDPE pipe that runs along the top of the north berm over to the discharge structure in the Recycle Pond. Power to operate the leachate sump pump comes from the Reclaim Water Electric Equipment Building. The leachate pump and alarm settings are discussed later in Section 2.4.1 and in the O&M manual for the leachate pump system.

Cell 4A was initially filled with CCPs from the active Sioux ash pond north of Hwy. 94 as soon as the cell was completed and authorization was received from MDNR-SWMP and revised operating license from St. Charles County. The initial filling of Cell 4A was required to provide ballast (weight) to counter hydrostatic uplift on the bottom liner in the event of a significant flood. A plan and profile of the initial filling with CCPs is shown in Figure 9A. The top of the CCP fill has an "intermediate" soil cover because CCPs will not be placed within Cell 4A for more than 60 days, in accordance with MDNR-SWMP regulations. Precipitation that collects in Cell 4A must be pumped to the Recycle Pond, to try to minimize the volume that percolates through the CCP fill and becomes leachate that must be removed by the leachate collection system. The surface of the intermediate cover is shaped to drain to a sump located below the storm water channel at the west side of Cell 4A. An electric submersible sump pump (Zoeller Model MX292) pumps the collected storm water up to a buried discharge pipe which drains by gravity into the Recycle Pond (see Figures 2 and 9B). The storm water pump is designed to be readily relocated as CCPs are added to Cell 4A. Power for the storm water pump comes from the Reclaim Water Electric Equipment Building. The storm water pump is equipped with

automatic controls and a moisture sensor indicator panel mounted on the pipe bollard with the power source (see Figure 9B). The storm water pump settings are discussed later in Section 2.4.2 and in the O&M manual for the storm water pump.

Currently, CCP ballast has been placed to elevations of 433 feet at the berms to 437 feet at the center of Cell 4A. An intermediate soil cover has been placed over the CCPs to elevations of 435 to 438 feet. The construction ramp was left in place to facilitate future CCP placement and also covered with the soil cover. When the CCPs in Cell 4A reach el. 483, then an intermediate storm water collection berm with "let-down" storm water channels will be constructed. The volume of CCPs in Cell 4A up to el. 483 is 850,000 CY.

There is one Emergency Spillway located in the west perimeter embankment to provide a controlled discharge into the Recycle Pond in the unlikely event that stormwater pump cannot maintain operations to prevent overtopping the perimeter embankments. THE EMERGENCY SPILLWAY IS NEVER INTENDED TO BE USED UNDER NORMAL OPERATING CONDITIONS. Discharge of water from Cell 4A into the area outside of the perimeter embankments is not allowed under existing State and County environmental permits.

1.5 STATE AND LOCAL PERMITS

The following State and County permits and licenses have been obtained in order to construct and operate the UWL:

- 1) Missouri Department of Natural Resources (MDNR) Solid Waste Disposal Area Operating Permit No. 0918301, dated July 30, 2010.
- 2) MDNR Solid Waste Disposal Area Construction Permit No. 0918301, dated March 28, 2008. The "Groundwater Monitoring Program" is incorporated into this Permit.
- 3) MDNR Dam and Reservoir Safety Council Construction Permit C-426 (MO40160), dated April 1, 2008, with a memorandum of understanding. This permit has to be renewed annually.
- 4) St. Charles County Solid Waste Operating License #04303, dated November 1, 2013, revised December 10, 2013. This license must be renewed annually by October 31.
- 5) MDNR Solid Waste Management Program Authorization to Operate (ATO) Cell 4A, dated December 6, 2013.
- 6) MDNR issued Water Pollution Control Construction Permit #22-7667 for the Recycle Pond on August 5, 2008.
- 7) Wastewater discharges from the Sioux Energy Center are authorized by NPDES Permit MO-0000353. This includes the Recycle Pond. Reissuance of this permit is currently pending with MDNR.

These permits and licenses contain specific requirements which must be followed and are provided in Appendix D for reference. The pertinent current requirements are summarized in

Section 6 and throughout this O&M Manual. However, nothing in this Manual may modify or supersede the requirements in the actual permits and licenses. The renewal or modification of these documents may impact the contents of this O&M Manual and may require revision of this Manual.

2.0 OPERATIONS

State operating permits and the St. Charles County operating license list Ameren Missouri as the operator of the UWL. This O&M Manual has been prepared based on Plant personnel conducting the day-to-day operations. Day-to-day activities of the UWL may be subcontracted to a qualified contractor in the future. If so, that may require revision to this O&M Manual, as well as notification and revision of one or more of the State permits or the County license.

2.1 PERSONNEL

When the UWL is being operated daily, that is receiving CCP from the Sioux Energy Center rather than periodically under a construction contract, then the landfill manager and at least one other employee of the landfill will be Certified Solid Waste Technicians, in accordance with the approved CPA, Section 4.8.3. The other employee who is a Certified Solid Waste Technician will be qualified to serve the role of landfill manager during the manager's absence. However, until the UWL has daily operations, these certifications are not required. The St. Charles County Solid Waste Facility License does require that the personnel performing the weekly and special inspections must be trained to do these inspections (see Section 3.0 of Embankment Inspections).

2.2 EQUIPMENT

A preventative maintenance program will be implemented for the landfill equipment to minimize equipment failure and maximize equipment life. The landfill will have redundant pieces of equipment for use in most emergency situations. Each piece of equipment will be equipped with a fire extinguisher. See the St. Charles County Waste Facility Plan for a list of primary equipment and maintenance requirements.

2.3 ROUTINE GYPSUM MANAGEMENT

The water level in Cell 1 must be maintained at el. 441 feet from about December 1 through about March 31 each year to provide freeze protection for the clay liner until a minimum of 2 feet of gypsum can be spread on the sides of Cell 1 for freeze protection. The volume of water in Cell 1 will gradually be reduced as gypsum solids accumulate. Since the beginning of operations, gypsum slurry has been discharged into Cell 1 through the ends of the buried slurry pipes at about the middle of the east side as shown in Figure 5. The gypsum sediment is forming a "beach" below the discharges that will be above the water surface. The beach expands outward as more gypsum is pumped into Cell 1. Once the beach extends more than half way across Cell 1, as illustrated in Figure 6, flexible overland pipes will need to be installed around the perimeter of Cell 1 to continue discharging into Cell 1 at the south end. The overland pipes, as illustrated in Figure 7, should be 10-inch HDPE SDR-17. The discharge ends of the buried slurry pipes have bolted HDPE flanges to connect overland pipes. The overland pipes may be placed on the slope;

however the pipes may NOT be anchored by any means that would puncture the HDPE liner. Bags filled with gypsum or fly ash (not sand) may be placed on the slope to hold the pipes.

2.3.1 Siphoning

It will be necessary or desirable at times to lower the water level within Cell 1 to about el. 438 to optimize the distribution of the gypsum. This time is from about April 1 to the end of November. This must be done by pumping or with a siphon. A minimum head differential of 3 to 4 feet between the Cell 1 and the Recycle Pond is needed for the siphon to work. The difference in head between the cell and the pond will provide sufficient head differential to operate a siphon to lower the water level in Cell 1 below el. 441. Reclaim water will be transported from Cell 1 to the Recycle Pond either by gravity through the triple box culverts or by a siphon using an 8-inch (or larger) siphon line. The siphon line may be run through the box culvert to keep the road on the top of the embankment clear. As soon as sufficient water accumulates in the Recycle Pond, it will be pumped back to the Plant for reuse so that the water level in the Recycle Pond is maintained within the range of el. 432 to el. 435 during normal operation.

2.3.2 Berm and Rim Ditch Construction

After the discharge point is relocated as shown in Figure 7, it will become necessary to begin construction of the perimeter gypsum berm and rim ditch. The beginning of the construction is illustrated in Figures 6, 7 and 8. The water level in Cell 1 must be 3 feet or more below the working surface of the gypsum beach to support light earthmoving equipment. As discussed in the previous section, the water level may be lowered below el. 441 by pumping or siphoning during the appropriate time of the year. Once the perimeter gypsum berm and rim ditch have been constructed around the southern half of the Cell 1 (Figure 8), then the gypsum slurry will be carried in the rim ditch.

2.3.3 Gypsum Stacking Operations

When stacking will be required above the perimeter berm elevation of 441, gypsum management should follow the operational guidelines presented in Appendix C.

2.4 ROUTINE DRY CELL MANAGEMENT

CCPs will continue to be managed within the existing ash ponds at Sioux Energy Center for the foreseeable future. When necessary due to space constraints within the ash ponds, Ameren will issue a construction contract to haul stockpiled CCPs from Sioux to Cell 4A. The CCPs must be sufficiently dry to pass the Paint Filter Liquids Test (USEPA Method 9095B) prior to transportation. Basically, this requires that there is no "free water" when transporting the CCPs to Cell 4A. A characteristic of the fly ash at the Sioux is that it retains water, which does not drain out of stockpiled fly ash. The CCPs should be conditioned to a moisture content low enough to pass the Paint Filter Test and to get the fly ash sufficiently dry to transport to the cell.

The first step in adding CCPs to Cell 4A will be to remove the intermediate soil cover. The plan is for the contractor to stockpile and reuse the soil for the intermediate cover on the new CCP fill. The truck ramp constructed in Cell 4A during the initial CCP ballast placement was left in place to

facilitate future CCP placement. The gravel haul road from the contractor's entrance to the main entrance of the UWL may require regular maintenance to handle the heavy truck traffic during the hauling of CCPs to Cell 4A. After completion of hauling, the haul road and any other areas along the haul route should be restored if damage, such as rutting, occurs during hauling operations.

A bulldozer, tracked loader or other suitable type of earth moving equipment will be used to spread and compact the CCPs on the working face. The slope of the working face should not be steeper than 33% and the CCPs should be compacted in lifts no greater than 2 feet in thickness and to an average dry unit weight of 68 pounds per cubic foot (pcf). Generally, the disposal cells will be filled in a total vertical lift of 8 to 10 feet in height, with the waste confined to the smallest practicable area and compacted to the smallest practicable volume. The slope of the final landfill exterior side slopes of the dry disposal area will not exceed 25% slope (4 horz. to1 vert.). The vertical lifts will be staggered to promote storm water runoff with minimal erosion and to provide easy truck access and traffic flow while maintaining an orderly sequence of fill within the active portion of the lined cell. The CCPs may require additional conditioning to obtain a moisture content ranging from 30 to 40% for optimal compaction and for dust control. The operator will add moisture to the CCPs deposited at the active working face by spraying water directly onto the waste. If necessary, moisture content will be lowered by aerating the CCPs by disking or grading the CCPs on the working face. The compaction of the CCPs must be sufficient such that construction equipment will be able to run on top of the fill during placement of the new CCPs.

Refer to the plans in the CPA and the Waste Facility Plan for details about the design of the CCP fill, perimeter storm water collection ditch, and let down structures.

2.4.1 Leachate Collection System

MDNR-SWMP regulations require that the maximum water pressure on the HDPE liner below the CCP fill shall not exceed 1 foot of water (62.4 lbs/ft² or 0.43 psi). Therefore, the leachate collection sump pump must be capable of removing the leachate from the sump to keep the pressure in the leachate collection blanket below the CCP fill to less than 12 inches. The pressure transducer that controls the leachate sump pump is located at the center of the end. When the leachate sump pump is set in the bottom of the 18-inch pipe, the center of the pressure transducer is 13.3 inches above the bottom of the sump and 29.6 inches below the leachate collection geo-composite at the edge of the sump. Therefore, the control on the leachate sump pump should be set to turn the pump on when the pressure reaches 41.5 inches. The pump control should be set to turn the pump off when the pressure drops to 17 inches. The controls have two alarms, which are sent to the Control Room: the pump tripped/loss of power alarm, and the high level alarm. The high level alarm is set to 54 inches to indicate an excess head of 12 inches on the HDPE liner in the vicinity of the sump. The current settings on the controls are shown in Table 1.

The control panel for the leachate collection sump pump is located next to the sump pump vault. The control panel has a pump run light, a digital pressure readout, and elapsed run time readout for the pump, and a high level light. An exterior red alarm light on top of the control panel will also turn on with the high level alarm. See the EPG Companies Operations & Maintenance Manual for more details about the leachate collection sump pump system.

Parameter	Meter Reading inches	Operation
Pr Hi	41.5	Turns pump on
Pr Lo	17	Turns pump off
AL Hi	54	Turns high level light on
Hy Hi	1.0	Turns high level light off when drops below AL Hi
AL H2	143	Turns pump off (Greater value indicates probable failure
	143	of level sensor)
Hy H2		Not used

Table 1 – Setting of Operating Levels on Cell 4A Leachate Collection Pump

The Plant receives only two alarms on the main alarm screen. The two alarms are: 1) the pump tripped/loss of power alarm, and 2) the high level alarm (AL Hi in Table 1). If the pump tripped/loss of power alarm is received, then maintenance personnel should be sent to Cell 4A to review the control panel, to investigate the cause and to determine the appropriate action. The alarm indicates one of two scenarios: 1) The pump has not been operating and water has steadily accumulated in the sump to an elevation above the high alarm setting (troubleshooting of the pump is required), or 2) The pump is running but cannot keep up with the amount of water entering the sump (no action is required as long as the pump continues to run and the water level drops below the high alarm setting). It is permissible for the leachate in the collection system to exceed 12 inches for up to several days, for example if a heavy rain has increased infiltration into the leachate collection system from ponded water on the surface. If the high level alarm stays on more than 48 hours, or if it occurs several times in a week, then Ameren Environmental Services should be notified.

2.4.2 Storm Water Pump

Storm water that collects in Cell 4A must be pumped into the Recycle Pond. The storm water channel is only an "emergency spillway" to prevent the overtopping of the perimeter berms. The storm water pump is intended to be relocated as needed during placement of CCP fill, but it must remain in the vicinity of the buried storm water discharge pipe into the Recycle Pond (see Figure 2). The pump is sized for approximately 100 GPM at a total dynamic head (TDH) of 18 feet. At that rate, the pump will require about 7-1/2 days to remove a 25-year, 1-hour rainfall in Cell 4A (2.63 inches). There may be considerable infiltration of ponded storm water into the leachate collection system during the initial years when the thickness of the CCPs is less than design. If the leachate collection sump pump runs excessively, then adding a second storm water pump should be evaluated to shorten the time required to pump out the storm water.

2.5 ROUTINE OPERATION OF THE RECYCLE POND

Reclaim water will normally discharge from Cell 1 into the Recycle Pond by gravity through the triple box culverts. A minimum elevation of 428 feet is required at all times to maintain proper ballast on the HPDE liner, with the exception of short durations for repair or maintenance of the pump intake structures. **The water level in the Recycle Pond will require a minimum**

elevation of 430 feet to provide submergence for the reclaim pump intakes. The water level in the Recycle Pond should be maintained between el. 432 and el. 435 during December 1 through about March 31 each year to provide freeze protection for the clay liner.

Special consideration of Recycle Pond management (i.e. leaving enough storage volume) should consider major boiler outages, forecasted heavy storms, or dual unit outages when the water level in the Recycle Pond is maintained above el. 435. Surge capacity is required in the Recycle Pond to accommodate all precipitation runoff from the entire area of Cell 1, Cell 4A, and the Recycle Pond. Instrumentation to continuously monitor the level of the Recycle Pond is housed in 4-inch diameter, perforated HDPE pipes. The following instrumentation set points have been established:

Elevation (ft)	Description	Notes
428	Low Level	Auto Stop Reclaim Water Pumps; Minimum Elevation of water
430	Low	Start Permit - Reclaim Water Pumps
432	Low Level Alarm	
435	High with Check light and Alarm	Design Storm Water Capacity
443	High Alarm	
443.5	High High Alarm	

Table 2 – Recycle Pond Water Level Set Points

Additional details of the operation of the UWL are presented in Section 4.0 of the CPA, and are reproduced in Appendix D of the St. Charles County Waste Facility Plan.

3.0 EMBANKMENT INSPECTIONS

This operation, maintenance and inspection program for the Sioux UWL Cell 1, Recycle Pond, and Cell 4A shall be in compliance with the current Ameren Missouri Procedure AUE-ADM-5103 "Dam Safety Program for Ameren Missouri Non-Hydroelectric Facilities" and the permits and licenses listed in Section 1.5.

Cell 1 and the Recycle Pond are listed in AUE-ADM-5103, Section 1.2.1.5 as "Gypsum Stack and Recycle Pond Dam." Section 2.3 defines the policies, objectives and expectations of Ameren Missouri's Dam Safety Program. Section 3.0 defines the duties and responsibilities of the Chief Dam Safety Engineer (CDSE), the Dam Safety Group Staff, and operations personnel.

Section 4.4 defines four types of dam safety inspections: routine, annual, special, and unannounced. These inspections also apply to Cell 4A. The inspections for Cells 1 and 4A and the Recycle Pond shall be: Weekly ("routine" in the AUE-ADM-5103), Special Incident, and Annual. The Dam Safety Group may still perform unannounced inspections.

All inspections (with the exception of initial emergency or urgent Special Incident inspections) must be done during daylight hours.

All inspections shall be done by qualified person or persons. The St. Charles County Solid Waste Facility License stipulates that a "qualified" person shall be trained to recognize specific signs of structural instability and other hazardous conditions by visual observation and, if applicable, to monitor instrumentation.

3.1 DESCRIPTIONS OF CERTAIN ANOMALIES

The following terms used in describing certain anomalies associated with embankment maintenance and inspection are provided as background information.

"Slough" – appears in a slope as a relatively shallow spherical depression with a mound of disturbed material at the bottom of the depression. A slough may occur anywhere on a slope. A slough in the riprap may be very difficult to see. If the soil in the slough and below the slough is dry, then the slough should be noted and repaired as soon as possible. If the soil is wet in the slough or below the slough or there is seepage from the slough, then the Dam Safety Group and the Shift Supervisor at the Plant should be notified immediately.

"Deep Slide" – is a large movement of soil that may involve one-third or more of the slope. A slide is characterized by a nearly vertical "scarp" or exposed embankment material at the top of the slide, and a large mound of disturbed soil at the base of the slide. The lateral extent of the slide may appear circular. The Dam Safety Group and the Shift Supervisor at the Plant should be notified immediately if a slide is found, particularly if water is seeping from the disturbed area.

"Surface Slide" – is a very shallow slide, where the surface sod, riprap or soil has moved down the slope. There may be visible cracking, but no depression or scarp. A shallow slide should be noted and repaired as soon as possible.

"Seepage" – may be visible water running out of the base or face of a slope or it may be evident as a very wet, spongy area of soil. Water will be draining out of the base of a slope for some time after rain or snow. This is particularly true at the base of the riprap slope because a large quantity of rain or snow is collected in the spaces between riprap stone. Seepage at the base should be watched and reported if it occurs during dry weather, or continues for several days after a rain or a week after a snow.

"Boil" – is evident as seepage from a hole in the face of a slope or several hundred feet beyond the base of a slope. At the Sioux UWL, a boil may occur beyond the crushed rock perimeter road. There may be a mound of soil around the hole of the boil. The seepage water may be clear or may be muddy. A boil should be reported immediately to the Plant Shift Supervisor and the Dam Safety Group.

"Burrow" – any damage from animal intrusions, whether rutting, digging dens or tunnels or searching for food.

"Woody Vegetation" – includes shrubs, trees, dense ground cover, or any plant with a stiff, "woody" stem. Woody vegetation may interfere with mowing of the grass cover, or hide animal burrows or erosion.

3.2 WEEKLY INSPECTIONS

The Weekly Inspection shall consist primarily of traveling the upper and lower service roads of Cells 1 and 4A and Recycle Pond embankments, to look for visible evidence of potential problems, and with stops to check certain features. The form for Weekly Inspections is in Appendix A.

- 1) Inspect for erosion, sloughing, sliding, boils, seepage or animal burrows, in particular after the adjacent fields have been harvested.
- 2) Look at the grass cover on all embankments for bare spots or woody vegetation during the appropriate seasons. Record the locations of any bare spots.
- 3) Record the level of the water in the Recycle Pond, Cell 1, and Cell 4A (if any). Verify the elevation of the water in the Recycle Pond corresponds to the elevation indicated scrubber system logic and operator screen. If the difference between the visual level and the level indicated by the instrumentation is more than 12 inches, then the instrumentation will need to be recalibrated. Check that the level of the Recycle Pond is between el. 430 and 443. If the water level is lower than el. 430 or higher than el. 443, immediate action is required by the Plant Shift Supervisor.
- 4) Inspect for water spraying or running out of the manholes for the gypsum supply pipes between the Pump House and Cell 1. If so, notify the Plant Shift Supervisor immediately.
- 5) Check whether the level of the water in either the Cell 1 or the Recycle Pond is less than 2 feet below the crest of the emergency spillways (el. 445). If so, notify the Plant Shift Supervisor immediately.
- 6) Inspect for unevenness, depressions or cracking in the top of the embankment or the box culverts. A settlement of 0.2-foot or more should be reported.
- 7) Inspect for holes in the perimeter security fence (including barbed wire), vandalism, and whether the main entrance gate and the emergency entrance gate are locked.
- 8) Check that the gypsum slurry is flowing unobstructed from the discharge pipes.
- 9) Estimate visually and record the vertical distance between the flowline of the discharge pipes and the sedimented gypsum. It is not necessary to measure the distance. Do not walk out on the HDPE liner without suitable safety equipment and procedures.
- 10) Inspect the transducer level housing and controls for signs of damage due to power outages, water damage, animal burrows, debris damage or other deterioration. Make certain that the HDPE anchor blocks holding the instrumentation pipes are full of gravel.

- 11) Check the crushed rock perimeter roads, tops of embankments and ramps for evidence of erosion or vehicle tire rutting. Record the locations of erosion or rutting.
- 12) Look for deterioration, unevenness or cracks in the concrete blankets around the drain outlets and the sump outlet, and for erosion around the blankets and pipes.
- 13) Look for signs of stress or tears in the HDPE liners above water in the Recycle Pond.
- 14) Look for signs of stress or tears in the HDPE liners above water in Cell 1.
- 15) Look for exposed HDPE liner and geo-composite in Cell 4A, and for evidence of stress or tears.
- 16) Inspect for deterioration, unevenness, cracking, erosion or separation of the precast concrete blocks in the Recycle Pond below the triple box culverts. Check for debris or sediment that may be blocking the culverts.
- 17) Inspect for deterioration, unevenness, cracking, erosion or separation of the precast concrete blocks in the southeast corner of the Recycle Pond below the discharge pipes.
- 18) Inspect for deterioration, unevenness, cracking, settlement, erosion or separation of the precast concrete blocks in the Recycle Pond emergency spillway. Check for animal burrows. Check for debris or sediment that may block the spillway.
- 19) Inspect for deterioration, unevenness, cracking, settlement, erosion or separation of the precast concrete blocks in the Cell 1 emergency spillway. Check for animal burrows beneath the blocks. Check for debris or sediment that may block the spillway.
- 20) Inspect the HDPE recirculation pipe for leaks, and if pipe is frozen.
- 21) Inspect the Pump House sump discharge pipe, and if the pipe is frozen.
- 22) Inspect the Storm Water Channel between Cell 4A and the Recycle Pond for displacement or cracking.
- 23) Inspect the Cell 4A Storm Water Pump and Discharge Pipe.
- 24) Inspect the Leachate Collection Sump Pump Vault for displacement or leaking leachate.
- 25) Inspect the controls of the Leachate Collection Sump Pump and record the number of elapsed hours of operation.
- 26) Check for exposed CCPs on the exterior face of the CCP berm.

The Weekly Inspection form should be completed in the field while performing the inspection. If no anomalies or problems are noted, file with the records of the UWL as noted in Section 6.0. If an anomaly or problem is noted, indicate the location(s) on the Inspection Plan and attached it to the report, and email or FAX copies to the appropriate persons listed in Section 6.1.

Schedule the maintenance of the protective grass cover on the side slopes of the embankments in accordance with the recommendations in Appendix B. Mowing should be scheduled no more than 2 weeks prior to the Annual Inspection.

3.3 SPECIAL INCIDENT INSPECTION

An inspection shall be completed immediately following any of the following special incidents:

- 1) Within 48 hours prior to the start-up/commissioning of gypsum production.
- 2) Following periods of ice on the Recycle Pond and Cell 1 occurring between December 15 through March 31 of each year; inspect for damage to HDPE liners.
- 3) Brush fire inside the perimeter security fence.
- 4) Heavy rain of more than 2 inches in 24 hours.
- 5) A Mississippi or Missouri River flood event that inundates the exterior slopes of the embankments.
- 6) An earthquake with a magnitude (Mw) of 5.0 or greater.

The Special Incident Inspection is the same as the Weekly Inspection, and may be substituted for the normal Weekly Inspection if the timing coincides. If a Special Incident Inspection occurs during non-daylight hours, the inspection must be repeated during daylight hours the following day. The Special Incident Inspection form is provided in Appendix A. The completed Special Incident Inspection form is to be emailed or faxed immediately to the appropriate persons listed in Section 6.1.

A survey (horizontal and vertical) should be done of the tops of all the berms as described in Section 6.3.2 following an earthquake with a magnitude (Mw) of 5.0 or greater.

3.4 ANNUAL INSPECTION

The Annual Inspection shall be completed by a Professional Engineer registered in Missouri with a background in civil or geotechnical engineering. It should be done with a team of 2 qualified people or more. The St. Charles County Solid Waste Facility License stipulates that a "qualified" person shall be trained to recognize specific signs of structural instability and other hazardous conditions by visual observation and, if applicable, to monitor instrumentation. The Annual Inspection shall consist of a detailed inspection of all of the embankments and appurtenances by walking both the tops and toes of the embankments. The Annual Inspection may be done in conjunction with the regular Weekly Inspection.

The registered Professional Engineer shall complete and seal the Annual Inspection report. The Annual Inspection report shall include as a minimum:

- 1) Completed Weekly Inspection form
- 2) Results of elevation survey if performed, comparing results with previous surveys

- 3) General assessment of the UWL and features as outlined in Section 1.4.3.
- 4) List of specific corrective actions and repairs, specifying the urgency of each
- 5) Photos of features and any items to be repaired or corrected
- 6) The Annual Inspection report shall be distributed to the persons and agencies listed in Section 6.0.

4.0 MAINTENANCE ACTIVITIES

Maintenance activities include procedures for routine maintenance and procedures for specific incident maintenance. Routine maintenance includes regularly scheduled activities and unscheduled activities that are to be completed, as required. A required routine maintenance procedure is groundwater sampling for chemical monitoring. Groundwater sampling is not included in the scope of this O&M Manual.

4.1 ROUTINE MAINTENANCE PROCEDURES

- 4.1.1 Maintain the grassy vegetation and riprap on the external slopes of the Cells 1 and 4A and the Recycle Pond perimeter embankments.
 - a) If animal burrows are found, fill burrows with compacted silty clay and take measures to eliminate animals from area. A reference on repairs and preventative measures is the FEMA "Technical Manual of Dam Owners: Impacts of Animals on Earthen Dams," FEMA 473, September 2005.
 - b) Immediately repair erosion.
 - c) Evidence of sloughing, sliding or seepage may be indicating a larger problem. Immediately send inspection report to the CDSE or designated Dam Safety Staff for evaluation. Repair as indicated by Dam Safety.
 - d) Bare spots should be re-seeded and mulched with the appropriate native grasses seed mixture as given in Appendix B.
 - e) Mow protective grass cover and treat with fertilizer or herbicide as outlined in Appendix B.
- 4.1.2 Maintain the unpaved on-site road system.
 - a) Unpaved perimeter road system on top and bottom of the Cells 1 and 4A and Recycle Pond berms.
 - i. Regrade to correct vehicle tire rutting.
 - ii. Place additional gravel as necessary for all-weather travel and to fill erosion. Coarser crushed rock, such as 2-inch minus, may be used to fill deep gullies. Cap the coarse rock with 1-inch minus for a travel surface.
 - b) Unpaved ramps connecting upper and lower perimeter road system.

- i. Regrade to correct vehicle tire rutting and/or erosion.
- ii. Place additional gravel as necessary for all-weather travel and to fill erosion. See above note about using coarser crushed rock.
- 4.1.3 Maintain perimeter security fencing and access gates as needed. Backfill animal burrows. Maintain all facility signs required by State and County environmental permits; clean, repair, update or replace, as necessary.
 - a) UWL –Solid Waste Entrance Sign (one sign satisfies both State and County requirements).
 - b) Recycle Pond Wastewater Treatment Facility Sign.
- 4.1.4 Maintain the emergency spillways as needed to maintain discharge flowline at el. 445.0. Replace broken blocks, reset blocks and fill voids with fine gravel ("Meramec Sand").
- 4.1.5 Maintain the grouted precast concrete revetment blocks below the triple box culverts and below the discharge pipes in the Recycle Pond.
 - a) Inspect articulated blocks on top and sides of berm for displacement or deterioration.
 - b) Inspect for general signs of significant or differential settlement (greater than 1 to 2 inches).
 - c) Place additional grout as needed to fill voids or stop settlement.
- 4.1.6 Maintain erosion control mats (concrete mat forms) at the ring drain pipe outlets (four) and sump pipe (one) in Cell 1.
 - Repair erosion of fly-ash on the slopes under and around the discharge pipes. Fly ash may be replaced with "sand" bags filled with fly ash or dry bags of concrete mix. DO NOT USE SANDBAGS.
 - b) Repair pipe movement or differential settlement as directed by the Dam Safety Staff.
 - c) Repair concrete erosion control mats for degradation and deterioration.
- 4.1.7 Whenever the water level in the Recycle Pond is lowered below the top of the intakes (Effluent Structures), inspect the pump intake manholes, cover screens and drilled holes in the sides of the intakes for clogging and debris. Inspect gravel ballast covering the pipes inside the Recycle Pond between the pump intakes and the HDPE liner penetration in the east slope for signs of movement or displacement. Maintain the inlet manhole cover screens and drilled inlet holes for the two pump intakes.
 - a) Clean as necessary.

- b) Replace gravel ballast covering the pipes inside the Recycle Pond between the pump intakes and the HDPE liner penetration as needed.
- c) Maintain the integrity of the screens on the recirculation pipe and pump house sump outlet pipe to prevent animal access to the pipe.
- 4.1.8 Maintain the water level transducers per the manufacturer's specifications and operations manual.
 - a) Reset the elevations of the transducers as needed to maintain the water level within the required limits.
 - b) Maintain the condition of the pipe anchors for integrity and function.
- 4.1.9 Maintain blind flanges on slurry pipe clean outs. The top plates of the clean outs tend to loosen in freezing weather and must be checked for leaks whenever a gypsum slurry pipeline is going to be used after a period of inactivity.
- 4.1.10 Replace the vent filter and water vapor trap on the Leachate Collection Sump Pump (see Bulletin 0690C of EPG Companies Operations and Maintenance Manual for Leachate Sump Pump.

4.2 SPECIAL INCIDENT MAINTENANCE PROCEDURES

Perform maintenance in response to a Special Incident Inspection due to one the following events:

- 4.2.1 <u>After each heavy rain event of more than 3 inches in 24 hours</u>. Arrange for timely repairs. Do not discharge any water outside of Cells 1 or 4A or the Recycle Pond unless approved by Ameren Environmental Services.
- 4.2.2 If a flood inundates the perimeter berm exterior slopes. Document and arrange to make timely repairs as necessary. Monitor, contain and test as appropriate any floodwaters accumulated on site in any depressions for appropriate management in compliance with applicable laws and regulations. Do not discharge any water from Cells 1 or 4A or the Recycle Pond unless approved by Ameren Environmental Services.
- 4.2.3 <u>During extended heat/drought</u>. Monitor water elevation levels in Cell 1 and the Recycle Pond to maintain a minimum water level in the Recycle Pond of el. 430 when recycle pumps are operating or el. 428 for brief periods when the pumps are not in operation.
- 4.2.4 <u>Vandalism, vehicle or equipment damage</u>. Systems that could be damaged include: the security fencing; access gates; roads; composite liner containment systems; slurry piping system; water recirculation piping system; riprap protection of the outer berms; the transducer level controls system; groundwater monitoring wells; and other facility appurtenances.

- a) Notify the appropriate Plant personnel, Plant security authorities, and Ameren Dam Safety. Ameren Dam Safety may notify County, State and Federal agencies as necessary of the vandalism and damage.
- b) Document the cause and extent of damage and arrange for timely repairs along with appropriate documentation of repairs as necessary to restore the damaged systems.
- c) Develop and implement preventive measures and methods to avoid or minimize the potential for a reoccurrence of the event.
- 4.2.5 In preparation for use of a slurry pipe after an extended period without flow, inspect the integrity of the slurry pipe clean-out blind flange seals. Check the tightness of the bolts. Periods of freeze-thaw tend to loosen the bolts. After the pipe is on line, check the cleanout manholes for leakage. If possible, remove the lids of the manholes so that the cleanouts can be inspected for spraying or leaking for the first day shift after the pipe is on line. Place cones, orange barrels or other barricade around each open manhole for safety.
- 4.2.6 <u>A seismic event of magnitude 5.0 or greater</u>:
 - a) Notify the appropriate Plant personnel, Plant security authorities, local authorities, and Ameren Dam Safety. Ameren Dam Safety may notify County, State and Federal agencies as necessary of the observed damage.
 - b) Document the cause and extent of damage and arrange for timely repairs, along with appropriate documentation of repairs as necessary to restore the damaged systems.
 - c) Ameren Dam Safety will have a survey of the tops of all berms done (see Section 6.3.2).
- 4.2.7 <u>Settlement of the Top of Perimeter Berms</u>: notify Ameren Dam Safety. A survey of the top of the perimeter berm(s) may be required, and construction may be necessary to maintain the required flood level protection (el. 446).

5.0 EMERGENCY ACTION PLANS

In an emergency situation, the approved procedures outlined in Ameren Missouri's "Emergency Implementing Procedures" (EIP) must be followed. This Section provides information to supplement the EIP in the event of an emergency situation unique to the UWL, but is not a substitute for the Ameren Missouri EIP.

5.1 BREACH OF EMBANKMENT

Design features intended to prevent a breach of the embankments have been incorporated in Cell 1, Cell 4A, and the Recycle Pond. Emergency spillways located on the west embankments of both Cell 1 and the Recycle Pond are designed to accommodate discharges in an emergency situation to prevent the topping of the embankments. The spillway between Cell 4A and the

Recycle Pond is intended to convey storm water to prevent overtopping of the berms, but this is not an emergency situation that requires action. Perimeter berms are lined with clay, are vegetated and have a layer of riprap to prevent erosion damage. In the event of a breach of embankment, the appropriate officials and authorities must be notified immediately in accordance with the Ameren Missouri Sioux EIP.

5.2 DISCHARGE THROUGH EMERGENCY SPILLWAY

Discharge of water from the Recycle Pond or Cell 1 into the area outside of the embankments is not permitted. Water is never to be pumped from either the Recycle Pond or Cell 1 or Cell 4A and discharged outside of the embankments. In the event of a discharge, the appropriate officials and authorities must be notified in accordance with the Ameren Missouri EIP. In addition, the MDNR "National Pollutant Discharge Elimination System Standard Conditions" require the following reporting actions:

- 1) Provide MDNR with the following information in writing within five (5) days of becoming aware of such conditions:
 - a) Description of the discharge and cause of noncompliance, and
 - b) The period of noncompliance, including exact dates and times; or if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the discharge.
- 2) <u>Twenty-four hour reporting</u>. Ameren Missouri must report any noncompliance which may endanger health or the environment. Information shall be provided orally with 24 hours from the time that Ameren becomes aware of the circumstances. A written submission shall also be provided with five (5) days of the time that Ameren becomes aware of the circumstances. MDNR may waive the written report on a case-by-case basis if the oral report has been received within 24 hours.

5.3 FLOODING SURROUNDING EMBANKMENTS

A flood condition surrounding the UWL could impose a hydrostatic uplift pressure on the bottom of the composite liners in Cells 1 and 4A and the Recycle Pond. To maintain a factor of safety against upward displacement and rupture of the liner, the levels of the water and gypsum slurry in the Recycle Pond and Cell 1 must always be no more than 2.5 feet below the level of the flood water surrounding the UWL.

Should flooding in the area of the UWL occur, the appropriate officials and authorities should be notified in accordance with Ameren Missouri Sioux Energy Center EIP.

Following Cell 4A construction, approximately 196,000 cubic yards of CCP and temporary soil cover were placed to fill the cell up to el. 435 to 438 as ballast on the composite liner and for freeze protection of the underlying clay. At this elevation, the composite liner is safe from excess hydrostatic uplift for a flood event with an elevation of 441 feet. Once the CCP and temporary soil cover in Cell 4A is at or above el. 438.2, then the composite liner is safe from excess hydrostatic uplift for a flood event up to el. 445 (the elevation of the spillways).

Until the level of CCP in Cell 4A is at or above el. 438.2, water will have to be pumped into Cell 4A if a flood event is expected to exceed el. 441. Such an event will flood the fields surrounding the UWL and Hwy. 94. The following table states the water level that is required in Cell 4A for various flood levels surrounding the UWL, and the estimated volume of water that is needed in Cell 4A. This is based upon the current level of CCP and temporary soil cover.

Anticipated	Required	Estimated	Estimated
Flood Elev.	Elev. of	Volume of	Duration of
Surrounding	Water in Cell	Water	Pumping at
UWL	4A	gallons.	720 GPM
441 to 442	436.7	2,564,000	2.5 days
442 to 443	437.8	5,273,000	5.1 days
443 to 444	438.9	8,958,000	8.6 days
444 to 445	440.0	13,032,000	12.6 days

Two gasoline 7.1 HP engine Dayton semi-trash pumps (Model 11G236) with hoses are stored in the Sioux Energy Center storeroom dedicated for flood protection of Cell 4A. The maximum suction lift for this pump is 26 feet. The flow rate for 10 feet of head is 363 GPM. The pumps shall be positioned on the perimeter berm of Cell 4A. Water may be pumped from the Recycle Pond if the flow into the Recycle Pond is sufficient to maintain the required water level in the Pond; otherwise, water may be pumped from the flooded field surrounding Cell 4A.

If a flood exceeding el. 441 is anticipated, then the following procedures shall be followed:

- 1. Turn off the storm water pump and effluent pump in Cell 4A.
- 2. Set up the 2 designated flood pumps and begin pumping water into Cell 4A with sufficient time to pump the minimum required volume of water prior to the anticipated flood level. Rainfall in Cell 4A may significantly decrease the required volume of water to be pumped. Also, the storm water pump in Cell 4A may be repositioned to pump water from the Recycle Pond into Cell 4A.
- 3. Monitor the operation of the pumps and the water level in Cell 4A at least hourly, 24 hours a day, 7 days a week, until the required water level in Cell 4A is reached or the flood event is over.
- 4. All water pumped into Cell 4A must be pumped into the Recycle Pond; no water that may have been in contact with CCPs may be discharged outside of Cell 4A.

5.4 FIRE, MEDICAL OR OTHER

Fire extinguishers shall be located on all landfill equipment (not necessarily contractor's haul trucks to and from the site). Communication equipment used at the UWL during operations will consist of two-way radios. Two-way radios will be assigned to personnel - not to equipment. This ensures all staff has communication equipment on their person at all times and provides direct access to the Sioux Energy Center Control Room. Table 3 in Section 5.5 is a list of agencies, individuals and telephone numbers for emergency contact.

5.5 CONTACTS

Table 3 –	Important	Contacts

Sioux Ener	gy Center & UWL
	Ameren Missouri Sioux Energy Center
Operating Supervisor (including after	8501 N. State Route 94
Hours):	West Alton, MO 63386
	(314) 992-6233
Sioux – Engineering	(314) 992-6207
	ouri Dam Safety Staff
After Hours	(314) 957-3406
During Normal Hours	(314) 210-4356
Missouri High	way Patrol, Troop C
Emergency:	9-1-1
Non-Emergency:	(314) 340-4000
Ct. Charle	- Course Chariff
	s County Sheriff
Emergency:	9-1-1
Non-Emergency:	(636) 949-3005
Alton, IL Pe	olice Department
Emergency:	9-1-1
Non-Emergency:	(618) 463-3505
	locnital
Emergency Room (Ambulance Service):	lospital 9-1-1
	Alton Memorial Hospital
	1 Memorial Drive
Non-Emergency:	Alton, Illinois 62002
	(618) 463-7311
	(010) 403-7311
West Alton	Fire Department
Emergency:	9-1-1
Non-Emergency:	(636) 899-1122
St Charles C	County Government
Department of Community Health & the	9-1-1
Environment	(636) 949-1800
	<u> </u>

6.0 PERMIT REQUIREMENTS, RECORD KEEPING AND DISTRIBUTION

6.1 INTERNAL AMEREN COMMUNICATIONS

Written reports shall be prepared to document all inspections and maintenance performed during the effective timeframe of this O&M Manual. A copy of each report must be sent to the appropriate persons listed in this Section. Ameren Dam Safety staff and the Chief Dam Safety Engineer (CDSE) are responsible for sending reports to County and State agencies as required by the various permits and licenses, except in an emergency (see Section 5.0).

The appropriate records, as dictated by the State and County, must be kept on site and available upon request to State and local officials during operating hours. Records will be stored at the Sioux Energy Center. The designated person responsible for record keeping is Brett Novotny.

Records associated with the requirements of this O&M Manual include those generated from the various inspections outlined in Section 3.0. These records must be kept together in a binder or file and stored on site. Table 4 outlines the anticipated internal distribution of inspection reports:

		PLANT SHIFT SUPERVISOR	PLANT OPERATIONS	PLANT ENGINEERING	DAM SAFETY GROUP	POWER OPERATIONS SERVICES	UWL File
	Emergency	0-11	F	F 1	0-11		V
WEEKLY	Condition	Call	Email	Email	Call	Email	Х
INSPECTION	Problem or						
	Anomaly			Х	Х	Х	Х
	No problems						Х
	Emergency Condition	Call	Email	Email	Call	Email	Х
SPECIAL INCIDENT	Recycle Pond Level	Call	Email			х	х
	Flooding		Х	Х	Email		Х
	Routine			Х	Х	Х	Х
ANNUAL	Emergency Condition	Call	Email	Email	Call	Email	Х
	Routine			Х	Х	Х	Х

Table 4 – Internal Distribution of Inspection Reports

Missouri and St. Charles County also have specific recordkeeping requirements. The St. Charles County Solid Waste Management Code (SWMC) and the Solid Waste Facility License outline record keeping requirements for St. Charles County Department of Community Health & the Environment. The recordkeeping requirements of the State and County are discussed in further detail below and in Table 5.

Task	Frequency	Responsible Group	Section
MDNR-SWMP Reporting	even years by July 30, within 60 days	Environmental Services	6.4.2
MDNR dam construction permit	annual by April 1	Dam Safety	6.4
St. Charles County operating license	annual by November 1	Environmental Services	6.5
St. Charles County annual reporting	annual by November 1, within 30 days	Environmental Services	6.4.1
St. Charles County quantities of CCP received	quarterly	Environmental Services	6.5.1
Non-	verbal: within 24 hrs		
Compliance/Incident Reporting	written: within 15 days	Sioux Energy Center	6.3.1, 6.5.1
Emergency Spillway Discharge	within 5 days	Sioux Energy Center	6.3.1, 6.5.1
Flood Events	as needed	Sioux Energy Center	3.3, 6.3.1, 6.5.1
Groundwater Monitoring	quarterly	Environmental Services	6.2.1
Weekly Inspections	weekly	Sioux Energy Center	3.2
Annual Inspections	annually	Dam Safety	3.4, 6.3.1
Special Inspections	as needed	Sioux Energy Center	3.3
Inspection follow-ups	as needed	Sioux Energy Center	
Mowing	twice per year	Sioux Energy Center	Appendix B
Weed Control	twice per year	Sioux Energy Center	Appendix B
Fertilizing	as needed	Sioux Energy Center	Appendix B
Re-Seeding	as needed (September)	Sioux Energy Center	Appendix B
Record Keeping	-	Sioux Energy Center	6

Table 5 – Division of Responsibility

6.2 MDNR SOLID WASTE CONSTRUCTION PERMIT

The UWL development process began with the MDNR with a "Request of Preliminary Site Approval" in May 2005 and later a St. Charles County Request for Zoning Special Use Permit in March 2006. Following the preliminary site approval by MDNR, a detailed site investigation (DSI) was conducted at the site and a detailed report published of the findings. St. Charles County has rezoned the site, granted a conditional use permit and approved the site development plan. An application for construction permit was filed with MDNR on February 7, 2007. The MDNR issued Construction Permit Number 0918301 for the UWL in March 28, 2008. The following Permit Conditions are taken from pages 2 through 8 of the Solid Waste Construction Permit No. 0918301:

- 1) All reports, plans, and data required to satisfy these general conditions shall be prepared or approved by a Professional Engineer registered in the state of Missouri.
- 2) Written approval from MDNR Solid Waste Management Program (SWMP) must be obtained prior to making any operational or design changes that are not in the permit.

3) State and County environmental permits require detection monitoring of groundwater quality in the vicinity of the UWL on a regular schedule. Sixteen (16) groundwater monitoring wells are installed around the perimeter of the UWL for this purpose. All sixteen (16) wells are located outside of the perimeter security fencing. The approximate locations of the groundwater monitoring wells are shown in Figure 1. Detection monitoring is required at all monitoring wells. The minimum sampling frequency required by 10 CSR 80-11.010 is twice yearly during the months of May and November. Details of the groundwater detection monitoring are stated in the Solid Waste Permit (included in Appendix D) and Appendix S – Revised 9-07 of Construction Permit Application. The groundwater monitoring, sampling, testing and chemical analyses are beyond the scope of this O&M Manual and will be managed by others.

6.3 MDNR SOLID WASTE OPERATING PERMIT

The MDNR Solid Waste Disposal Area Operating Permit (No. O918301) requires that any facility design elements that need to be changed or that may affect future construction or operation activities must be submitted and approved by MDNR prior to beginning construction. Also, any design or operational changes, complete construction specifications, construction procedures, and construction grade drawings must be submitted and approved prior to implementation. Should the O&M manual be followed, additional modifications to this permit will not be required; however, this permit should be reviewed prior to any change in operations.

6.3.1 MDNR-SWMP Recordkeeping Requirements

Record- keeping requirements for MDNR are provided in 10 CSR 80-11.010(17)(C)1. Records shall be maintained at Sioux Energy Center. Records five (5) years old or older may be stored at an alternate site if approved by MDNR; such stored records must be made available at the landfill upon request of MDNR personnel. Records must cover at least the following:

- 1) Major operational problems, complaints or difficulties;
- 2) Any demonstration, certification, finding, monitoring, testing or analytical data required under sections (4) and (9) of 10 CSR 80-11.010;
- 3) Dust and litter control efforts;
- 4) Quantitative measurements of the waste handled and an estimate of the air space left at the facility (see Section 6.3.3);
- 5) Any cost estimates and financial assurance documentation required under 10 CSR 80-2.030(4);
- Inspection records and training procedures as required under subsection (3)(B) of 10 CSR 80-11.010;
- Records associated with future corrective measures as required under section (10) of 10 CSR 80-11.010 (11); and

8) A detailed report of the origin of all waste received (refer to Section 6.5.1).

6.3.2 UWL Survey Requirements

An elevation survey of the tops of the perimeter berms of both Cells 1 and 4A and the Recycle Pond shall be done in conjunction with the Annual Inspection in certain years:

- When a survey of Cells 1 and 4A is required for the MDNR-SWMP, which is every 2 years (CSR 80-11.010 (17)(D)) to measure the remaining air space. At present, MDNR-SWMP will waive performing a survey. (A letter will be issued form MDNR-SWMP documenting this agreement.)
- 2) Prior to the stacking of gypsum above the top of the perimeter berm (el. 446).
- When the level of the stacked gypsum reaches 5 feet above the perimeter berm, or el. 451.
- 4) When CCPs in dry cells reach 10 feet above the perimeter berm, or el. 456.

The survey should be done at approximately 100-foot centers and at appurtenances (box culverts, cleanouts, sump and outlet drains, etc.). The elevation survey shall be completed to an accuracy of 0.01 foot. Elevations shall be tied to the permanent benchmarks established for the UWL (see Sheet 2 of the record drawings). The survey shall be done by a competent survey team.

6.3.3 Biennial Airspace Estimate

Every even-numbered year after the date of the permit issuance and prior to January 31, Ameren Missouri must submit to MDNR-SWMP an estimate of the air space (i.e. CCP volume) remaining in the UWL. The required topographic survey for this estimate is presently waived (see Section 6.3.2) by MDNR-SWMP. A copy of the estimate is also to be sent to SCC (see "Waste Facility Plan for St. Charles County", 3.36(f) in Appendix D.

6.4 MDNR DAM AND RESERVOIR SAFETY DAM CONSTRUCTION PERMIT

Neither Cell 1 nor the Recycle Pond is a regulated dam in Missouri during the period of this O&M Manual and under current Missouri regulations because they are less than 35 feet high. However, since Cell 1 and the rest of the UWL are designed to be 100 feet high to allow for future gypsum stacking operations, Cell 1 is considered a regulated dam that is under construction while in operation. The MDNR Dam & Reservoir Safety Program (DRSP) issued Construction Permit C-426 (No. MO40160), of which Cell 1 is a part. The Recycle Pond is not included in the Construction Permit except where Cell 1 and the Recycle Pond have a common embankment. Cell 4A and the future dry cells are not included in the Dam Construction Permit.

The anniversary date of the Dam Construction Permit is April 1 and is valid for one (1) year. Ameren Missouri must submit an application letter for an extension of the Dam Construction Permit each year prior to April 1 until the construction of the UWL is finished, that is until the entire UWL ceases to receive gypsum or CCP and is closed. When the UWL is closed, then Ameren Missouri must submit an application for a Dam Safety Permit to the MDNR-DRSP.

No changes shall be made in the construction of the dam which adversely affects the dam with regard to its integrity or to the environment, public safety, life or property. If any modifications to the plans or specifications are necessary, then the application letter for the extension must request approval of the modifications.

If at any time during construction or operation, immediate alterations to the approved plans and specifications are required to adequately protect the integrity of the UWL, the environment or public health, safety or welfare, then the alterations may be started, but Ameren Missouri shall promptly notify the Chief Engineer of MDNR-DRSP of such requirements. If the alterations are to remain as permanent project features, then the plans and specifications must be revised as soon as practical and must be submitted to the Dam and Reservoir Safety Council for approval. Such alteration shall be discontinued if disapproved by the Council, upon notice of such disapproval.

The annual application letter for the extension of the Dam Construction Permit must state the progress of "construction" and that there have been no significant modifications to the approved set of plans and specifications to date, if that is true. The application letter for the annual extension must be sealed by a Professional Engineer registered in Missouri. If a topographic survey of Cell 1 has been done for the MDNR-SWMP, then include the survey in the annual application letter, but it is not required. The first change to the approved drawings will likely be when the height of the gypsum is above el. 446. See the "Memorandum of Understanding" in Appendix D.

If any modifications to the plans or specifications are necessary, then the application letter for the extension must detail the changes, the reasons for the changes and the impact on the dam safety criteria. If changes to the plans or specifications are necessary, then the changes should be submitted informally to the MDNR-DRSP prior to the anniversary date of the Construction Permit, so that the MDNR-DRSP can advise Ameren Missouri whether the changes are significant enough to require a modification to the Construction Permit.

The Construction Permit also states that, "Based upon conditions existing at the time of issuing this permit, the Downstream Environmental Zone is Class II." The UWL is considered an "industrial water detention dam or reservoir" (10 CSR 22-2.030(3)) with a Downstream Environmental Class II (10 CSR 22-2.040). The downstream environment zone is the area downstream, which is generally to the east of the UWL, which would be inundated by a breach of the dam. Inundation is defined as water, 2 feet or more deep, over the general level of the submerged ground outside of the stream channel, which is poorly defined for the UWL. Downstream Environmental Class II is defined as containing 1 to 9 permanent dwellings, or 1 or more campgrounds with permanent water, sewer and electrical services, or 1 or more industrial buildings. If future development to the east or downstream of the UWL were to cause the Downstream Environmental Class to become Class I, then modifications would have to be made to the Dam Construction Permit and possibly to the design of the UWL. Class I is defined as 10 or more permanent dwellings or any public building.

6.5 ST. CHARLES COUNTY SOLID WASTE OPERATING LICENSE

The St. Charles County Solid Waste Operating License No. O4303 has many requirements. A copy of the license is included in Appendix D and should be read carefully. Not included in Appendix D is the "Waste Facility Plan for St. Charles County." A copy of the Waste Facility Plan (WFP) must be kept at the Plant and should be read carefully. The main points pertaining to routine operations are briefly summarized in this Section.

- 1) Permitted hours to receive slurry waste are 24 hours per day, 7 days per week. Routine operating hours in the UWL are 6:00 AM to 5:30 PM.
- 2) Permitted Maximum Tonnage is 30,000 Tons per Month
- 3) Maximum Permitted Traffic Volume is 1000 Vehicles per Month.
- 4) A complete copy of this License and incorporated documents shall be kept at the disposal site, as identified by the Division Director (License Condition 8c).
- 5) Solid wastes that are permitted for disposal in the UWL are fly ash, bottom ash, boiler slag, and gypsum (License Condition 8d).
- 6) Ameren Missouri is prohibited from placing in the landfill the following wastes (License Condition 9):
 - a. Other than in Cell 1 and 4, any liquid waste material that is determined to contain free liquids as defined by Method 9095 (Paint Filter Liquids Test), as described in Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA Pub. No. SW-846);
 - b. Hazardous waste, as defined by State and Federal Regulations;
 - c. PCB waste, as defined by State and Federal Regulations; and
 - d. Waste not identified in License Condition 8(d).
- 7) The St. Charles County Division of Environmental Health and Protection, or an authorized representative, must be allowed to enter the facility during the permitted hours of operation, or where records must be kept under the conditions of this License, upon the presentation of credentials or other documents as may be required by law (License Condition 12). The representatives must have access to and copy at reasonable times any records that must be kept under conditions of this License. Also, they may inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this License. They may sample, photograph, or monitor at reasonable times, for the purposes of assuring License compliance or as otherwise authorized, any substances, locations, or parameters at any location subject to the License.
- 8) Cells 1 and 4A and the Recycle Pond shall be examined at intervals not exceeding 7 days and all instruments shall be monitored. Cells 1 and 4A and the Recycle Pond shall be inspected annually by a registered Professional Engineer to assure that the design,

operation, and maintenance of the surface impoundment is in accordance with generally accepted engineering standards and such findings has been placed in the operating record. (License Condition 12) If a potential hazardous condition develops, then Ameren shall immediately take actions to eliminate the condition and to notify potentially affected persons and State and local first responders.

The St. Charles County Solid Waste Operating License must be renewed annually for each year beginning with each anniversary date of the issuance of license (Condition 12). The requirements for the annual application for renewal and other reporting requirements are summarized in Section 6.5.2.

6.5.1 St. Charles County Recordkeeping Requirements

The recordkeeping requirements for the St. Charles County (SCC) Department of Community Health & the Environment requires Ameren Missouri to maintain the following records at the site in accordance to SCC SWMC 240.1150(36):

- 1) Major problems and complaints regarding operation of the UWL;
- 2) All environmental media sampling/testing data;
- In the event of documented exceedance of applicable standards established by MDNR for any monitoring system;
- 4) Records of vector control efforts;
- 5) Records of dust and litter control efforts;
- 6) A copy of the SCC SWMC supplied by the division; and
- 7) Records of quantity of waste handled. Quantities are to be reported quarterly. Such records shall be made contemporaneously with the matters recorded.

In addition, all incident reports shall be maintained at Sioux Energy Center. Ameren Missouri must report any noncompliance, imminent or existing hazard from a release of waste or hazardous constituents, or from a fire or explosion at the UWL, which may endanger human health or the environments, in accordance with SCC SWMC 240.1150 and as provided in the Waste Facility Plan. Such information must be reported by telephone to (636) 949-1800 within 24 hours from the time Ameren Missouri becomes aware of the circumstances. A written report must be submitted within 15 days of the incident and shall include the following:

- 1) Name and title of person making report;
- 2) Date, time and type of incident;
- 3) Name and quantity of material(s) involved;
- 4) A complete description of the occurrence and its cause;
- 5) The extent of injuries, if any;

- 6) An assessment of actual or potential hazards to the environment and human health outside the facility, where this is applicable;
- 7) Estimated quantity and disposition of recovered material that resulted from the incident; and
- 8) Actions taken by the Plant in response to the incident.

Ameren Missouri must also maintain a complete copy of this the Solid Waste Facility License and incorporated documents, which, at a minimum, include the following documents listed in the SCC license under Condition 10:

- 1) Detailed Geologic and Hydrologic Site Investigation Report for AmerenUE Sioux Power Plant, Proposed Utility Waste Disposal Area St. Charles County, Missouri, 9/20/2007.
- 2) AmerenUE Sioux Power Plant Construction Permit Application for a Proposed Utility Waste Landfill, St. Charles County, Missouri, 9/20/2007.
- 3) Plan sheets numbered Sheet 1 of 33 through Sheet 33 of 33, titled, Ameren UE Sioux Power Plant Utility Waste Landfill, Construction Permit Number 0918301, St. Charles County, Missouri, Proposed Dry Disposal Area Permit Modification," dated June 2010, final revision August 2011, approved by Thomas R. Gredell, P.E., GREDELL Engineering Resources, Inc.
- 4) MDNR Solid Waste Disposal Area Construction Permit #0918301, dated March 28, 2008.
- 5) Sioux Power Plant Utility Waste Landfill, Construction Permit No. 0918301, Permit Modification Cell 1 Ring Drains, St. Charles County, Missouri, November 2009, Revised January 2010.
- AmerenUE Sioux Power Plant Utility Waste Landfill, Proposed Construction Permit Modification, Construction Permit Number 0918301, St. Charles County, Missouri, 6/1/2010.
- 7) Solid Waste Facility License, Ameren Missouri Sioux Power Plant Utility Waste Landfill, Facility NO. 04303, dated November 1, 2010.
- 8) AmerenUE Sioux Power Plant Utility Waste Landfill Proposed Construction Permit Modification, Construction Permit Number 0918301 revised February 2012.
- 9) Waste Facility Plan for St. Charles County, Sioux Energy Center UWL, Revised November 2013.

In addition, a copy of the annual renewal application, including the required report, shall be kept at Sioux Energy Center at all times.

6.5.2 St. Charles County Annual Report

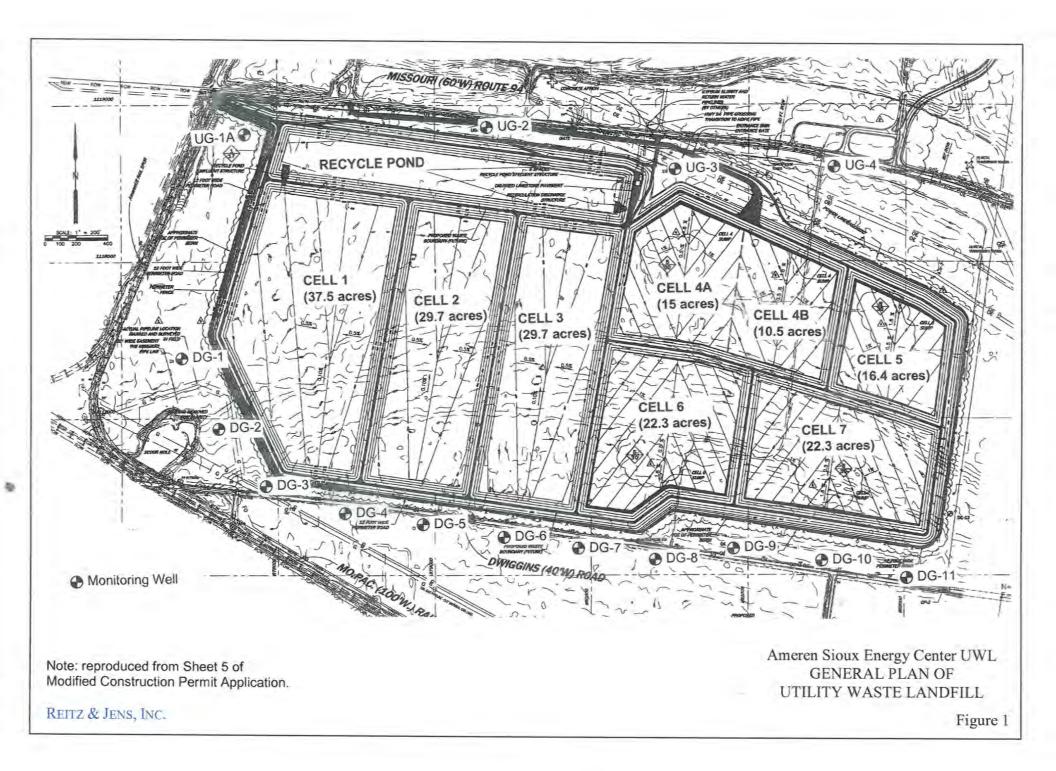
The annual report must contain the information required in Section 240.820 (Ord. No 01-06§§1-8,5-30-01). Ameren Missouri must apply to renew the Solid Waste Facility License annually at least 30 days prior to each anniversary date of the initial license (November 01 of each year). The requirements for the renewal application are set forth in the schedule in subsection (2) of section 240.810 of the SCC SWMC, which are listed below. The application shall be addressed and delivered to the SCC Division Director and shall request that a renewal license be issued for a period of one (1) year.

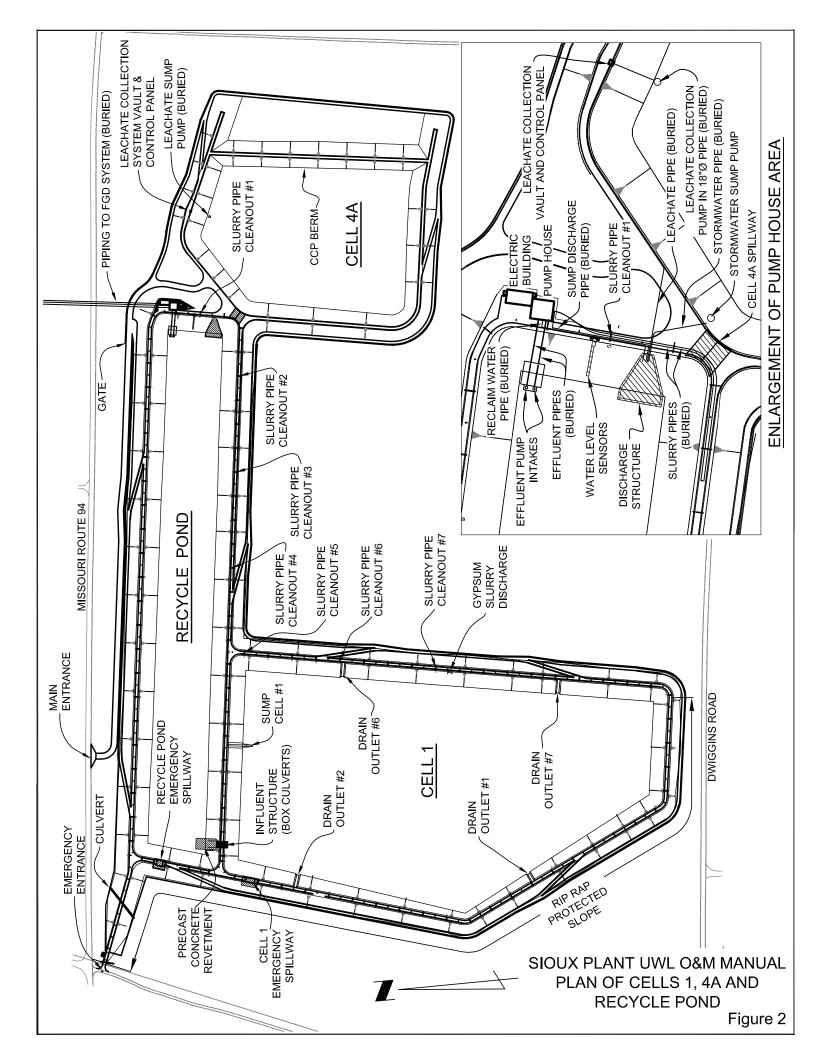
- 1) Any changes in the waste facility plan which must be made to reflect actual usage or conditions.
- 2) Total incoming waste tonnage received.
- 3) Summary of all environmental monitoring data for all media compiled during the previous period with interpretation of trends using suitable modeling presentation.
- 4) Quantities of leachate collected, processed, treated and disposed or dissipated. (Ordinance includes landfill gases, which the UWL will have none.)
- 5) Equipment replaced or changed or anticipated to be replaced or changed.
- 6) A report describing the infrastructures which have been put in place including as-built construction plans and records.
- 7) If the facility is still under construction, a written report detailing conformance with the schedule contained in the Waste Facility Plan.

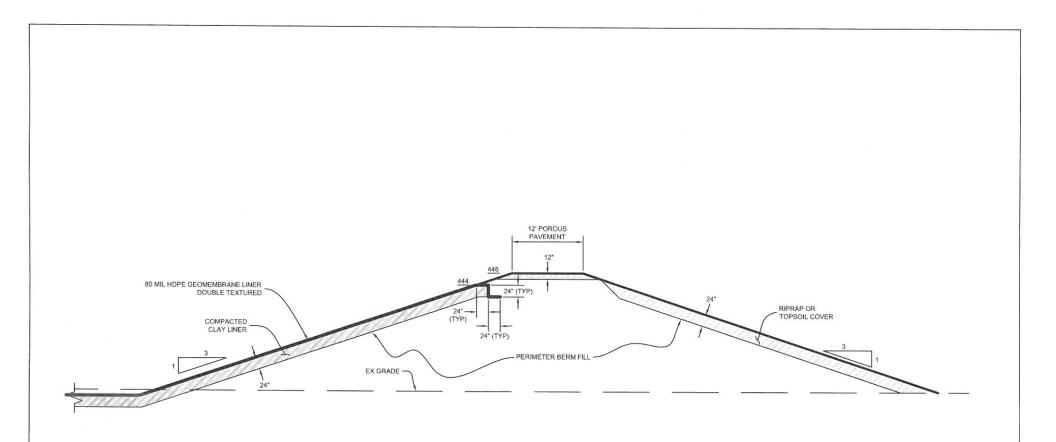
6.6 ST. CHARLES COUNTY WASTE FACILITY PLAN

A waste facility plan for the Sioux UWL was prepared and submitted to St. Charles County. It was approved for the Solid Waste Operating License. Most of the contents are contained in the other documents. The main points are briefly summarized in this Section.

- 1) Section 2.10(d): Daily cover is not required. If necessary, internal roads will be watered to minimize fugitive dust emissions.
- Section 2.10(h)(ii): The gypsum stack will not have fire hazards, odors, litter, and decomposition gases typically associated with municipal solid waste landfills. Mosquitoes are the only possible vector anticipated. Should mosquitoes become a problem, then a mosquito eradication program will be implemented.
- 3) Section 2.10(h)(iv): Any areas of the side slopes that have settled, are severely eroded, or on which previously planted vegetation did not survive will be recovered, re-graded or reseeded as necessary to maintain side slope cover and integrity.
- 4) Section 2.14 of the Waste Facility Plan pertains to closure, which is beyond the scope of this O&M Manual.

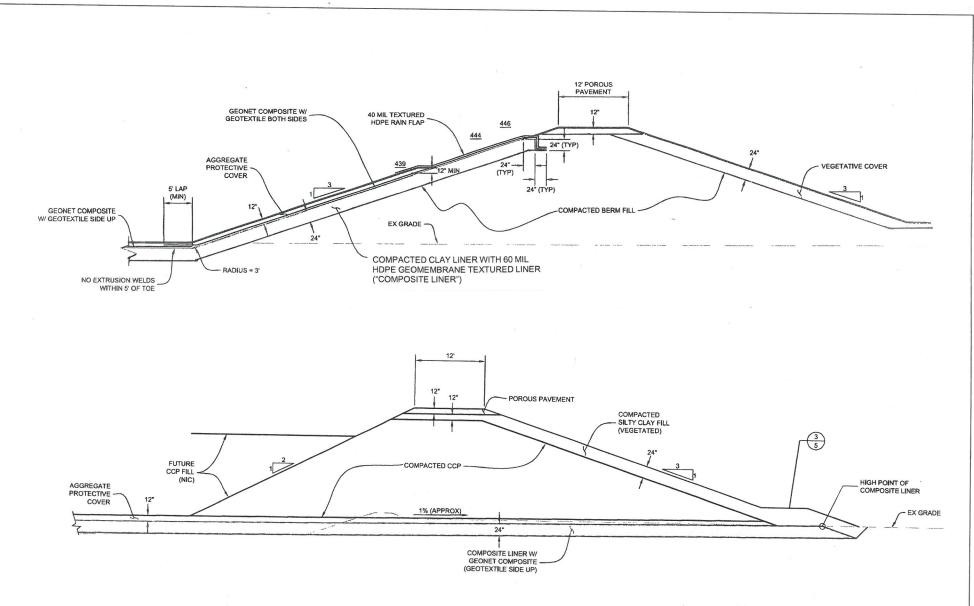

- 5) Section 2.18: The Sioux Energy Center has existing Emergency Implementing Procedures (EIP) for emergencies and natural disasters which shall be followed for the Sioux Energy Center UWL.
- 6) Section 2.19: The Sioux Energy Center has a Safe Work Rules Handbook which covers general safety guidelines, task specific safety procedures, and Ameren's Corporate Safety & Health Policy. The Safe Work Rules Handbook shall be followed for the Sioux Energy Center UWL.
- 7) Section 3.25: A preventative maintenance program will be implemented for the landfill equipment. The landfill will have redundant equipment for use in most emergency situations.
- 8) Section 3.36 lists the documents and records that shall be kept on site.
- 9) Sections 3.38 and 3.39 specify the sign that shall be displayed at the entrance to the UWL.


7.0 REFERENCE DOCUMENTS


The following is a list of Ameren documents pertinent to the operation and maintenance of the UWL that are current as of May 2014. Some of these documents are subject to internal or regulatory changes over time.

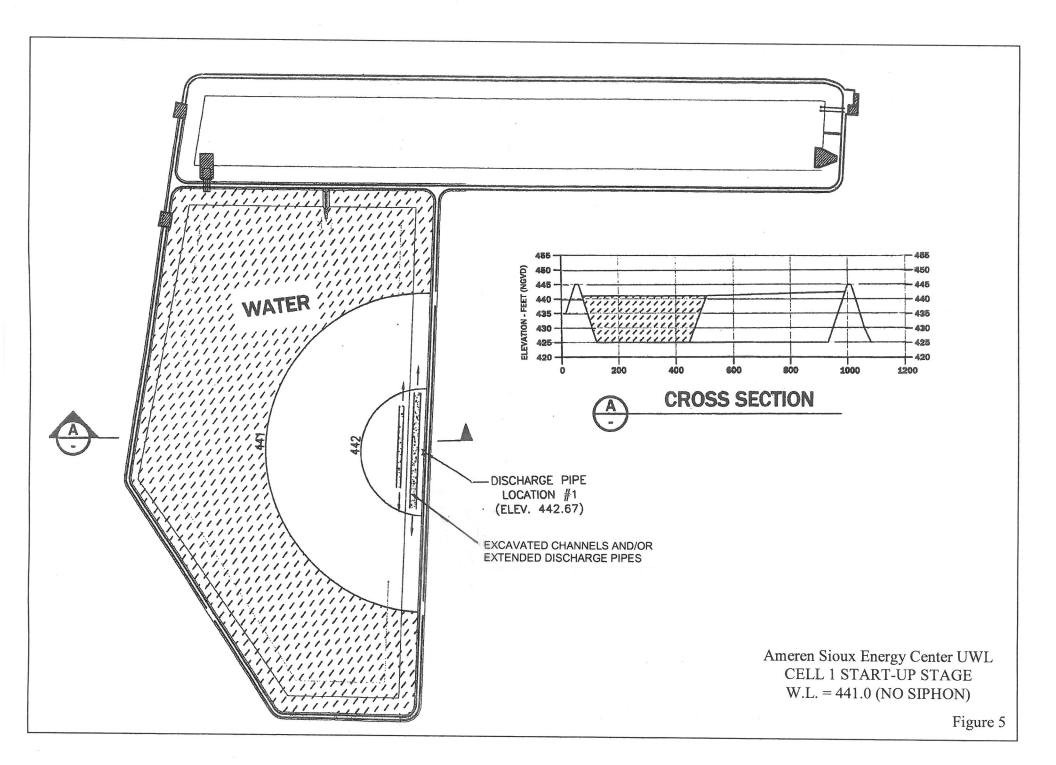
- 1) Report "Sioux Power Plant Utility Waste Landfill, Construction Permit No. 0918301, Cell 1 Operating Permit Requirements Report, St. Charles County, Missouri," dated February 2010, Revised July 9, 2010.
- 2) Plan Sheets 1 through 33 titled, "Ameren UE Sioux Power Plant Utility Waste Landfill, Construction Permit Number 0918301, St. Charles County, Missouri, Proposed Dry Disposal Area Permit Modification," dated June 2010, final revision August 2011.
- Report titled, "Ameren Missouri Sioux Power Plant Utility Waste Landfill, Proposed Construction Permit Modification, Construction Permit No. 0918301, St. Charles County, Missouri," dated June 2010, with final revision dated February 2012 and Addendum dated January 2014.
- 4) Ardaman & Associates, Inc. report titled, "Operation Plan, Gypsum Management Facility, Ameren Sioux Power Station," dated 2008, revised April 19, 2009.
- 5) Ameren Missouri Procedure AUE-ADM-5103 titled "Dam Safety Program for Ameren Missouri Non-Hydroelectric Facilities," latest revision.
- 6) Ameren Missouri Sioux Energy Center Emergency Implementing Procedures, latest revision.
- 7) Ameren Missouri Sioux Energy Center Utility Waste Landfill, Waste Facility Plan, St. Charles County, Missouri, revised November 2013 (SX-PLN-000158)
- 8) EPG Companies Operations and Maintenance Manual for Leachate Sump Pump (EPG Job #13-11136).
- 9) Zoeller Pump Company Owner's Manual for Zoeller Hazardous Environment Pumps.

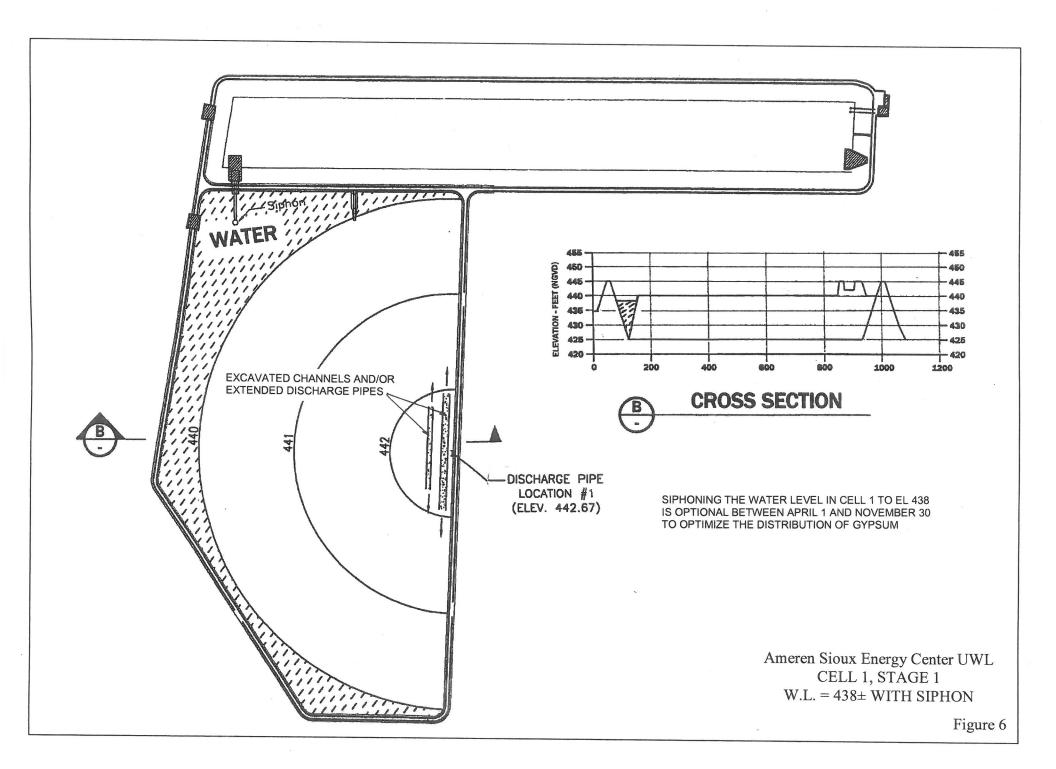
- 10) Power Operations Safe Work Rules Handbook.
- 11) Design Basis Document "Sioux Common Utility Waste Landfill" SX-DB-GPS-000004.
- 12) Design Change Package "Wet Flue Gas Desulfurization (WFGD) System Retrofit" SX-10-DCN-1600.
- 13) Design Change Package "Utility Waste Landfill Cell 4" SX-2013-DC-0004.

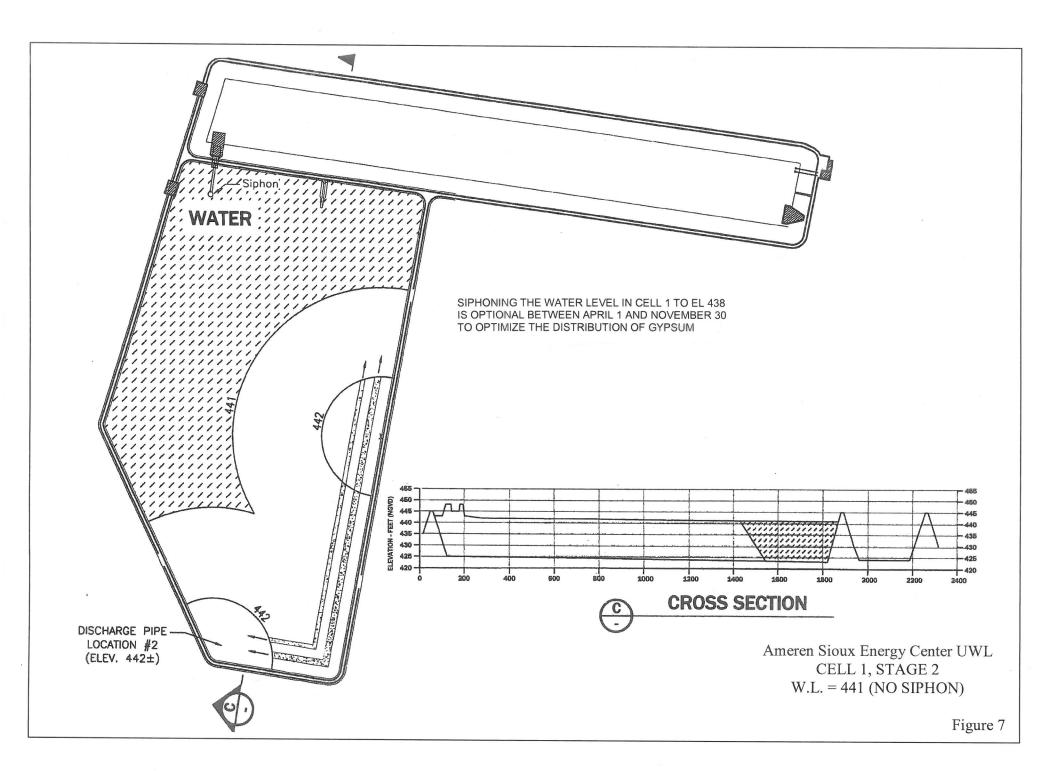


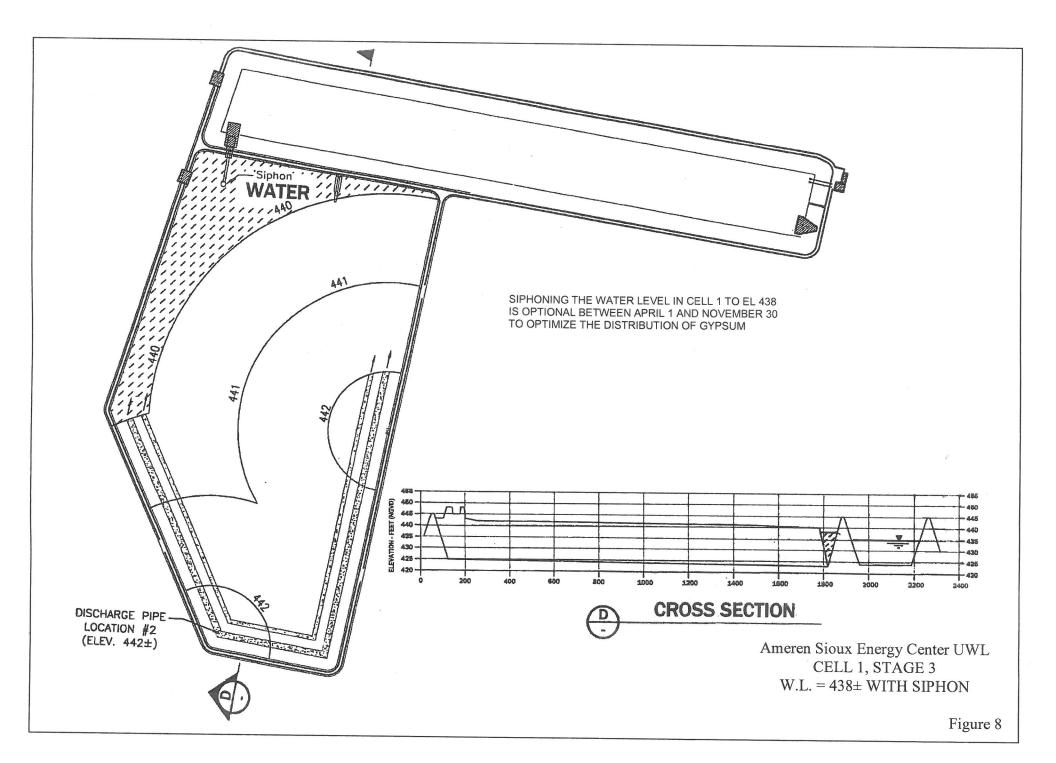
Ameren Sioux Energy Center UWL TYPICAL CROSS-SECTION OF CELL 1 AND RECYCLE POND PERIMETER BERM

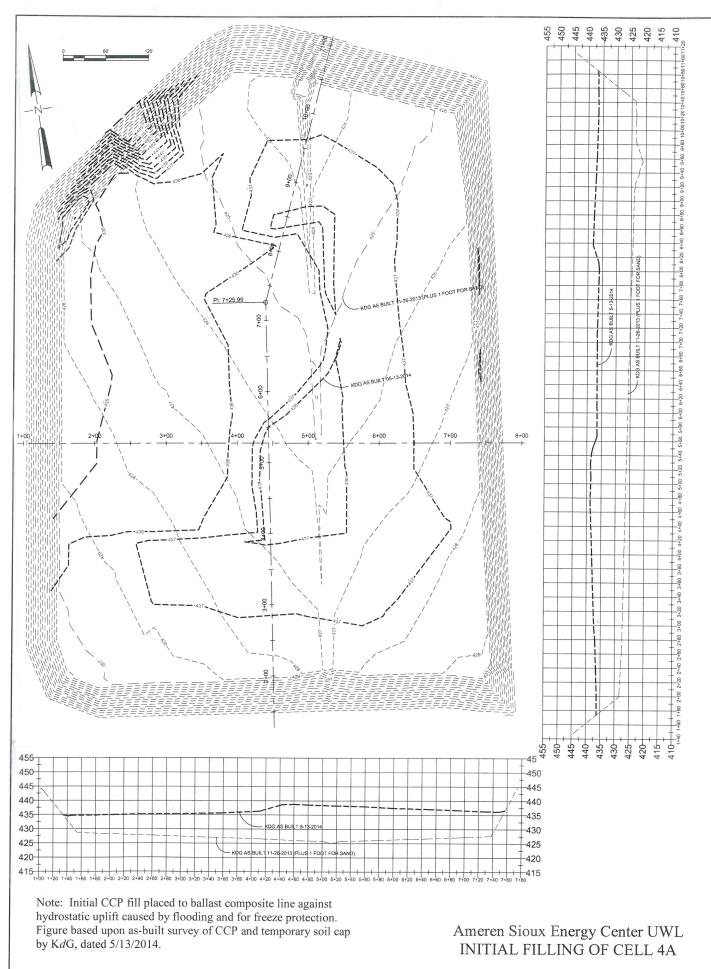
REITZ & JENS, INC.

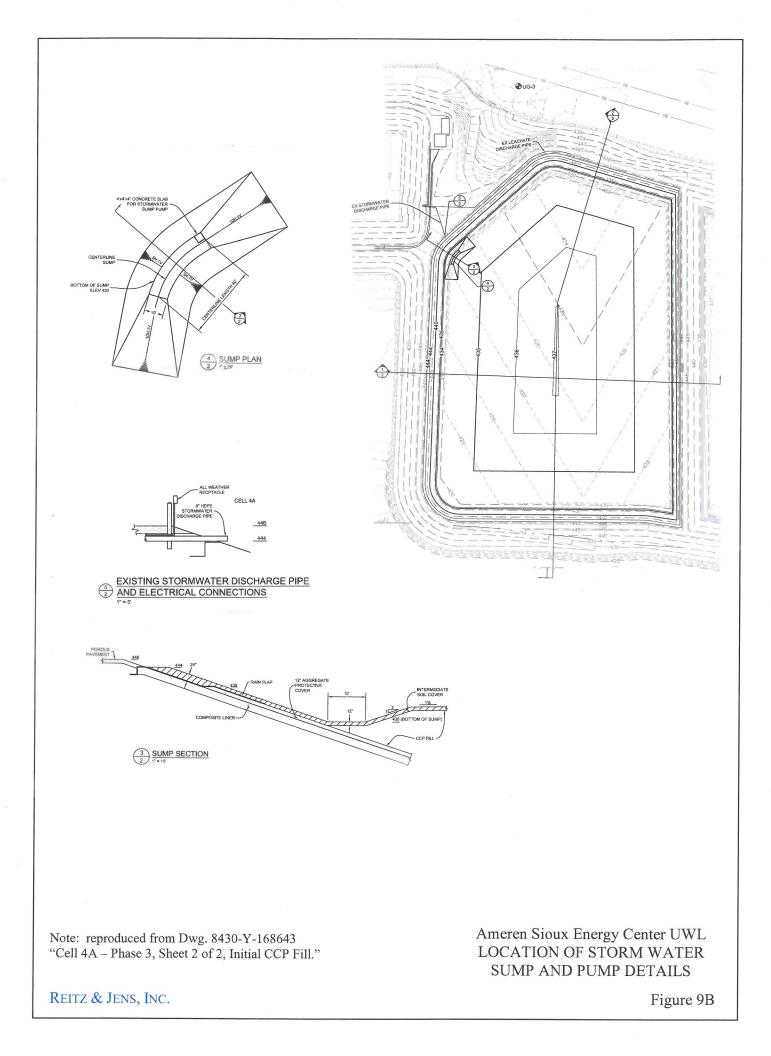

Figure 3




Ameren Sioux Energy Center UWL TYPICAL CROSS-SECTION OF CELL 4A SOIL PERIMETER BERM AND CCP BERM


REITZ & JENS, INC.


Figure 4



REITZ & JENS, INC.

Figure 9A

Ameren Missouri Sioux Energy Center UWL Cells 1 & 4A and Recycle Pond O&M Manual

APPENDIX A

INSPECTION FORMS

APPENDIX A – INSPECTION FORMS

LIST OF CONTENTS

- 1. Weekly Inspection Report (2 pages)
- 2. Special Incident Inspection Report (2 pages)
- 3. Plan of Cells 1, 4A and Recycle Pond Inspection Form

Sioux UWL Cells 1 & 4A and Recycle Pond WEEKLY INSPECTION REPORT

Recycle Pond Level By Visual Reading of Instrumentation Pipes	
Recycle Pond Level Reading through DCS	
Cell 1 Level	
Elapsed Hours on Cell 4A Leachate Pump	

Date & Time	
Inspector(s)	
Weather	
Temperature	

	ltem	Condition Code *	Comments
RECYCLE POND	Erosion, sloughing, sliding, boils, seepage		
	Condition of grass cover, woody vegetation, burrows		
	Recycle Pond between el. 428 and 443		
	Settlement, depression or crack in embankment		
	Gravel Ballast Covering Pump Intake Pipes (when visible)		
	Damage to transducer level controls or pipes		
	Unevenness, movement of triple box culverts		
CLE	HDPE Recirculation Pipe (leaking or frozen)		
RECY	Pump House Sump Discharge Pipe (leaking or frozen)		
2	Erosion or rutting gravel top & perimeter roads and ramps		
	HDPE Liner		
	Precast Concrete Revetment below Box Culverts		
	Precast Concrete Revetment below Discharge Pipes		
	Emergency Spillway		
	Imminent discharge thru emergency spillway		
CELL 1	Erosion, sloughing, sliding, boils, seepage		
	Condition of grass cover, woody vegetation, burrows		
	Settlement, depression or crack in embankment		
	Emergency Spillway		
	Imminent discharge thru emergency spillway		
	Gypsum slurry flowing unobstructed		
	Slurry spraying or running out of cleanouts		
	Height from discharge pipe flowline to gypsum level		Visual Estimate, inches:

Page 1 of 2

Sioux UWL Cells 1 & 4A and Recycle Pond WEEKLY INSPECTION REPORT

Page 2 of 2

Date & Time

Condition Item Comments Code * HDPE Liner CELL 1 (cont.) Erosion or rutting gravel top & perimeter roads and ramps Sump Outlet & Concrete Pad Drain Outlets & Concrete Pads Movement of riprap Erosion, sloughing, sliding, boils, seepage Condition of grass cover, woody vegetation, burrows Settlement, depression or crack in embankment Storm Water Channel **CELL 4A** Storm Water Pump & Discharge Pipe Standing water in Cell Leachate Collection Sump Pump Vault Leachate Collection Pump, Controls & Discharge HDPE Liner Erosion or rutting gravel top & perimeter roads and ramps Holes or breaks in perimeter OTHER fence, vandalism Main and emergency gates locked

Drive slowly around tops of embankments looking for visible signs of present or developing major problems. Indicate location(s) of problems or anomalies on inspection plan - sign, date and attach sheet to report.

If a problem is noted, email or FAX report to appropriate persons. If emergency condition is noted, immediately contact the Shift Operations Supervisor and Chief Dam Safety Engineer.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

MM = Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No evidence of a problem.

NI = Not Inspected. Reason should be stated in comment.

Attach Inspection Form (plan) with Additional Observations or Comments on Back

Sioux UWL Cells 1 & 4A and Recycle Pond

Slurry spraying or running out of

cleanouts

Page 1 of 2

SPECIAL INCIDENT INSPECTION REPORT Date & Time Recycle Pond Level By Visual Reading of Inspector(s) Instrumentation Pipes Recycle Pond Level Reading through DCS Weather Cell 1 Level Temperature Elapsed Hours on Cell 4A Leachate Pump DATE, TIME AND TYPE OF INCIDENT: Condition Item Comments Code * Erosion, sloughing, sliding, boils, seepage Condition of grass cover, woody vegetation, burrows Recycle Pond between el. 428 and 443 Settlement, depression or crack in embankment Effluent Pump Intake Structures (when visible) Gravel Ballast Covering Pump Intake Pipes (when visible) Damage to transducer level **RECYCLE POND** controls or pipes Unevenness, movement of triple box culverts HDPE Recirculation Pipe (leaking or frozen) Pump House Sump Discharge Pipe (leaking or frozen) Erosion or rutting gravel top & perimeter roads and ramps HDPE Liner Precast Concrete Revetment below Box Culverts Precast Concrete Revetment below Discharge Pipes **Emergency Spillway** Imminent discharge thru emergency spillway Erosion, sloughing, sliding, boils, seepage Condition of grass cover, woody vegetation, burrows Settlement, depression or crack in embankment CELL Emergency Spillway Imminent discharge thru emergency spillway Gypsum slurry flowing unobstructed

Sioux UWL Cells 1 & 4A and Recycle Pond

Page 2 of 2

Date

SPECIAL INCIDENT INSPECTION REPORT

	ltem	Condition Code *	Comments
CELL 1 (cont.)	Height from discharge pipe flowline to gypsum level		Visual Estimate, inches:
	HDPE Liner		
	Erosion or rutting gravel top & perimeter roads and ramps		
	Sump Outlet & Concrete Pad		
	Drain Outlets & Concrete Pads		
	Movement of riprap		
CELL 4A	Erosion, sloughing, sliding, boils, seepage		
	Condition of grass cover, woody vegetation, burrows		
	Settlement, depression or crack in embankment		
	Storm Water Channel		
	Storm Water Pump & Discharge Pipe		
CEL	Standing water in Cell		
4	Leachate Collection Sump Pump Vault		
	Leachate Collection Pump, Controls & Discharge		
	HDPE Liner		
	Erosion or rutting gravel top & perimeter roads and ramps		
отнек	Holes or breaks in perimeter fence, vandalism		
	Main and emergency gates locked		

Drive slowly around tops of embankments looking for visible signs of present or developing major problems. Indicate location(s) of problems or anomalies on inspection plan - sign, date and attach sheet to report.

If a problem is noted, email or FAX report to appropriate persons. If emergency condition is noted, immediately contact the Shift Operations Supervisor and Chief Dam Safety Engineer.

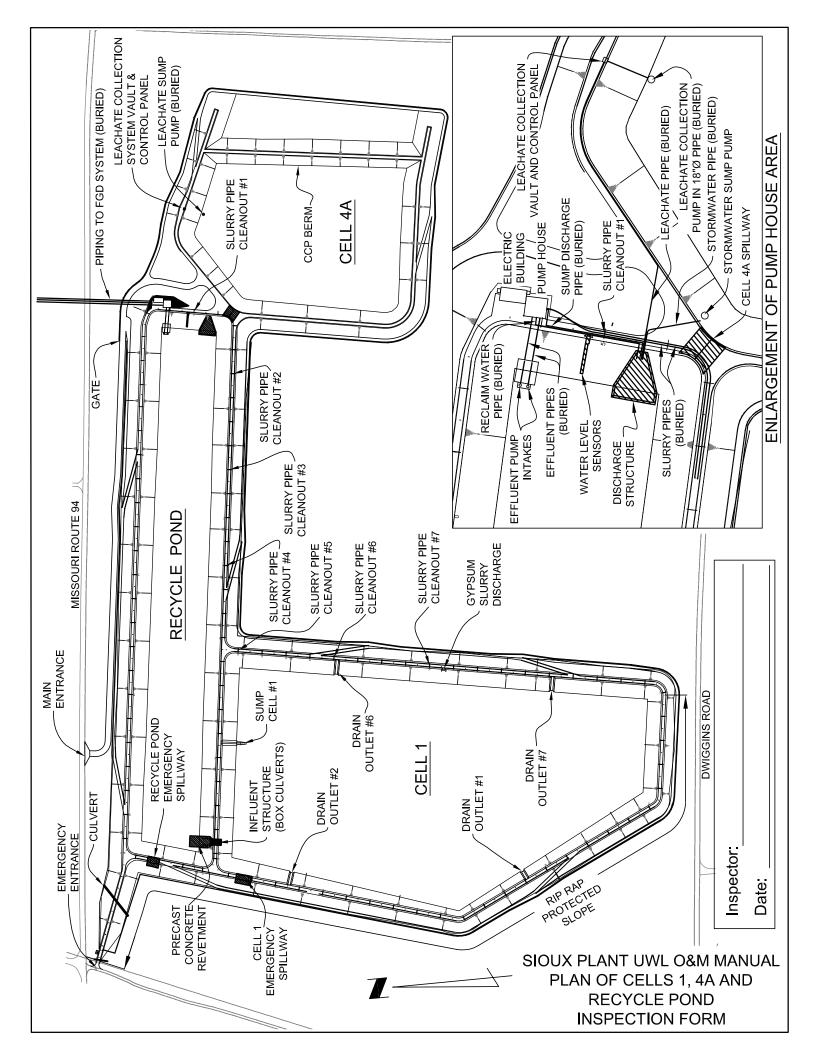
If an emergency situation requires an immediate Special Inspection during poor visibility (such as at night) then a second Special Inspection must be completed in daylight as soon as possible.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

MM = Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.


OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No evidence of a problem.

NI = Not Inspected. Reason should be stated in comment.

ATTACH INSPECTION FORM (PLAN) AND NOTE ACTIONS TAKEN ON BACK OF FORM

Ameren Missouri Sioux Energy Center UWL Cells 1 & 4A and Recycle Pond O&M Manual

APPENDIX B

MAINTENANCE OF PROTECTIVE GRASS COVER

Appendix B MAINTENANCE OF PROTECTIVE GRASS COVER

1.0 ROUTINE MAINTENANCE

- 1.1 The embankment slopes were planted by broadcast seeding native grasses. The seed was a mixture of VNS annual ryegrass (temporary cover crop), Soft Red Winter wheat (temporary cover crop), 30% Canadian wild rye (native), and 30% "Cave-in-Rock" switchgrass (native). The wheat and annual rye start turning brown in June or early summer, but will reseed and begin growing again in the fall. The wild rye and switchgrass are perennial native warm season grasses that begin growing in late spring. It typically will take 2 to 3 years to establish the permanent native grass cover.
- 1.2 If additional wheat or rye cover is needed, it should be sown in September and will start to grow in October. If additional perennial switchgrass is needed, it should be broadcast seeded in early February or drilled by early spring so that it will grow over the summer.
- 1.3 The grasses should be mowed, to 6 to 8 inches high, twice per year, or a controlled burn once per year between mid-February and April 15. If a controlled burn is used, the burning should be from the top of embankment down, to have a slower and more controlled burn. A permit will be needed from St. Charles County to manage the native grasses by burning.
- 1.4 Riprap areas should be sprayed with an herbicide once in the spring and once in the fall of each year to eliminate the growth of woody vegetation. Embankment mowing should be supplemented by periodic use of herbicides to prevent the growth of woody plants on the embankments and within the perimeter fence of the UWL. The U.S. EPA bans the use of the herbicide 2,4,5-T in parks and recreational areas, and the use of Silvex (2,4,5-TP) around water. Herbicides shall not be used that contain 2,4,5-T or 2,4,5-TP, such as ESTERON 2,4,5 by DOW Chemical. Approved herbicides include 2,4-D or 2,4-DP, such as RTU or GARLON by DOW Chemical, WEEDONE 170 or WEEDONE 2,4-DP by Union Carbide, or a 1% to 2% solution of ROUNDUP.
- 1.5 Woody plants should be entirely removed from the slopes of the embankments, including the root ball. The void left from removal of the root ball should be backfilled with compacted silty clay or low plastic clay, and the disturbed area should be reseeded.

2.0 RESEEDING

2.1 PRODUCTS

2.1.1 Commercial fertilizer of 0-20-20 grade shall be provided and applied to the permanent seeding sites, so that not more than 2.0 pounds of phosphorus (P₂O₅) per 1000 sq.ft. and 2.0 pounds of potassium (K₂O) per 1000 sq.ft. are applied. The fertilizer shall be nitrogen (N) free. No nitrogen shall be applied at time of seeding. The fertilizer shall be uniform in composition, free flowing and suitable for application with available equipment. The fertilizer shall be delivered

to the site in bags or other convenient containers, fully labeled or otherwise designated in accordance with the applicable State fertilizer laws, and bearing the name, trade name or trademark, and warranty of the producer.

2.1.2 Permanent seed mixture should be as follows. All grass seed will meet minimum of 98% purity and 85% germination.

Kinds of Seed	Pounds Pure Live
	Seed per Acre
Switchgrass (Blackwell or Cave-in-Rock) (Panicum virgatum)	15 lbs.
Wild Rye (<i>Elymus canadensis</i>)	15 lbs.
Annual Ryegrass (<i>Lolium multiflorum</i>)	20 lbs.
Oats or Wheat	<u>30 lbs.</u>
Total Pounds Pure Live Seed/Acre	80 lbs.

- 2.1.3 Mulch should be mature prairie hay, or if prairie hay is not available, straw of cereal grain such as oats or wheat. Materials containing objectionable weed seeds or other species detrimental to the planting should not be used.
- 2.2 APPLICATION Permanent seeding sites should be tilled to an average depth of 3 to 5 inches, and fertilizer may be applied up to 10 days before seeding, or at the time of seeding, or up to 5 days after seeding. Seeding may be done by drilling or by broadcasting. Hay or straw mulch should be spread uniformly at the rate of 2 tons per acre. Mulch shall be spread by hand, blower-type mulch spreader, or other approved method. The mulch shall not be bunched or clumped. Sunlight shall not be completely excluded from penetrating to the ground surface. All areas installed with seed shall be mulched on the same day as the seeding. Mulch shall be anchored immediately following spreading with either a mechanical anchor, such as a V-type-wheel land packer or a scallop-disk land packer designed to force mulch into the soil surface, or mulch may be glued to the ground surface using biodegradable glue.

Ameren Missouri Sioux Energy Center UWL Cells 1 & 4A and Recycle Pond O&M Manual

APPENDIX C

GYPSUM STACKING OPERATIONS

Appendix C GYPSUM STACKING OPERATIONS

C.1 BEGINNING GYPSUM STACKING

The initial filling of Cell 1 is described in Section 2.3. Settled gypsum will gradually create a plain of material within Cell 1 that slopes gently away from the embankment (the "gypsum beach"), as shown in Figure 5. The bottom of the gypsum slurry discharge pipes is at el. 442.67. The gypsum beach cannot exceed about el. 442 without having to either change the discharge location or begin excavating the gypsum to construct the first dikes.

The concept of gypsum stacking is illustrated in Figure C-1. Two dikes will be made with gypsum from Cell 1: the exterior or outer dike, and the interior or inner dike. The channel between the perimeter berm of Cell 1 and the outer dike forms the perimeter ditch which returns water to the triple box culverts once the outer ditch is completed around all of Cell 1. The excavated channel between the outer dike and the inner dike forms the "rim ditch" which carries the gypsum slurry around the Cell 1. A cut is made through the inner dike at selected locations to distribute the gypsum slurry. The coarser gypsum particles settle in the rim ditch, where it is easier to excavate the gypsum with trackhoes to build the outer and inner dikes. The fine particles of gypsum settle in the center "sedimentation area" which is always under water.

Because the water level during the winter will be at el. 441, the gypsum beach on the eastern side of Cell 1 will reach an el. of 441 or higher during the first winter. As the water level is lowered during the spring, the beach on the east side of Cell 1 will dewater making it easier to begin construction of the inner and outer dikes in this area. Construction of the initial rim ditch will allow slurry to continue to be discharged from this location and redirect the slurry flow to the north and south along the east side of Cell 1, increasing the overall size of the beach.

After April 1 during normal operations, the water level in Cell 1 can be lowered to el. 438<u>+</u> to optimize the natural beach formation (Figure 6). This will continue until December 15, at which time the water level in Cell 1 will be raised to el. 441. When the gypsum beach extends more than one-half the distance across Cell 1, and while the water level is lowered to el. 438<u>+</u>, the ends of the slurry discharge pipes should be moved to the south end of Cell 1 (Discharge Location #2, Figure 7). HDPE pipe must be added to the ends of the gypsum slurry pipes at Location #1, and the pipe extension aligned along the inner edge of the embankment to the south end of Cell 1. The exact piping alignment and the final location of Discharge Location #2 will require field configuration.

After April 1, the water level in Cell 1 can again be lowered to el. $438 \pm$ to optimize the natural beach formation (Figure 8). Construction of the initial rim ditches and exterior and interior dikes (Figures C-1 and C-2) will continue until they extend along the south perimeter of Cell 1 and halfway north on both the east and west perimeter of Cell 1. The construction of dikes and ditches is further detailed in the following section.

C.2 GYPSUM DIKES AND SEDIMENTATION POND CONSTRUCTION

Construction of the rim ditch should begin after the beach at the east and south sides of Cell 1 reach el. 441 and the water level in the south end of the impoundment is lowered to el. 438±. The rim ditch is constructed by building two elevated roads on the gypsum beach beginning at the middle of the east berm and proceeding both clockwise and counterclockwise around the perimeter of the stack as shown in Figure C-2. Access to the beach will be provided by carefully pushing fill soil or fly ash outward from the crest of the earthen perimeter berm out onto the beach. The thickness of the fill will need to be at least 18 inches thick above the HDPE liner to avoid damage to the liner and will need to be at least 36 inches thick above the gypsum beach. After the access pad has been constructed far enough out onto the beach to allow excavated from the beach. The details of constructing the access road and establishing the rim ditch are illustrated in Figure C-2. Note that the rim ditch is advanced by pushing the windrowed gypsum off of the two roadways out onto the beach in approximately 20-ft long segments.

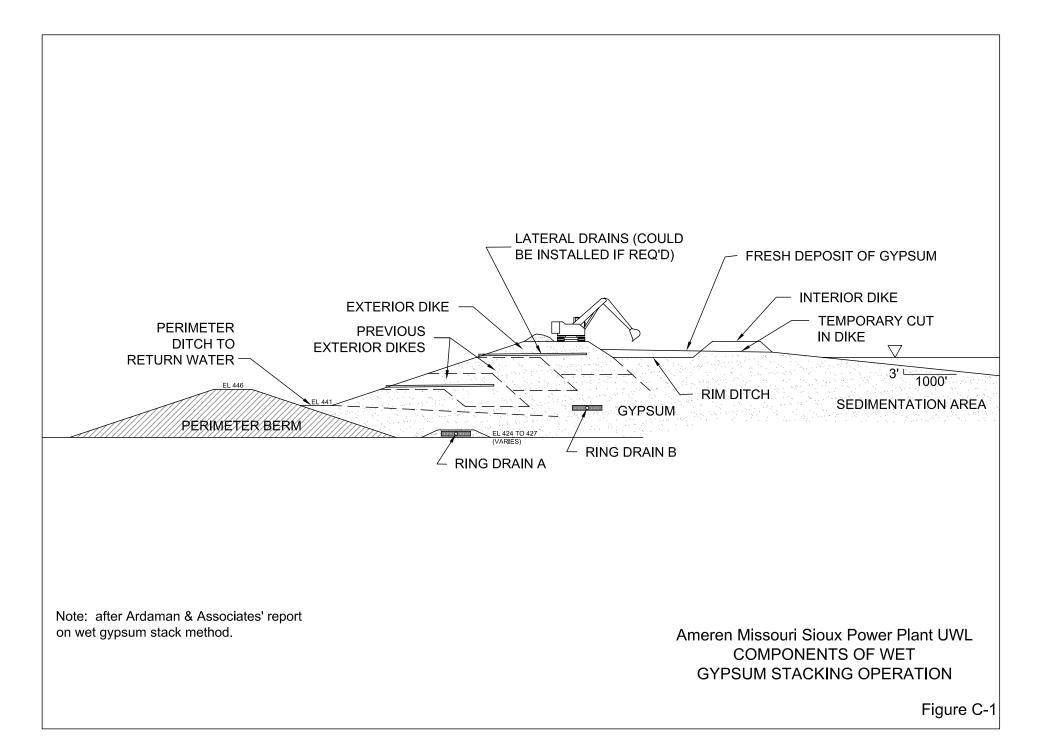
Gypsum excavated from the beach is expected to be soft and saturated and must be windrowed and allowed to drain before it can be spread and compacted to form the roadway. Typically, gypsum drains sufficiently in 24 hours to allow spreading and compacting. Caution should be used to prevent equipment from getting stuck in the gypsum until the specific drainage characteristics of the gypsum produced at the Plant are determined. Sufficient compaction can be achieved by tracking with a low pressure D-6 dozer. Depending on the reach of the excavator, the rim ditch can advance about 20 feet per day in each direction.

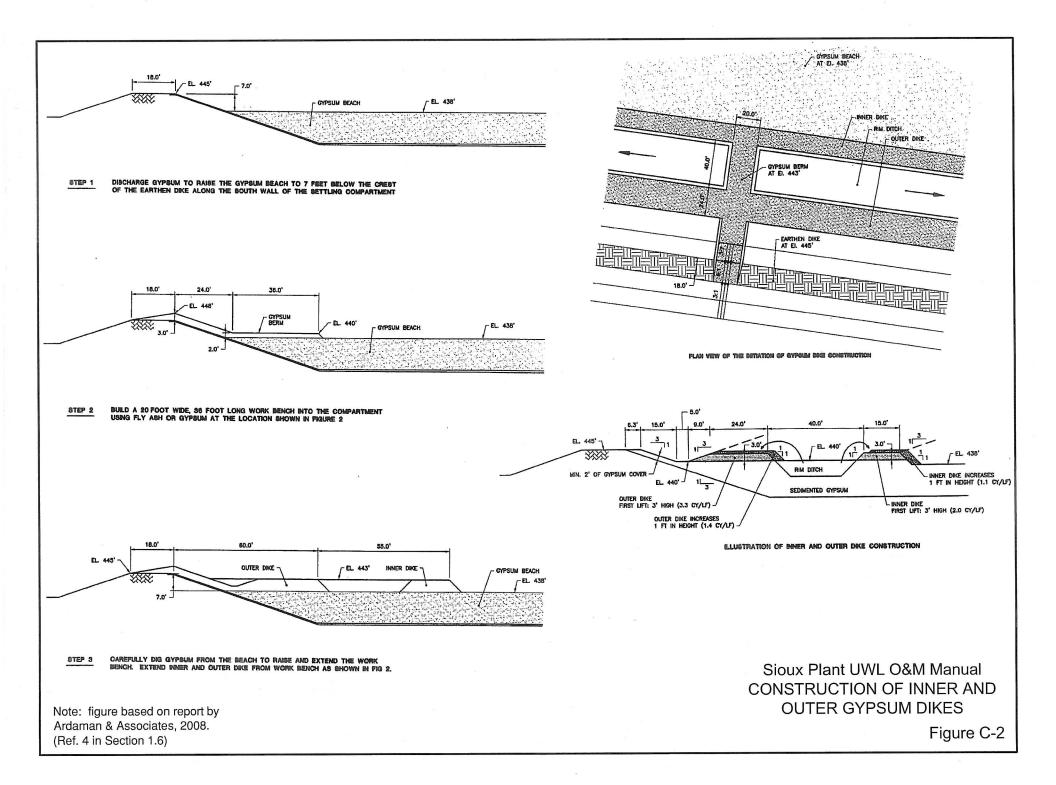
The rim ditch should be refilled each day to provide gypsum for raising the roadway as the excavator retreats from the most recently placed windrow. The height of the interior dike when the initial rim ditch is completed should be at least 3 feet above the beach. The outer slope of the outer rim ditch should be graded to a slope of 3 horz. to 1 vert. (3H:1V). The gypsum interior and exterior dikes should be initially raised in lift increments of about 1.5 to 2 feet. A minimum freeboard of 3 feet should be maintained between the slurry level in the rim ditch and the crest of the perimeter embankment. The gypsum exterior dike should always be maintained at a slightly higher elevation (1 foot minimum) than the interior dike of the rim ditch to prevent accidental overflow of gypsum slurry down the stack slope in the event the rim ditch becomes blocked.

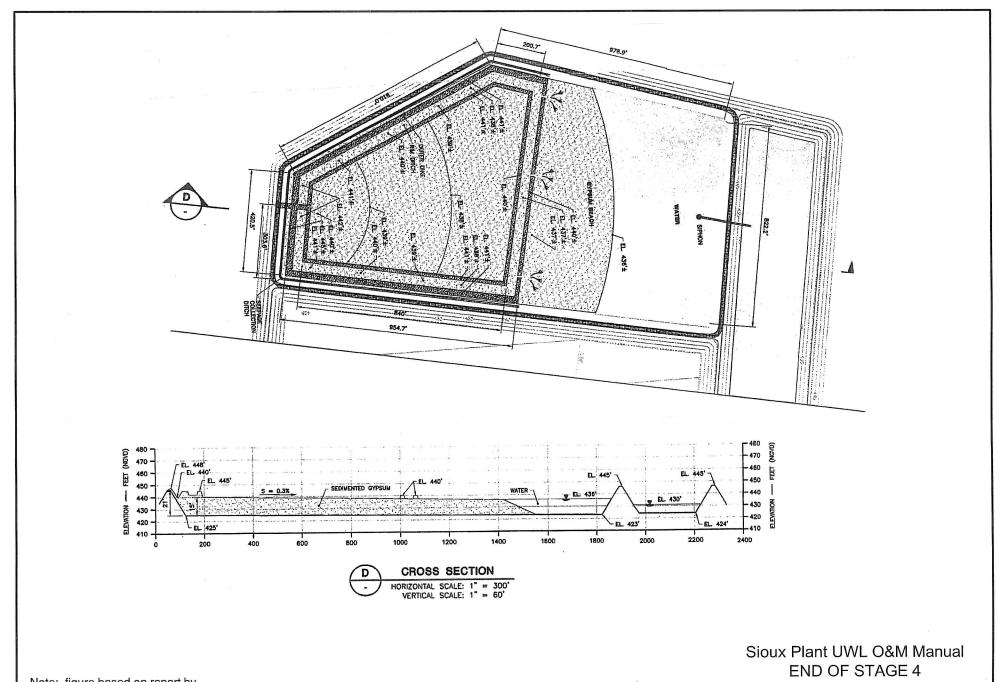
The exterior and interior dike crests should be moved inward each lift as needed to maintain the design slope of 3H:1V. The slopes can be graded with a smooth-edged excavator bucket, e.g., a finish or cleanup bucket. Under no circumstances should the slopes of the stack be graded using a toothed excavator bucket.

At an advance rate of 20 feet per day, it will take about 2 months for the rim ditch to reach the midpoint of the impoundment as illustrated in Figure 8. During this period, the beach and the water level in the ponded area will have increased in elevation by about two feet. During this same period, a 2-ft thick gypsum protective cover should be placed on top of the HDPE liner on interior of the earthen perimeter embankment. The gypsum for the cover can be excavated from the rim ditch. Once the rim ditch is constructed around the east, south and west perimeter of the south half of Cell 1, the rim ditch must be extended across the middle of the impoundment. While construction is

completed, gypsum will be discharged intermittently into the north compartment as shown in Figure C-3. Clarified water will continue to be discharged using the siphon from northwest corner of Cell 1 in order to maintain the water level about 9 feet below the crest of the earthen perimeter dike. It is estimated that it will take about one month to construct the divider dike across the middle of the impoundment.

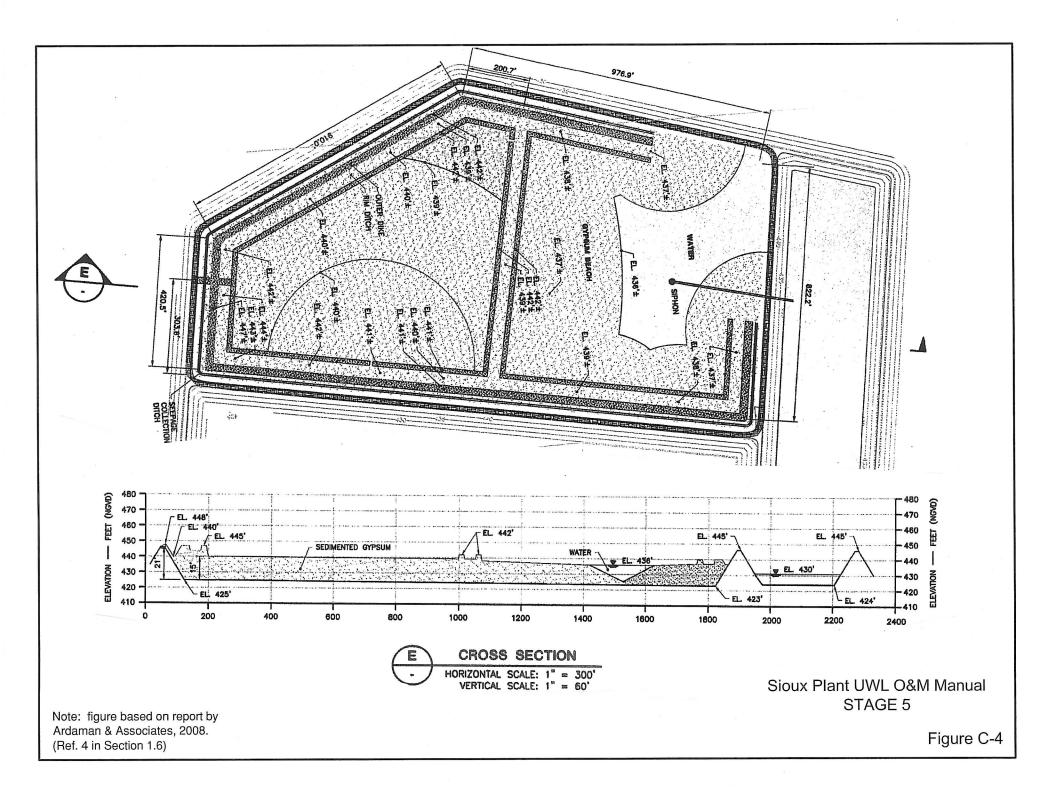

When the rim ditch around the south sedimentation pond is finished, gypsum will be introduced into the north compartment at both the southeast and southwest corners. When the rim ditch is extended into the north sedimentation pond, the rim ditch needs to be raised by discharging gypsum slurry into the sedimentation pond at both the southeast and southwest corners. Water will be decanted from the south sedimentation pond through a cut in the north inner dike near the northwest corner of the south sedimentation pond as shown in Figure C-3. The rim ditch on the east side of Cell 1 will be approximately 2 feet higher than the rim ditch on the west side of Cell 1 so that the clarified water from the south compartment can flow along the rim ditch into the north sedimentation pond as shown in Figure C-3.

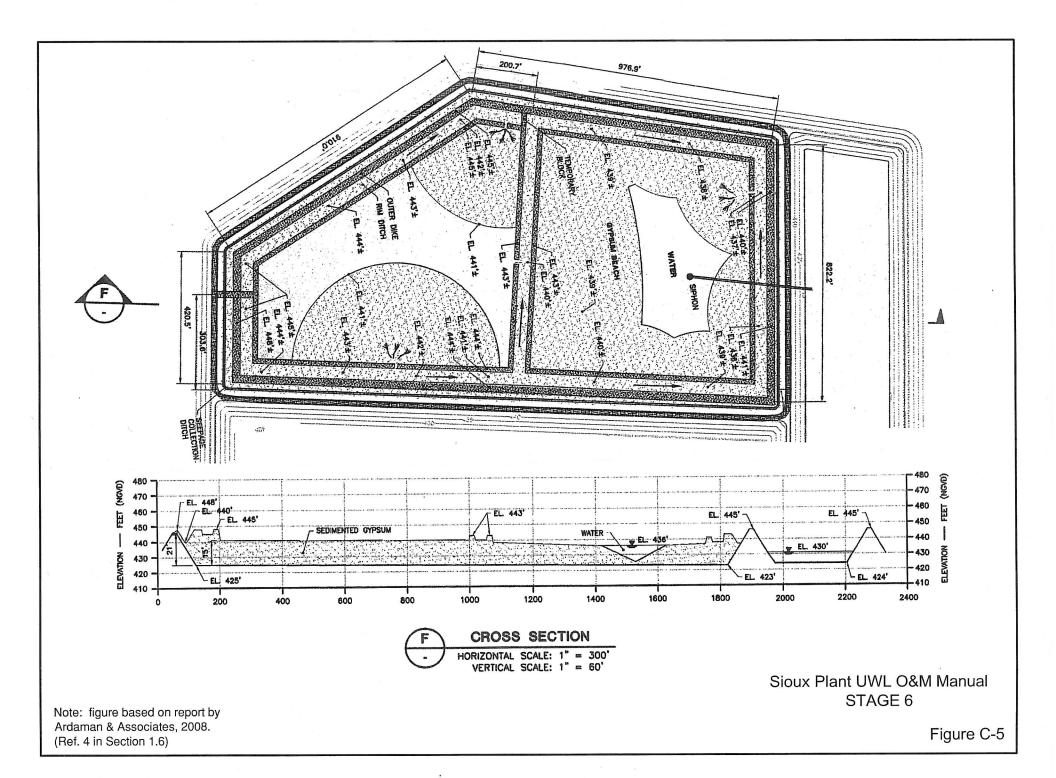

At some time before the rim ditch in the north compartment reaches the location of the siphon line, the siphon line needs to be extended to the south as shown in Figure C-4. This will allow the rim ditch to be completed along the entire length of the north perimeter embankment. The 2-ft thick gypsum protective cover placed against the liner on the earthen perimeter dike of the southern compartment should also be completed during this time.

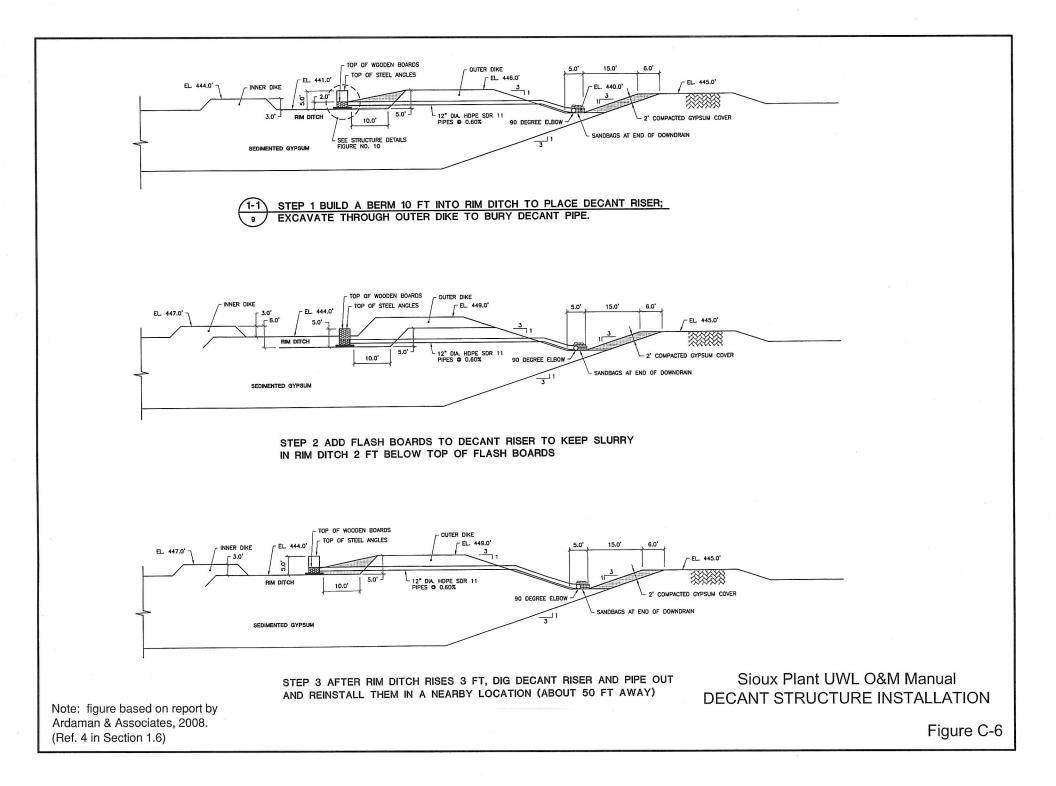

When the surface area of the water at the northwest corner of the south sedimentation pond becomes too small to effectively settle the gypsum, the cut through the inner dike at the northwest corner should be relocated to the middle of the inner dike where the bottom elevation of the rim ditch is 1.5 to 2 feet higher than at the northwest corner so that the south sedimentation pond can be raised by about 1.5 feet. The northwest corner of the south sedimentation pond, which is the lowest point in the pond before the cut is relocated, can be raised by blocking the south rim ditch as shown in Figure C-5 and directing gypsum slurry into the west part of the south sedimentation pond through a cut in the west inner dike.

Construction of the rim ditch for the north sedimentation pond will proceed as shown in Figure C-5 until the rim ditch is complete. When the rim ditch at the northwest corner of the north sedimentation pond, which is the lowest point in the entire Cell 1, reaches el. 440, an emergency decant structure should be installed near the northeast corner of the Phase I north compartment as shown in Figures C-6 and C-7.

The total volume of gypsum required to completely form the inner and outer dikes of the rim ditch around the entire stack impoundment, as illustrated in Figure C-8, is estimated at approximately 96,000 cubic yards. After Cell 1 has been divided into 2 operating subcells, then construction of Ring Drain B can begin.






Note: figure based on report by Ardaman & Associates, 2008. (Ref. 4 in Section 1.6)

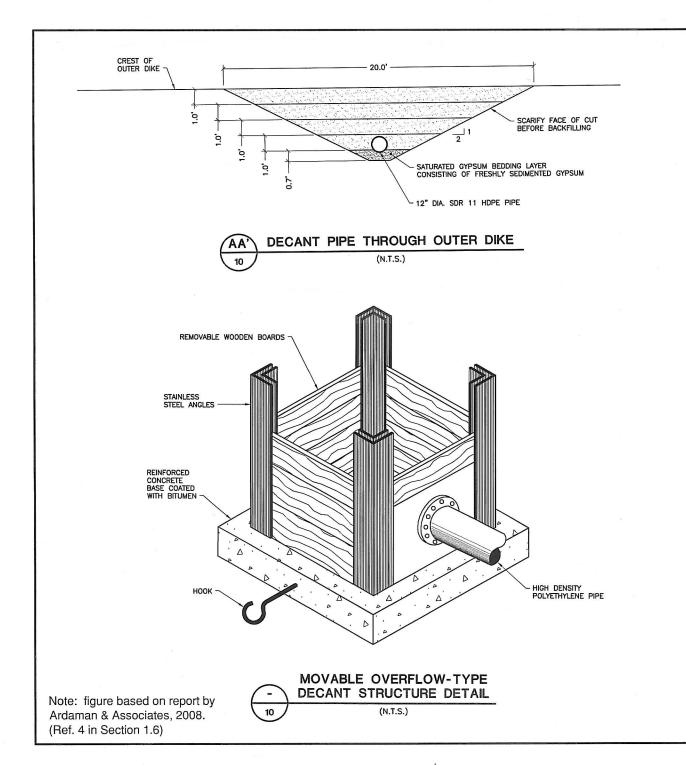

۰.

Figure C-3

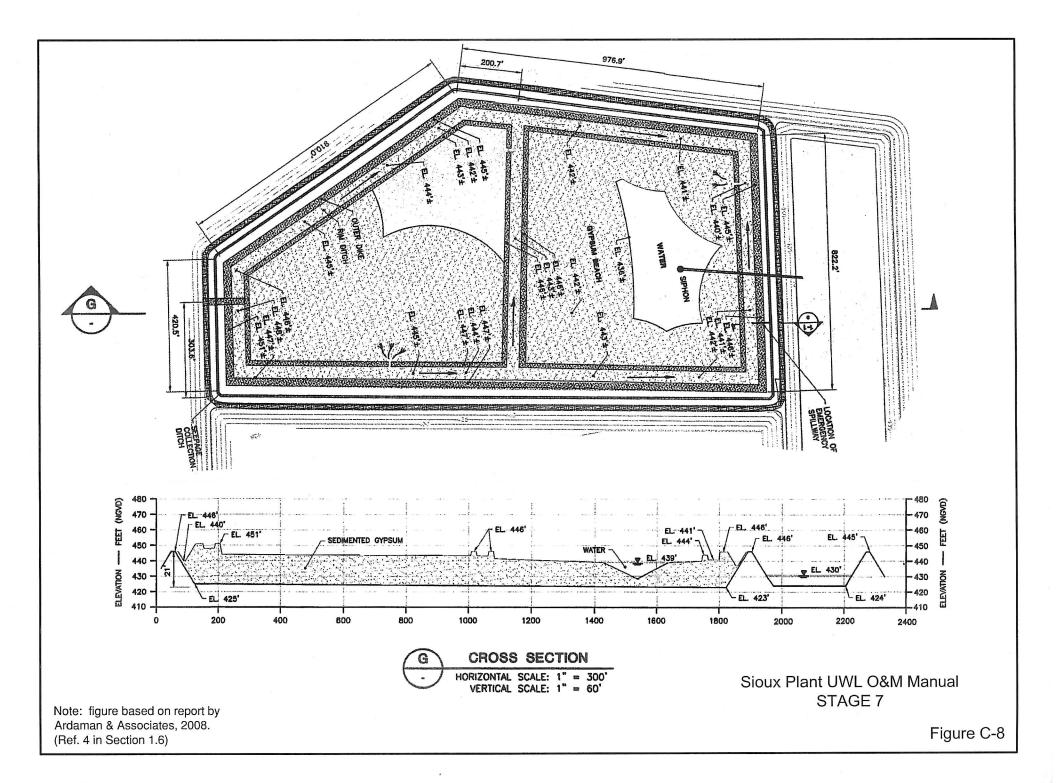
NOTE:

1. PLACE 8-- IN LIFT OF WET TO VERY WET GYPSUM AT BOTTOM OF EXCAVATION PRIOR TO INSTALLING PIPE;

2. PUSH PIPE INTO FRESHLY PLACED GYPSUM TO ENSURE INTIMITE CONTACT BETWEEN GYPSUM AND LOWER 1/3 PIPE;

3. HOLD PIPE DOWN WITH PILES OF WET GYPSUM SPACED EVENLY ALONG CENTERLINE OF PIPE;

4. PLACE AND TAMP WET TO VERY WET GYPSUM AROUND REMAINING CUT IN 12-INCH LIFTS, SCARIFYING BETWEEN LIFTS IF NECESSARY;


5. DO NOT DRIVE CONSTRUCTION EQUIPMENTS ACROSS BACKFILLED CUT OR USE THE RIM DITCH FOR AT LEAST 48 HOURS AFTER THE CUT HAS BEEN BACKFILLED;

6. BACKFILL EXCAVATION AT PREVIOUS DECANT STRUCTURE LOCATION BY TAMPING WET OR VERY WET GYPSUM IN 12-INCH LIFTS, SCARIFYING BETWEEN LIFTS AS NECESSARY;

7. PRIOR TO BACKFILLING A CUT, THE EXPOSED GYPSUM SURFACE SHALL BE SCARIFIED TO BREAK UP AND REMOVE ANY DRY OR CEMENTED SURFACE CRUST, IF PRESENT.

Sioux Plant UWL O&M Manual DETAILS OF DECANT STRUCTURE

Figure C-7

Ameren Missouri Sioux Energy Center UWL Cells 1 & 4A and Recycle Pond O&M Manual

APPENDIX D

STATE AND LOCAL PERMITS

APPENDIX D – STATE AND LOCAL PERMITS

LIST OF CONTENTS

The following State and County permits and licenses have been obtained in order to construct and operate the UWL:

- 1. Missouri Department of Natural Resources (MDNR) Solid Waste Disposal Area Operating Permit No. 0918301, dated July 30, 2010.
- 2. MDNR Solid Waste Disposal Area Construction Permit No. 0918301, dated March 28, 2008.
- 3. Groundwater Monitoring Program incorporated into this Construction Permit.
- 4. MDNR Dam and Reservoir Safety Council Construction Permit C-426 (MO40160), dated April 1, 2008, amended April 8, 2010.
- 5. Letter of agreement by MDNR-DRSP, received February 16, 2011, of the Memorandum of Understanding dated August 5, 2008.
- 6. MDNR Dam and Reservoir Safety Council Construction Permit C-426 (MO40160), dated April 1, 2008, amended February 11, 2014.
- 7. St. Charles County Solid Waste Facility Operating License #04303 including Cell 4A, dated December 10, 2013.
- 8. St. Charles County Solid Waste Facility Operating License #04303, dated October 31, 2013.
- 9. MDNR Solid Waste Management Program Approval of Modified CPA, February 8, 2013.
- 10. MDNR Solid Waste Management Program Authorization to Operate (ATO) Cell 4A, December 6, 2013.
- 11. MDNR Solid Waste Management Program Approval of Initial Filling of Cell 4A with Conditions, dated April 6, 2015.
- 12. MDNR Solid Waste Management Program Modification of Permit No. 0918301 to incorporate the October 2015 Flood Protection Plan, dated October 28, 2015.
- 13. MDNR-SWMP "Biennial Airspace Estimate" Form

Missouri Department of Natural Resources

Solid Waste Disposal Area Operating Permit Permit Number 0918301 AmerenUE Sioux Power Plant Utility Waste Landfill AmerenUE St. Charles County

Director, Solid Waste Management Program Date: JUL 3 0 2010

STATE OF MISSOURI EPARTMENT Deremiah W. (Jay) Nixon, Governor • Mark N. Templeton, Director OF NATURAL RESOURCES

www.dnr.mo.gov

JUL 3 0 2010

CERTIFIED MAIL # 7007-0710-0002-2053-9726 RETURN RECEIPT REQUESTED

Mr. Michael Menne Ameren UE One Ameren Plaza 1901 Choteau Avenue St. Louis, MO 63103

RE: AmerenUE Sioux Power Plant Utility Waste Landfill, Utility Waste Disposal Area Construction Permit Number 0918301, St. Charles County

Dear Mr. Menne:

A request for an Operating Permit has been filed with the Missouri Department of Natural Resources' (Department) Solid Waste Management Program (SWMP) for AmerenUE Sioux Power Plant Utility Waste Landfill, Construction Permit Number 0918301.

Whereas, the permittee has demonstrated compliance with the requirements of 10 CSR 80-2.020(2)(B) to the Department's satisfaction; an Operating Permit is hereby granted for Cell 1, as shown on drawing 2 of the plan sheets titled "Construction of Cell 1 and Recycle Pond". This Operating Permit is hereby made an official part of Solid Waste Disposal Area Construction Permit Number 0918301.

The following documents are hereby approved and incorporated into Permit Number 0918301.

DOCUMENTS:

- 1. A letter dated July 15, 2010, from Mr. Paul Pike, Environmental Science Executive of Ameren Services. This document includes a response to the July 1, 2010, comment letter from the Solid Waste Management Program.
- 2. A letter dated May 27, 2010, to Ms. Charlene Fitch, Solid Waste Management Program, from Mr. Paul Pike, Ameren Services, and received on June 1, 2010, requesting the Operating Permit.
- <u>"Cell 1 Operating Permit Requirements Report"</u>, dated February 2010 and received February 26, 2010, prepared by Ben Moore, P.E. of GREDELL Engineering Resources, Inc.

Mr. Michael Menne AmerenUE Sioux Power Plant Utility Waste Landfill Page 2

- 4. <u>"Cell 1 Final CQA Report"</u>, dated January 20, 2010, and received February 20, 2010, prepared by Jeffrey Fouse, P.E. of Reitz & Jens, Inc. Consulting Engineers to be included with the final CQA report prepared by Ben Moore, P.E. of GREDELL Engineering Resources, Inc. This document also includes a set of plan sheets dated May 18, 2009, revised November 2, 2009, titled "Construction of Cell 1 and Recycle Pond", prepared and stamped by Jeffrey Fouse, P.E. of Reitz & Jens, Inc. Consulting Engineers.
- 5. <u>"Cell 1 HDPE Geomembrane Liner CQA Report"</u>, dated February 2010 and received February 19, 2010, prepared by Ben Moore, P.E. of GREDELL Engineering Resources, Inc.
- 6. <u>"Cell 1 Clay Liner Report"</u>, dated October 21, 2009, revised December 4, 2009, and received on December 10, 2009, prepared by Jeffrey Fouse, P.E. of Reitz & Jens, Inc. Consulting Engineers to be included with the Final CQA Report prepared by Ben Moore, P.E. of GREDELL Engineering Resources, Inc.
- 7. <u>"Ardaman & Associates Cell 1 Reports Volumes 1 and 2"</u>, dated October 2009 and received on November 17, 2009, prepared by Thomas Ingra, P.E. of Ardaman & Associates, Inc. and compiled by GREDELL Engineering Resources, Inc.

The following conditions are an integral part of this approval. Compliance with these conditions shall, in part, determine compliance with Permit Number 0918301.

CONDITIONS:

- 1. A request for Authorization to Operate must be submitted for approval at least sixty (60) days prior to moving into future cells.
- 2. Any facility design elements that you need to change or that may affect future construction or operation activities must be submitted and approved prior to beginning construction. Also, any design or operational changes, complete construction specifications, construction procedures, and construction grade drawings must be submitted and approved prior to implementation.
- 3. All silt fences must be inspected monthly or during a storm event, whichever is more frequent.

This approval is not to be construed as compliance with any existing federal or state environmental laws other than the Missouri Solid Waste Management Law; nor should this be construed as a waiver for any other regulatory requirements. This approval is not to be construed as compliance with any existing local permitting or zoning ordinances; nor does it supersede any local permitting and/or zoning requirements. Mr. Michael Menne AmerenUE Sioux Power Plant Utility Waste Landfill Page 3

The Department reserves the right to revoke, suspend, or modify this approval and/or Permit Number 0918301 if the permit holder fails to maintain the facility in compliance with the state's Solid Waste Management Law, with the terms and conditions of the permit, or the approved engineering plans and specifications.

If you are adversely affected by this decision, you may appeal to have the matter heard by the Director of the Missouri Department of Natural Resources. To appeal, you must file a petition within thirty (30) days of the date that this decision was mailed or the date it was delivered, whatever date is earlier.

We appreciate your efforts towards environmentally sound solid waste management practices. If you have any comments or questions concerning this letter, please contact Ms. Charlene Fitch or Ms. Katherine Huxol of my staff at (573) 751-5401, or P.O. Box 176, Jefferson City, Missouri 65102-0176.

Sincerely,

SOLID WASTE MANGEMENT PROGRAM

David J Lamb Director

DJL:khl

 c: Senator Tom Dempsey, Missouri Senate Representative Kenny Biermann, Missouri House of Representatives The Honorable Steve Ehlmann, County Executive, St. Charles County Government Ben Moore, P.E., GREDELL Engineering Resources, Inc. Mr. Mark N. Templeton, Director, Department of Natural Resources Ms. Crystal Lovett-Tibbs, Legislative Liaison, Department of Natural Resources Mr. Chris Nagel, Chief, Enforcement Section, Solid Waste Management Program Mr. Rob Morrison, Chief, Permits Section, Water Protection Program Mr. Eric Gramlich, Solid Waste Management Program St. Louis Regional Office

MAR 2 8 2008

CERTIFIED MAIL #: 7007-0710-0002-2053-3168 RETURN RECEIPT REQUESTED

Mr. Paul R. Pike, Strategic Analyst Ameren UE Sioux Utility Waste Landfill 1901 Chouteau Avenue St. Louis, MO 63166-1419

RE: Ameren UE Sioux Power Plant Utility Waste Landfill, Solid Waste Disposal Area Construction Permit Number 0918301, St. Charles County

Dear Mr. Pike:

An application for a construction permit to construct the above-referenced solid waste disposal area was filed with the Missouri Department of Natural Resources on March 28, 2007. The application was subsequently revised in response to the Department of Natural Resources' Solid Waste Management Program's (SWMP) comments, and the revisions were submitted on September 21, 2007. The application was filed by Gredell Engineering Resources, Inc. for review and approval. The application, prepared by Thomas R. Gredell, P.E., includes engineering plans, specifications, operating procedures, and subsequent correspondence or amendments for the subject disposal area. The application was reviewed for compliance with the Missouri Solid Waste Management Law (Sections 260.200 to 260.345, RSMo), and the Missouri Solid Waste Management Regulations.

In accordance with Section 260.205.5(7), RSMo, the department hereby approves the application as provided in the enclosed <u>"Ameren UE Sioux Power Plant Utility Waste Landfill, Solid Waste Disposal Area Construction Permit Number 0918301</u>" issued to Ameren UE, as owner/operator, to construct a solid waste disposal area as of the date of this letter. The disposal area is located adjacent to the Ameren UE Sioux Power Plant, south of State Highway 94, approximately two miles east of the town of Portage Des Sioux, and adjoining the City of West Alton, in St. Charles County, Missouri. The general legal description is as follows: Township 48 North, Range 6 East. The Latitude is North 38 Degrees, 54 minutes, and the Longitude is West 90 degrees, 18 minutes. This permit applies only to that tract of land consisting of approximately 398 acres as described by the engineering plans, specifications, and operating procedures submitted to the department. The disposal area contains approximately 183.5 acres divided into two phases to be used for waste disposal. The remaining area is to be utilized for utility waste landfill-related

Mr. Paul R. Pike Ameren UE Page 2

design features such as borrow area, all-weather access roads, buffer zone, leachate collection and removal system, and storm water diversion structures.

The department may review this permit after the date of issuance and notify the permit holder as necessary to assure the landfill continues to comply with the currently applicable requirements and provisions of the Missouri Solid Waste Management Law and rules adopted thereunder. Approval of the application and issuance of this permit is given with the explicit understanding that the disposal area will be developed and operated in compliance with the approved plans, specifications, operating procedures, the conditions of the permit, the Missouri Solid Waste Management Regulations, and the Missouri Solid Waste Management Law. This permit is not to be construed as compliance with any existing federal or state environmental laws other than the Missouri Solid Waste Management Law; nor should this be construed as a waiver for any other regulatory requirements. This permit is not to be construed as compliance with any existing local ordinances or zoning requirements.

As the holder of this permit, you are required to comply with all applicable environmental laws and regulations enforced by the department. These environmental requirements are administered by the department's Air Pollution Control Program, Water Protection Program, Land Reclamation Program, Hazardous Waste Program and SWMP. In addition, you are required to comply with all applicable environmental laws administered by the government of St. Charles County, Missouri. Noncompliance with these environmental laws and regulations may, in certain circumstances, result in the suspension or revocation of this permit and may subject the permit holder to civil and criminal liability.

The Missouri Department of Natural Resources is committed to reducing, reusing and recycling all materials that might otherwise become waste. We believe reducing the amount of waste going into landfills has a multitude of economic as well as environmental benefits for Missouri citizens and businesses. Accordingly, we strongly encourage you to utilize and support materials recycling and reuse programs and techniques that reduce the amount of waste going into the landfill and make efficient use of our precious natural resources.

If you are aggrieved by this decision, you may be entitled to seek further administrative or judicial review pursuant to Section 260.235 or Section 536.150 of the Missouri Revised Statutes. Any appeal of the decision should be filed with the Director within 30 days of notice of the decision.

The department reserves the right to revoke, suspend, or modify Permit Number 0198301 if the permit holder fails to maintain the facility in compliance with the state's Solid Waste Management Law and regulations, the terms and conditions of the permit, and the approved engineering plans and specifications.

Mr. Paul R. Pike Ameren UE Page 3

I appreciate your cooperation. If you have any questions, please contact Charlene Fitch, P.E., of the department's SWMP at (573) 751-5401 or P.O. Box 176, Jefferson City, Missouri 65102-0176.

Sincerely,

DIVISION OF ENVIRONMENTAL QUALITY

Daniel R. Schuette Director

DRS:szl

Enclosure

c: The Honorable Tom Dempsey, Missouri Senate The Honorable Vicki Schneider, Missouri House of Representatives Mr. Steve Ehlmann, St. Charles County Executive Mr. Mike Duvall, St. Charles County Government Thomas R. Gredell, P.E., Gredell Engineering Resources, Inc. Mr. David Berger, St. Louis-Jefferson Solid Waste Management District Mr. James Alexander, Dam Safety Program, Division of Geology and Survey Mr. Mike Alesandrini, Ombudsman, St. Louis Regional Office St. Louis Regional Office

MISSOURI DEPARTMENT OF NATURAL RESOURCES SOLID WASTE PERMIT

Ameren UE Sioux Utility Waste Landfill

Solid Waste Disposal Area Construction Permit Number 0918301 St. Charles County, Missouri

Issue Date: _____ MAR 2 8 2008

FACILITY DESCRIPTION

This facility is a utility waste landfill located adjacent to the Ameren UE Sioux Power Plant, south of State Highway 94, approximately two miles east of the town of Portage Des Sioux, and adjoining the City of West Alton, in St. Charles County, Missouri. The general legal description is as follows: Township 48 North, Range 6 East. The Latitude is North 38 Degrees, 54 minutes, and the Longitude is West 90 degrees, 18 minutes. This permit applies only to that tract of land consisting of approximately 398 acres as described by the engineering plans, specifications, and operating procedures submitted to the department. The disposal area contains approximately 183.5 acres divided into two phases to be used for waste disposal. The remainder is to be utilized for utility waste landfill-related design features such as borrow area, all-weather access roads, buffer zone, leachate collection and removal system, and storm water diversion structures.

PERMIT DOCUMENTS

These documents are incorporated by this reference into Permit Number 0918301:

- 1. A letter dated February 6, 2007, to Mr. Jim Bell, Chief of Engineering, from Mr. Paul R. Pike, Strategic Analyst of Ameren UE, received February 8, 2007, requesting the Construction Permit.
- 2. <u>Ameren UE Sioux Power Plant, Construction Permit Application for a Proposed Utility</u> <u>Waste Landfill, St. Charles County, Missouri</u>, prepared by Ameren UE, first received February 8, 2007, deemed completed on March 28, 2007, last revised September 21, 2007. The Construction Permit Application form designates Ameren UE as the owner and operator of the landfill and Gredell Engineering Resources, Inc. as the engineering firm. Thomas R. Gredell, P.E., is the certifying professional engineer registered in Missouri.
- 3. <u>Detailed Geologic and Hydrologic Site Investigation Report for Ameren UE Sioux Power</u> <u>Plant, Proposed Utility Waste Disposal Area, St. Charles County, Missouri, Volume I and</u> <u>II</u>, prepared by Daniel E. Klockow, P.E., R.G., Gredell Engineering Resources, Inc., received February 8, 2007.
- 4. Engineering drawings numbered Sheet 1 of 22 through Sheet 22 of 22, titled, <u>Ameren UE</u> <u>Sioux Power Plant, Proposed Utility Waste Landfill, St. Charles County, Missouri,</u> <u>September 2007, prepared by Reitz and Jens, Inc. and Gredell Engineering Resources,</u> Inc., dated March 28, 2007, revised September 21, 2007. Thomas R. Gredell, P.E., is the certifying professional engineer registered in Missouri.

Ameren UE Sioux Power Plant Page 2

- 5. A letter dated September 20, 2007, to Jim Bell, Chief of Engineering, from Paul R. Pike, Strategic Analyst of Ameren UE, received September 21, 2007, in response to the SWMP's comment letter dated June 28, 2007.
- 6. A letter dated November 29, 2007, to Charlene Fitch, P.E., Solid Waste Management Program (SWMP), from Thomas R. Gredell, P.E., Gredell Engineering Resources, Inc., received December 3, 2007, responding to MDNR's verbal comments on October 23, 2007.
- A letter dated February 20, 2008, to Jim Bell, SWMP, from Steven Lauer, of the St. Charles County Commission, received February 25, 2008, confirming the Ameren UE Sioux Power Plant Utility Waste Landfill is in compliance with local zoning in St. Charles County.

GENERAL CONDITIONS

The following general conditions are an integral part of Permit Number 0918301. Compliance with these general conditions shall, in part, determine compliance with the permit. All reports, plans, and data required to satisfy these general conditions shall be prepared or approved by a professional engineer registered in the state of Missouri.

1. Operation and Design

Any change in the operation and/or design of this facility other than that which has been described in the application and approved in this permit is a modification of the permit, and prior written approval shall be obtained in advance of the permittee making that change.

2. Easement, Notice and Covenant

The owner and the department shall execute:

- A. An easement to allow the department, its agents or its contractors, to enter the premises to complete work specified in the closure plan, monitor or maintain the site, or take remedial action during the post-closure period; and
- B. A notice and covenant indicating that the property has been permitted as a solid waste disposal area and prohibiting use of the land in any manner which interferes with the closure and post-closure plan filed with the department.

To satisfy these requirements, the Missouri Department of Natural Resources' Solid Waste Management Program (SWMP) has prepared a standard document titled <u>Agreement for Easement, Notice and Covenant Running with the Land</u>. This document is available electronically for your use. At least two (2) copies of the original document Ameren UE Sioux Power Plant Page 3

shall be submitted to the department's SWMP for approval and signature within thirty (30) days of the date of this permit.

3. Borehole Abandonment

All exploratory boreholes, abandoned monitoring wells and abandoned piezometers shall be plugged in accordance with 10 CSR 23-3.110, "Permanent Abandonment of Wells" and 10 CSR 23-4.080, "Plugging of Monitoring Wells," or an alternate method approved by the department. Proof of proper abandonment of boreholes and piezometers within each cell boundary shall be submitted to the department's SWMP for approval prior to requesting an operating permit for each subsequent cell.

4. <u>Groundwater Monitoring</u>

- A. Groundwater monitoring shall be required per the following documents, which are hereby incorporated by reference into solid waste Permit Number 0918301:
 - 1. "Groundwater Sampling and Analysis Plan" Appendix S-REVISED 9-07, of the <u>Construction Permit Application</u> (including all tables, figures and appendices included in Appendix S-REVISED 9-07); and
 - 2. The enclosed document titled <u>GROUNDWATER MONITORING PROGRAM</u>, <u>Ameren UE</u>, <u>Permit Number 0918301</u> dated <u>MAR 2 8 2008</u>, which is hereby incorporated by reference into solid waste Permit Number 0918301.
- B. Before an operating permit will be granted, the construction of all groundwater monitoring wells shall be approved by the department. Two (2) copies of the geologist's boring logs and as-built drawings showing the well construction for any new monitoring wells, as well as two (2) copies of plan sheets that show the as-built locations of these wells, shall be submitted to the department's SWMP.

5. <u>Liner and Final Cover</u>

- A. All borrow material used for liner and cover construction shall be from a previously sampled and approved borrow area.
- B. The top surface of each lift of the compacted clay soil liner and final cover shall be scarified prior to placement of an over-lying lift of liner soil.
- C. The top surface of the final lift of the compacted clay liner shall be smooth drum rolled prior to flexible membrane liner placement to ensure intimate contact between the compacted clay liner and the flexible membrane liner.
- D. The soils to be used for liner and cover construction shall be periodically tested and analyzed to ensure they meet the requirements as described in the engineering report.

The compaction of the soil liner and final cover shall be confirmed via the following Quality Assurance/Quality Control (QA/QC) procedures. All QA/QC data results shall be submitted to the department's SWMP as follows:

- 1. On every 5,000 cubic yards of soil to be applied, perform laboratory tests of grain size, soil classification, Atterberg limits, permeability, and density/moisture testing (Standard or Modified Proctor).
- 2. Whenever soil conditions change, perform laboratory analysis on at least one representative sample for every 5,000 cubic yards of material used for construction.
- 3. All laboratory analysis on soil shall be performed prior to initial placement of soil.
- 4. Nuclear gauge field density and moisture tests (ASTM D2922-81) shall be performed on each lift of the soil liner and final cover. Testing shall be performed at a maximum horizontal spacing of one hundred (100) foot centers, offset fifty (50) feet, for each lift of the liner. Any portion of the liner and final cover which fails to meet the minimum compaction specification shall be removed, recompacted and retested.
- 5. A moisture/density calibration adjustment shall be performed at the start of each construction phase, when the soil used for liner/cover construction changes, when you change instruments, or every 12 months, which ever occurs first. Calibration adjustment procedures are covered in Annex A1, paragraph A1.3 of ASTM D 3017-88.
- 6. Elevations of the bottom and top of the landfill compacted soil liner and final cover shall be checked at a maximum horizontal spacing of one hundred (100) foot centers.
- E. Installation of the flexible membrane liner and cover shall be performed in accordance with the QA/QC measures specified in the approved engineering report, and with the manufacturer's recommendations.
- F. Please supply the department's SWMP with QA/QC data and results on the composite liner's geosynthetic components for each phase and conduct both nondestructive and destructive testing on the geomembrane.
- G. The permittee shall provide seven (7) days advance notice of the following activities to the department's SWMP:
 - 1. Test pad construction;

- 2. Subgrade excavation;
- 3. Placement of the soil component of the liner system, including final surface preparation;
- 4. Placement of the geosynthetic components of the liner system; and
- 5. Placement of the leachate collection system and its protective layer.
- 6. Placement of the final cover system.

The department's SWMP reserves the right to inspect and approve or disapprove any of the above-mentioned activities during the construction of the landfill.

6. Construction Quality Assurance Plan and Test Pad

- A. The department may require you to revise the Construction Quality Assurance (CQA) Plan included in Appendix P-REVISED 9-07 of the approved engineering report following completion of the test pad. All construction and testing methods determined to be necessary during test pad construction shall be incorporated into the CQA plan at that time. The department must review and approve the revised CQA plan prior to construction of the liner system for the first landfill phase or cell.
- B. Determination of soil placement criteria and construction of a test pad are required for each soil type proposed for use in liner construction. The department reserves the right to require test pads for future phases.
- C. In addition to the testing outlined in the approved engineering report, a minimum of five (5) uniformly spaced nuclear moisture/density tests, per ASTM D 3017 and ASTM D 2922, shall be performed on each lift of the test pad.
- D. At a minimum, the following information shall be included in each test pad report.
 - 1. A detailed discussion explaining how each soil type was identified and characterized to determine the acceptable placement range. The discussion shall also take into account the soil testing performed during the detailed site investigation. This discussion shall include, at a minimum, a comparison of the following soil properties:
 - a) Grain Size
 - b) Atterbergs
 - c) USCS soil classification
 - d) Optimum moisture content
 - e) Maximum dry density

Ameren UE Sioux Power Plant Page 6

- f) Color
- g) Texture
- 2. For each soil type, one plot showing the Proctor curves using symbology indicating which Proctor points passed the hydraulic conductivity criteria and which failed.
- 3. For each soil type, one plot showing the field moisture/density test results compared with the Proctor curves and the moisture and density pass/fail criteria.
- 4. A map showing soil sample locations and depths. All laboratory test reports shall be clearly correlated to sample locations.
- 5. A detailed discussion of the successful and unsuccessful construction techniques used, including:
 - a) Methods of moisture conditioning
 - b) Methods of surface preparation for each lift
 - c) Depth of penetration of the compactor feet
- 6. A discussion of the amount of compactive effort applied to each lift of compacted soil based on the type and weight of equipment used, the number of passes, and the lift thicknesses.
- 7. A detailed discussion of how each soil type was identified in the field in order to correlate it to the proper soil placement range.
- 8. Documentation that all required calibration procedures specified by ASTM D 2922 and ASTM D 3417 (nuclear density and moisture testing) were performed before/during test pad construction.
- 9. A description of the methods used for subgrade preparation.
- 10. Copies of all field notes taken during test pad construction.

7. <u>Operating Permit</u>

When requesting the Operating Permit for the initial cell, three (3) copies of a written report shall be submitted containing all QA/QC data/results, as-built drawings, drawing(s) showing details of inter-phase berms, and a certification by a professional engineer who is registered in the state of Missouri stating that the landfill cell was constructed as per the department-approved engineering design plans and specifications. The certification shall be signed, or sealed, and dated by both the permittee and a professional engineer

registered in the state of Missouri. The report and certification shall be approved by the department's SWMP before the Operating Permit for the initial cell will be granted.

If an application for the Operating Permit for the initial cell of the solid waste disposal area is not received by the department within sixty (60) months of issuance of the Construction Permit, the applicant, prior to submittal of an Operating Permit Application, shall hold a public awareness and community involvement session, solicit comments, and respond to the comments; submit to the department for approval any necessary changes to the design and operation of the facility so as to be in compliance with currently applicable law and rules; and submit to the department an updated violation history disclosure statement.

8. <u>Authorization to Operate</u>

When requesting Authorization to Operate for all subsequent cells, two (2) copies of a written report shall be submitted containing all QA/QC data/results, as-built drawings, drawing(s) showing details of inter-phase berms and the tie-in of liner elements to previously constructed phases, and a Missouri registered professional engineer's certification that each was constructed as per the department-approved engineering design plans and specifications. The certification shall be signed, or sealed, and dated by both the permittee and the Missouri registered professional engineer. The report and certification must be approved by the department's SWMP before Authorization to Operate for that cell will be issued. Additionally, the closure FAI for the subsequent cells must be submitted and approved.

9. Surface Water Control

Before an Operating Permit will be issued, the permittee shall provide correspondence to the department showing that all applicable permits and design approvals have been acquired from the Missouri Department of Natural Resources' Water Protection Program (WPP). As related to design approvals, the department's WPP may need to issue a Construction Permit for each sedimentation pond.

10. <u>Air Pollution Control</u>

Before an Operating Permit will be issued, the permittee shall provide correspondence to the department showing that all applicable permits and design approvals have been acquired from the Missouri Department of Natural Resources' Air Pollution Control Program.

11. Dam Safety

Before an Operating Permit will be issued, the permittee shall provide correspondence to the department showing that all applicable permits and design approvals have been

acquired from the Missouri Department of Natural Resources' Water Resources Center, Dam & Reservoir Safety.

12. <u>Statistical Evaluation of Groundwater Data</u>

- A. The department's SWMP shall be notified and allowed to review any changes in the statistical evaluation as they occur.
- B. The permittee shall notify the department's SWMP of any statistical deviations in the groundwater data as they occur.
- C. A minimum of four (4) rounds of groundwater monitoring data must be collected prior to filling.
- D. Ameren UE has agreed to collect quarterly samples until there are 12 sets of samples.

SITE SPECIFIC CONDITIONS

- A. In the future, should Ameren decide to reclaim the gypsum by-product from the permitted waste area, the department's SWMP must approve the reclamation plan prior to disturbance of the permitted area.
- B. The Missouri Department of Transportation (MoDOT) must approve the design and related parameters regarding the proposed waste transport system (sluicing the waste over State Highway 94). A copy of the official MoDOT approval must be provided prior to the issuance of an operating permit.
- C. A stockpiling plan for liner quality soil will be developed by the landfill construction contractor and/or geo-tech engineer. Once this plan is developed, please provide a copy to the department.
- D. The wet gypsum stacking method of filling is approved; should Ameren UE wish to accept other coal combustion by-product wastes, a permit modification must be submitted.

DISPOSAL AREA DESCRIPTION

The types of waste to be accepted shall consist of coal combustion by-products including but not limited to fly ash, coal wastes, boiler slag and flue gas desulfurization wastes (gypsum). The area fill method of utility waste landfill operation shall be utilized. The excavation depths and solid waste fill locations shall be completed as shown on the approved engineering plans and specifications. Upon completion of the disposal area, the final cover shall be graded, limed, fertilized as necessary, and seeded with grasses to control erosion. Continued maintenance of the

Ameren UE Sioux Power Plant Page 9

area shall be provided in accordance with the approved post-closure plan. All fencing, gates, equipment maintenance buildings, all-weather access roads, signs, surface-water control devices, leachate treatment facilities, operating equipment, standby equipment, and other necessary appurtenances shall be provided as per the approved plans, specifications, and operating procedures. The plans, specifications, and operating procedures described above have been examined as to engineering features of design which might affect the operation of the solid waste disposal area as a utility waste landfill.

MODIFICATION AND TERMINATION OF PERMIT

The department reserves the right to revoke, suspend, or modify Permit Number 0918301 if the permit holder fails to maintain the facility in compliance with the Missouri Solid Waste Management Law and regulations, the terms and conditions of the permit, or the approved engineering plans and specifications.

MAR 2 8 2008

Date of Permit

hann

Daniel R. Schuette, Director DIVISION OF ENVIRONMENTAL QUALITY

GROUNDWATER MONITORING PROGRAM Ameren UE, Sioux Utility Waste Landfill Permit Number 0918301 DateMAR 2 8 2008

A. INCORPORATED DOCUMENTS

The following documents are incorporated by this reference into the Groundwater Monitoring Program of Permit Number 0918301:

- 1. "Groundwater Sampling and Analysis Plan" Appendix S, of the <u>Ameren UE Sioux</u> <u>Power Plant, Construction Permit Application</u>, prepared by Gredell Engineering Resources, Inc., first received March 28, 2007, last revised September 21, 2007. The Construction Permit Application designates Ameren UE as the owner and operator of the landfill, and Gredell Engineering Resources, Inc., as the engineering firm. Thomas R. Gredell, P. E. is the certifying professional engineer registered in Missouri.
- 2. Engineering drawing Figure 2, "Monitoring Well Location Map" received September 21, 2007.

B. MONITORING WELLS

The groundwater monitoring network of the Ameren UE Sioux Utility Waste Landfill shall consist of 16 monitoring wells. This monitoring system will be used to monitor groundwater flowing beneath the landfill. UG-1, UG-2, UG-3 and UG-4 will be background (upgradient) monitoring wells. DG-1, DG-2, DG-3, DG-4, DG-5, DG-6, DG-7, DG-8, DG-9, DG-10, DG-11, and DG-12 will be compliance (downgradient) monitoring wells.

The Missouri Department of Natural Resources' Solid Waste Management Program (SWMP) and the Division of Geology and Land Survey (DGLS) shall review any changes in direction of groundwater flow from potentiometric surface maps; and as waste filling progresses in the landfill. The department's SWMP shall review all groundwater monitoring data to evaluate statistical determinations.

The existing and new (to be installed) monitoring wells listed in Table I are those for which Ameren UE Sioux Utility Waste Landfill is responsible for reporting bailing, purging, sampling, and field observations, and to provide representative sampling parameter analyses from the Sioux Utility Waste Landfill. For consistency in designations, the department's SWMP will use the monitoring point designations as shown in Table I. These designations shall appear on subsequent electronic submissions of groundwater data and groundwater monitoring reports. These monitoring designations shall be referenced in future correspondence associated with this permit.

Table I

COMPLIANCE SUBJECT TO CHANGE BY THE SWMP AND DGLS	MONITORING WELL LOCATIONS	MONITORING WELL DESIGNATIONS
Upgradient	Monitoring well UG-1 located at approximately N1118957, E877795.	UG-1
Upgradient	Monitoring well UG-2 located at approximately N1118859, E879319.	UG-2
Upgradient	Monitoring well UG-3 located at approximately N1118609, E880519.	UG-3
Upgradient	Monitoring well UG-4 located at approximately N1118616, E881530.	UG-4
Compliance	Monitoring well DG-1 located at approximately N1117387, E877384.	DG-1
Compliance	Monitoring well DG-2 located at approximately N1116940, E877618.	DG-2
Compliance	Monitoring well DG-3 located at approximately N1116572, E877920.	DG-3
Compliance	Monitoring well DG-4 located at approximately N1116403, E878421.	DG-4
Compliance	Monitoring well DG-5 located at approximately N1116330, E878919.	DG-5
Compliance	Monitoring well DG-6 located at approximately N1116257, E879418.	DG-6
Compliance	Monitoring well DG-7 located at approximately N1116185, E879912.	DG-7
Compliance	Monitoring well DG-8 located at approximately N1116114, E880398.	DG-8

COMPLIANCE SUBJECT TO CHANGE BY THE SWMP AND DGLS	MONITORING WELL LOCATIONS	MONITORING WELL DESIGNATIONS
Compliance	Monitoring well DG-9 located at approximately N1116162, E880902.	DG-9
Compliance	Monitoring well DG-10 located at approximately N1116080, E881456.	DG-10
Compliance	Monitoring well DG-11 located at approximately N1115995, E882006.	DG-11
Compliance	Monitoring well DG-12 located at approximately N1116386, E882290.	DG-12

For each monitoring event, prepurging water level elevations from all piezometers and monitoring wells shall be recorded and the data electronically submitted to the department's SWMP with the other groundwater sampling data. Piezometers within the landfill footprint shall be maintained and monitored as long as possible before landfill construction reaches their location. Piezometers within the landfill foot print shall be properly abandoned.

The department's DGLS shall be notified prior to mobilization of any drilling so that on-site technical assistance can be provided to the driller and site manager.

Any field investigations shall include a descriptive log as noted in the guidance document entitled, <u>APPENDIX 1, GUIDANCE FOR CONDUCTING AND REPORTING</u> <u>DETAILED GEOLOGIC AND HYDROLOGIC INVESTIGATIONS AT A PROPOSED</u> <u>SOLID WASTE DISPOSAL AREA</u>. At the time of construction of any new monitoring well, full details concerning the drilling procedures and development shall be reported to the department's SWMP and the department's DLGS before the department will grant approval for each well. The information and data submitted to the department's SWMP and the department's DGLS shall include, but not be limited to the following:

1. Depth and lithologic description of all water bearing or saturated zones encountered during drilling;

- 2. Descriptions of all geologic materials encountered and sampled during drilling, including: lithology, mineralogy, texture, grain-size, color, fossil occurrence, percent sample recovery, and primary/secondary porosity features;
- 3. Changes in porosity and degrees of saturation of all geologic materials encountered, (e.g., dry, damp, moist, wet, and/or saturated) including their associated depths from the ground surface;
- 4. Water level depths measured from the ground surface immediately following daily final drilling activity and measured preceding any subsequent drilling activity;
- 5. Complete records of drilling fluid volumes, including any lost fluid volumes and depths at which they are lost;
- 6. Complete records of recovered (lost) fluids prior to installation and development of well;
- 7. A description of all sources and chemical analyses of potable water used in drilling or boring, analyzing for the same chemical parameters as specified in the enclosed groundwater parameters to establish baseline groundwater quality;
- 8. Complete details or method(s) of drilling, including starting and ending times, depth and location of any drilling equipment refusals;
- 9. Measurements of drilling rate, including pressure gauges or weights on bit read during drilling and coring;
- 10. Measurements of soil sampling advance (e.g., loads on the sampling device as specified by the weight or number of blow counts to sample and/or refusal);
- 11. Complete details of well development, including starting and ending times;
- 12. Appearance of well fluids before, during, and after development;

- 13. Records of indicator parameters monitored throughout development;
- 14. Initial and final water levels immediately prior and immediately after development;
- 15. Initial well bore fluid volume (gallons);
- 16. Initial depth of well prior to development, in feet, from a specified point;
- 17. Total depth of well immediately after development from a specified point;
- 18. Total volume (gallons) evacuated during development;
- 19. Complete copies of all field notes;
- 20. Complete copies of monitoring well construction summaries having north and east location survey coordinates;
- 21. Complete copies of monitoring well boring logs having detailed soil and lithologic graphics/descriptions; and
- 22. Complete copies of the Monitoring Well Certification Record.

Existing or new wells improperly constructed, or screened to monitor improper or inadequate zones shall be abandoned as per 10 CSR 23-4.

All wells shall be constructed in accordance with Missouri Department of Natural Resources' Well Construction Codes, 10 CSR 23-1 through 6.

As per monitoring well construction standards cited above, each well borehole shall be at least four (4) inches larger than the outside diameter of the casing used.

Well construction (including locking cap security casing) shall be completed the same day the well casing is installed.

No wells shall be located in swales, drainage ditches, or any place where water can accumulate around the well.

Suggested monitoring well locations are based on hydrogeologic and topographic information, and do not take into account the location of any man-made alterations to the site. Alternate locations may be required if conflicts arise with the suggested locations.

C. SAMPLING FREQUENCY/PARAMETERS

1. Baseline and Background Sampling

Prior to filling in a phase/cell, baseline sampling shall start with at least four (4) quarters of independent samples as described in 10 CSR 80-3.010(11)(C)3 for all new monitoring wells designated in this document. A minimum of eight (8) independent samples shall be taken over the first eight (8) quarters after the date of development of any new monitoring well. Each of these baseline samples shall be analyzed for the groundwater monitoring parameters contained in the enclosed list titled <u>Groundwater Monitoring Parameters</u>. During baseline sampling, compliance monitoring wells shall be sampled during the first, second, third, and fourth quarters of a year for the parameters contained in the enclosed lists.

Subsequent to the first eight (8) quarters of baseline monitoring the background database for each monitoring well will be updated with <u>detection monitoring</u> data as described in Appendix S, "Groundwater Sampling and Analysis Plan".

2. Detection Monitoring

After the previously described eight (8) quarters of baseline sampling have been completed, all monitoring wells shall be sampled semi-annually for the parameters contained in the enclosed list entitled <u>Groundwater Monitoring Parameters</u>. All sampling results shall be submitted electronically to the department's SWMP within ninety (90) days from the date the sample is obtained.

3. Assessment Monitoring

Permittee shall follow the procedures outlined in 10 CSR 80-11.010(11)(C)6 as a response to statistical analysis of significant difference in groundwater sampling results.

D. GROUNDWATER MONITORING PROGRAM

Statistical analyses of groundwater data or additional hydrogeologic characterization through subsurface sampling and testing could alter the interpretation of previous

hydrogeologic investigations. Approval of this Groundwater Monitoring Program does not preclude it from any future revision.

E. INQUIRIES

All inquiries concerning these reporting procedures and/or any discussion of possible deviations from these reporting procedures shall first be directed to the department's SWMP at (573) 751-5401 for consideration by the department.

GROUNDWATER MONITORING PARAMETERS

Inorganic and Other Parameters

Arsenic (As, $\mu g/l$) Aluminum (Ål, $\mu g/l$) Antimony (Sb, $\mu g/l$) Barium (Ba, $\mu g/l$)) Beryllium (Be, mg/l) Boron (B, $\mu g/l$) Cadmium (Cd, $\mu g/l$) Calcium (Ca, mg/l) Chemical Oxygen Demand (COD, mg/l) Chlorides (Cl, mg/l) Chromium ($Cr, \mu g/l$) Cobalt (Co, ug/l) Copper (Cu, ug/l) Fluoride (Fl, mg/l) Hardness (calculated, mg/l) Iron (Fe, μg/l) Lead (Pb, μg/l) Magnesium (Mg, mg/l) Manganese (Mn, $\mu g/l$)

Mercury (Hg, µg/l) Nickel (Ni, mg/l) pH (s.u.) Selenium (Se, µg/l) Silver (Ag, $\mu g/l$) Sodium (Na, mg/l Specific Conductance(Conductivity at 25° C,mhos/cm) Sulfate (SO₄, mg/l) Thallium (Tl, µg/l) Total Dissolved Solids (TDS, mg/l) Total Organic Carbon (TOC, mg/l) Total Organic Halogens (TOX, mg/l) Zinc (Zn, $\mu g/l$) Groundwater Elevation (This is the only parameter for a piezometer.)

ALL METALS ARE TOTAL - DO NOT FIELD FILTER SAMPLES **ALL FIELD OBSERVATIONS SHOULD BE REPORTED IN THE ELECTRONIC FORMAT DESCRIBED BY THE DEPARTMENT.**

Jeremiah W. (Jay) Nixon, Governor • Mark N. Templeton, Director

www.dnr.mo.gov

April 8, 2010

Ameren UE C/O Mr. Thomas L. Hollenkamp, P.E., S.E. P.O. Box 66149, MC F-604 St. Louis, Missouri 63166-6149

RE: Sioux Power Plant Utility Waste Landfill (MO40160) St. Charles County

Dear Mr. Hollenkamp,

In response to your request to extend the expiration date of Construction Permit C-426 for the Sioux Power Plant Utility Waste Landfill, I have amended the permit to expire on April 01, 2011 and have enclosed a copy for your use. A copy of the amended permit is also being sent to Mr. Jeff Fouse, the engineer of record.

If you have any questions, please feel free to contact me.

Sincerely,

WATER RESOURCES CENTER

Robert A. Clay, P.E. Chief Engineer Dam & Reservoir Safety Program

RAC/clb

enclosures

c: Reitz & Jens C/O Mr. Jeff Fouse, P.E. 1055 Corporate Square Drive St. Louis, Missouri 63132

Recycled Paper

STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES DAM AND RESERVOIR SAFETY COUNCIL

CONSTRUCTION PERMIT

Pursuant to Chapters 236.400 through 236.500 of the Revised Statutes of Missouri and the rules established by the Dam and Reservoir Safety Council, and on the basis of statements and information contained in the permit application, letters, maps, plans, specifications and reports prepared by Jeffrey L. Fouse, E-21043, hereafter known as the permittee's engineer, for the Sioux Power Plant Utility Waste Landfill, St. Charles County, all of which are made a part hereof by reference, **PERMISSION IS HEREBY GRANTED TO** Ameren UE, hereafter known as the permittee, whose address for the purpose of notices and other communications pertaining to this permit is C/O Mr. Tom Hollenkamp, One Ameren Plaza, 1901 Chouteau Avenue, P.O. Box 66149, St. Louis, Missouri 63166, which address is subject to change by written notice from the permittee, **TO CONSTRUCT A DAM** having a maximum crest elevation of 446.0 ft. The embankment will create two impoundments, a recycle pond and a waste containment cell. Each impoundment will have an open channel principal spillway with a control elevation of 445.00 feet. The dam is located in U.S. Survey 1838, Township 48 North, Range 06 East, and assigned the identification number of MO 40160, and approximate UTM Coordinates of 4,309,475 meters North and 734,822 meters East, Zone 15. This permit is subject to the following provisions:

GENERAL PROVISIONS:

- 1. No liability shall be imposed upon or incurred by the State of Missouri and/or the Dam and Reservoir Safety Council, or any of their officers, agents, employees and members, officially or personally, on account of the granting hereof or on account of any damage to any person or property resulting from any act or omission of the permittee or any of its agents, employees, or contractors or closed corporations of successors or assigns relating to any matter hereunder. This permit shall not be construed as estopping or limiting any legal claim or right of action of the state against the permittee, its agents, employees or contractors for any damages or injury resulting from any such act or omission by them or for violation of or failure to comply with the provisions of the permit or applicable provisions of law.
- 2. The permittee shall comply with all Federal, State, and local laws and regulations, and shall obtain such other permits as may be required.

- 3. In all cases where the doing by the permittee of anything authorized by this permit shall involve the taking, using, or damaging of any property rights or interest of any other person or persons, or of any publicly owned lands or improvements thereon or interests therein, it is the sole responsibility of the permittee, before proceeding therewith, to obtain the written consent of all persons, agencies, or authorities concerned, and to acquire all property rights, and interests necessary therefor, including flood easements or permissions for all properties which may be inundated by the dam on a temporary or permanent basis in the upstream impoundment area below the top of dam elevation.
- 4. The permittee shall notify the Dam and Reservoir Safety Council in writing upon the sale or other transfer of interest in said dam or reservoir.
- 5. Based on conditions existing at the time of issuing this permit, the Downstream Environment Zone is Class II.

SPECIAL PROVISIONS:

- 1. Construction work authorized under this permit shall be completed on or before April 1, 2011, unless extended in writing by the Dam and Reservoir Safety Council or the Chief Engineer of the Dam and Reservoir Safety Program.
- 2. No changes shall be made in the construction of the dam which adversely affect the dam or reservoir with regard to its integrity or to the environment, public safety, life or property.
- 3. If the permittee finds at any time during construction or operation that, in order to adequately protect the integrity of the dam, the environment or public health, safety or welfare, immediate alterations to the approved plans and specifications are required, the alterations may be started, but the permittee shall promptly notify the Chief Engineer of such requirements. If the alterations are to remain as permanent project features, the permittee shall, as soon as practicable, revise the plans and specifications and submit the revisions to the Dam and Reservoir Safety Council for approval. Such alteration shall be discontinued if disapproved by the Council, upon notice of such disapproval.
- 4. The permittee shall immediately notify in writing, the Chief Engineer of any unforeseen conditions discovered during construction that may adversely affect the structural stability of the dam.
- 5. The permittee, in cooperation with the permittee's engineer, shall be responsible for providing adequate controls on construction activities, compliance with plans and specifications authorized herein and verification of design, construction, and operating assumptions.
- 6. The permittee shall, as soon as practicable following construction, cover or protect all exposed soil resulting from the construction by placing riprap, sod and/or seed on banks and slopes of said construction for the prevention of soil erosion.
- 7. Within two (2) weeks of completion of the work authorized under this permit, the owner shall notify the Chief Engineer in writing that construction was completed in accordance with the approved plans and specifications. As-built plans and drawings shall be submitted if significant changes were made during construction.

8. Undertaking or initiating any work or part thereof authorized herein by the permittee constitutes acceptance of the permit and all its terms and conditions.

> Executed at Rolla, Missouri on this 1st day of April, 2008. Amended April 8, 2010

DAM AND RESERVOIR SAFETY COUNCIL

By: <u>Relt a. U</u> Chief Engineer

Dam and Reservoir Safety Program

Ameren Corporation c/o Mr. Thomas L. Hollenkamp, P.E.,S.E. One Ameren Plaza 1901 Chouteau Avenue P.O. Box 66149, MC F-604 Saint Louis, Missouri 63166-6149

RE: Utility Waste Landfill MO40160

St. Charles County

RECEIVED

FEB 1 6 2011

Dear Tom:

In early December, Paul Simon and I met Matt Frerking at the Sioux Power Plant project to observe the progress of construction. One of the topics discussed is how we intend to manage the permitting for the structure. This project is projected to take up to 60 years to complete to the final configuration. Thus far, the starter dike for one of three proposed cells has been completed.

After reviewing the history of the project, I propose that we use the memorandum of understanding prepared by Ameren and submitted to us on August 5, 2008 as a guideline for amending the permit to allow future phases of construction. This will allow us to review and approve the project at key intermediate stages of construction. I have enclosed a copy of that memorandum for your convenience. The landfill can continue to operate under the current construction permit, with extensions as needed, until the next phase of construction begins. The current construction permit will then be amended to allow additional phases. Amendments must be applied for in the same manner as the initial permit.

If you have any questions, please contact me. I can be reached at 573/368-2177 or via email at <u>bob.clay@dnr.mo.gov</u>.

Sincerely, WATER RESOURCES CENTER

Robert A. Clay, P.E. Chief Engineer Dam and Reservoir Safety Program

RAC/rac

One Ameren Plaza 1901 Chouteau Avenue PO Box 66149, MC F-604 Saint Louis, Missouri 63166-6149

August 5, 2008

Mr. James Alexander, P.E. Missouri Department of Natural Resources Geological Survey and Resource Assessment Division Dam and Reservoir Safety Program P.O. Box 250 Rolla, Missouri 65402

RE: AmerenUE Sioux Power Plant Utility Waste Landfill Construction Permit C-426 MO40160, St. Charles County, Missouri

Ameren lif

...

Dear Mr. Alexander:

Matthew Frerking, Carl Rezsonya and I appreciated meeting with you and Robert Clay on May 7, 2008, to discuss the construction permit that was issued on April 1, 2008, for the AmerenUE Sioux Power Plant Utility Waste Landfill (UWL). Ameren requested this meeting primarily to discuss the Special Provision No. 1 which states that the construction work authorized under this permit shall be completed on or before April 1, 2009, unless extended in writing by the Dam and Reservoir Safety Council or the Chief Engineer of the Dam and Reservoir Safety Program (D&RSP). We understand that the D&RSP only issues construction permits with a duration of one year. Since the construction and operation of the UWL may take up to 60 years, it is important for Ameren to have an understanding with the D&RSP that transcends all of the people currently involved with the project, as much as possible.

Attached is a summary statement of the principle points that we discussed in our meeting on May 7. Please review this summary to be certain that it accurately states the requirements under applicable Missouri regulations and D&RSP's position regarding the ongoing construction permit process for the UWL. We appreciate your corrections or additions to this summary, if any, because we would like this statement to become a "Memorandum of Understanding" between D&RSP and Ameren of the construction permit process for the Sioux Plant UWL.

Please contact either Matthew Frerking (314) 957-3426 or me at (314) 957-3406 if you want to discuss any questions or comments that you have. Thank you, again, for your time.

Sincerely, mart Finh For

Thomas L. Hollenkamp, P.E., S.E. Chief Dam Safety Engineer

RECEIVED AUG 1 2 2008 DEC

MEMORANDUM OF UNDERSTANDING PERTAINING TO THE AMEREN UE SIOUX POWER PLANT UTILITY WASTE LANDFILL ST. CHARLES COUNTY (MO40160) JULY 2008

- 1. AmerenUE is constructing an Utility Waste Landfill (UWL) for the coal combustion byproducts from the Sioux Power Plant on its property south of Hwy. 94 in St. Charles County, Missouri. Construction Permit No. 0918301 was issued by the Missouri Department of Natural Resources Solid Waste Management Program (SWMP) for the UWL based on the construction permit application by AmerenUE, first received by SWMP on February 8, 2007, deemed completed on March 28, 2007, and last revised September 21, 2007.
- 2. Reitz & Jens, Inc. (Permittee's Engineer) submitted to Missouri Department of Natural Resources Dam & Reservoir Safety Program (D&RSP) on behalf of AmerenUE (Permittee) an engineering report and a set of preliminary drawings for the UWL. The engineering report and drawings, dated May 10, 2007, described the entire UWL project which eventually will consist of six cells and a recycle pond. The UWL will be constructed in phases. The design life of the UWL is up to 60 years. The D&RSP approved the concept of the UWL in a letter dated July 2, 2007.
- 3. Reitz & Jens submitted construction drawings and specifications for Cell 1 and the Recycle Pond to the D&RSP on February 14, 2008. The drawings showed the construction of the perimeter berms for Cell 1 and the Recycle Pond up to el. 446, and other appurtenances. The D&RSP issued Construction Permit No. M040160 for Cell 1 and the Recycle Pond on April 1, 2008.
- 4. The construction phase of the UWL will last until the UWL is closed in accordance with the requirements of the MDNR-SWMP. After the UWL is closed, Ameren will apply to the D&RSP for a dam operating permit.
- 5. The construction permit issued by D&RSP must be extended each year. The first extension is due before April 1, 2009. If there is no significant deviation from the latest approved construction drawings and specifications, then D&RSP only requires a letter from AmerenUE requesting the extension and a letter sealed by a registered Professional Engineer certifying that the construction to date has been in accordance with the approved construction drawings and specifications. The extension will be issued by D&RSP upon receipt of AmerenUE's request accompanied by the certification. If a survey of the completed construction is available, then D&RSP would like a copy of the survey, but it is not required.
- 6. When AmerenUE wants to proceed to the next phase of construction beyond the latest approved construction drawings and specifications, such as to construct the next planned cell or to raise the height of the gypsum stack, then AmerenUE will submit the revised construction drawings and specifications to D&RSP for approval prior to implementing the next phase.
- 7. The first significant change to the current construction drawings will be when the height of the gypsum stack in Cell 1 will rise above el. 446.

MEMORANDUM OF UNDERSTANDING AmerenUE Sioux Power Plant Utility Waste Landfill St. Charles County (MO40160)

8. An engineering report will not be required if modifications to the construction drawings and specifications are within the scope of the approved engineering report for the UWL project dated May 10, 2007. The modified construction drawings will have a recent survey of the completed construction. The D&RSP will issue a modified construction permit upon approval of the modified construction documents if the modifications are within the scope of the original plans and engineering report for the overall UWL project.

Jeremiah W. (Jay) Nixon, Governor • Sara Parker Pauley, Director OF NATURAL RESOURCES

www.dnr.mo.gov

February 11, 2014

Ameren UE C/O Mr. Thomas L. Hollenkamp, P.E., S.E. P.O. Box 66149, MC F-604 St. Louis, Missouri 63166-6149

RE: Sioux Power Plant Utility Waste Landfill (MO40160) St. Charles County

Dear Mr. Hollenkamp,

In response to your request to extend the expiration date of Construction Permit C-426 for the Sioux Power Plant Utility Waste Landfill, I have amended the permit to expire on April 01, 2015 and have enclosed a copy for your use. A copy of the amended permit is also being sent to Mr. Jeff Greer, the engineer of record.

If you have any questions, please feel free to contact me.

Sincerely,

DEPARTMENT OF NATURAL RESOURCES

It a. Clan

Robert A. Clay, P.E. Chief Engineer Dam & Reservoir Safety Program

RAC/clb

enclosures

c: Mr. Jeff Greer, P.E. 3700 Lindberg Blvd. Sunset Hills, Missouri 63127

STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES DAM AND RESERVOIR SAFETY COUNCIL

CONSTRUCTION PERMIT

Pursuant to Chapters 236.400 through 236.500 of the Revised Statutes of Missouri and the rules established by the Dam and Reservoir Safety Council, and on the basis of statements and information contained in the permitt application, letters, maps, plans, specifications and reports prepared by Jeffrey L. Fouse, E-21043, hereafter known as the permittee's engineer, for the Sioux Power Plant Utility Waste Landfill, St. Charles County, all of which are made a part hereof by reference, **PERMISSION IS HEREBY GRANTED TO** Ameren UE, hereafter known as the permittee, whose address for the purpose of notices and other communications pertaining to this permit is C/O Mr. Tom Hollenkamp, One Ameren Plaza, 1901 Chouteau Avenue, P.O. Box 66149, St. Louis, Missouri 63166, which address is subject to change by written notice from the permittee, **TO CONSTRUCT A DAM** having a maximum crest elevation of 446.0 ft. The embankment will create two impoundments, a recycle pond and a waste containment cell. Each impoundment will have an open channel principal spillway with a control elevation of 445.00 feet. The dam is located in U.S. Survey 1838, Township 48 North, Range 06 East, and assigned the identification number of MO 40160, and approximate UTM Coordinates of 4,309,475 meters North and 734,822 meters East, Zone 15. This permit is subject to the following provisions:

GENERAL PROVISIONS:

- 1. No liability shall be imposed upon or incurred by the State of Missouri and/or the Dam and Reservoir Safety Council, or any of their officers, agents, employees and members, officially or personally, on account of the granting hereof or on account of any damage to any person or property resulting from any act or omission of the permittee or any of its agents, employees, or contractors or closed corporations of successors or assigns relating to any matter hereunder. This permit shall not be construed as estopping or limiting any legal claim or right of action of the state against the permittee, its agents, employees or contractors for any damages or injury resulting from any such act or omission by them or for violation of or failure to comply with the provisions of the permit or applicable provisions of law.
- 2. The permittee shall comply with all Federal, State, and local laws and regulations, and shall obtain such other permits as may be required.

- 3. In all cases where the doing by the permittee of anything authorized by this permit shall involve the taking, using, or damaging of any property rights or interest of any other person or persons, or of any publicly owned lands or improvements thereon or interests therein, it is the sole responsibility of the permittee, before proceeding therewith, to obtain the written consent of all persons, agencies, or authorities concerned, and to acquire all property rights, and interests necessary therefor, including flood easements or permissions for all properties which may be inundated by the dam on a temporary or permanent basis in the upstream impoundment area below the top of dam elevation.
- 4. The permittee shall notify the Dam and Reservoir Safety Council in writing upon the sale or other transfer of interest in said dam or reservoir.
- 5. Based on conditions existing at the time of issuing this permit, the Downstream Environment Zone is Class II.

SPECIAL PROVISIONS:

- 1. Construction work authorized under this permit shall be completed on or before April 1, 2015, unless extended in writing by the Dam and Reservoir Safety Council or the Chief Engineer of the Dam and Reservoir Safety Program.
- 2. No changes shall be made in the construction of the dam which adversely affect the dam or reservoir with regard to its integrity or to the environment, public safety, life or property.
- 3. If the permittee finds at any time during construction or operation that, in order to adequately protect the integrity of the dam, the environment or public health, safety or welfare, immediate alterations to the approved plans and specifications are required, the alterations may be started, but the permittee shall promptly notify the Chief Engineer of such requirements. If the alterations are to remain as permanent project features, the permittee shall, as soon as practicable, revise the plans and specifications and submit the revisions to the Dam and Reservoir Safety Council for approval. Such alteration shall be discontinued if disapproved by the Council, upon notice of such disapproval.
- 4. The permittee shall immediately notify in writing, the Chief Engineer of any unforeseen conditions discovered during construction that may adversely affect the structural stability of the dam.
- 5. The permittee, in cooperation with the permittee's engineer, shall be responsible for providing adequate controls on construction activities, compliance with plans and specifications authorized herein and verification of design, construction, and operating assumptions.
- 6. The permittee shall, as soon as practicable following construction, cover or protect all exposed soil resulting from the construction by placing riprap, sod and/or seed on banks and slopes of said construction for the prevention of soil erosion.

- 7. Within two (2) weeks of completion of the work authorized under this permit, the owner shall notify the Chief Engineer in writing that construction was completed in accordance with the approved plans and specifications. As-built plans and drawings shall be submitted if significant changes were made during construction.
- 8. Undertaking or initiating any work or part thereof authorized herein by the permittee constitutes acceptance of the permit and all its terms and conditions.

Executed at Rolla, Missouri on this 1st day of April, 2008. Amended February 11, 2014

DAM AND RESERVOIR SAFETY COUNCIL

By: Chief Engineer

Dam and Reservoir Safety Program

Division of Environmental Health and Protection

& THE ENVIRONMENT

Tuesday, December 10, 2013

Certified Mail No. 7003 2260 0005 1076 6250 RETURN RECEIPT REQUESTED

Mr. Michael Menne Ameren Missouri One Ameren Plaza 1901 Chouteau Avenue St. Louis, MO 63166-6149

RE: Revised Waste Facility Plan and Operation of Cell 4A- Ameren Missouri Sioux Power Plant Utility Waste Landfill

Mr. Menne:

The St. Charles County Department of Community Health and the Environment received a request for approval of the revised Waste Facility Plan (WFP) to operate the Sioux Plant Utility Waste Landfill (UWL) dated October 14, 2013 in a letter from Mr. Paul Pike of Ameren Missouri to Mr. Ryan Tilley of St. Charles County Government.

The St. Charles County Department of Community Health and the Environment has issued a conditional Solid Waste Facility License (SWFL) for operation of Cell 1 on October 31, 2013. This conditional license did not include the operation of Cell 4A until it could subsequently be approved by the Director.

Whereas, the licensee has demonstrated compliance with the requirements and request of the Division Director and the *St. Charles County Solid Waste Management Code* (SCC SWMC) to the division's satisfaction; the November 2013 revised WFP has been approved and the Solid Waste Facility License previously issued on November 1, 2013 is hereby enacted to include disposal of SCC approved waste into the western half of Cell 4 (Cell 4A).

This approval to operate shall not be construed as compliance with any federal, state, or local law other than that of the SCC SWMC; nor shall this be construed as a waiver for any other regulatory requirement. This approval is not to be construed as compliance with any existing local ordinances other than that of SCC SWMC; nor does it supersede any local laws including permitting and/or zoning requirements.

The Division Director reserves the right to suspend, revoke, or modify the license and approval based on any of the following criteria:

- 1. Failure to comply with the provisions of the WFP;
- 2. Failure to comply with the provisions of the SCC SWMC;

3. Failure to operate the facility in a manner consistent with the public health and welfare and the health and welfare of persons operating and/or using the facility, or in a manner deemed not to be protective of the environment.

The division is committed to working together with the community as a partner to achieve excellence in environmental health and protection within St. Charles County. I appreciate the opportunity to address your questions and further this partnership.

If the Environmental Health and Protection Division can be of any more assistance, please feel free to contact me at (636) 949-7406 or via email at <u>rtilley@sccmo.org</u>.

Respectfully,

Ryon Tilley

Ryan Tilley, REHS Director, Division of Environmental Health and Protection

Cc: Charlene Fitch, P.E., Missouri Dept. of Natural Resources

Division of Environmental Health and Protection

COMMUNITY HEALTH & THE ENVIRONMENT

Thursday, October 31, 2013

Certified Mail No. 7003 2260 0005 1076 6748 RETURN RECEIPT REQUESTED

Mr. Michael Menne Ameren Missouri One Ameren Plaza 1901 Chouteau Avenue St. Louis, MO 63166-6149

RE: Solid Waste Facility License Renewal- Ameren Missouri Sioux Power Plant Utility Waste Landfill

Mr. Menne:

The St. Charles County Department of Community Health and the Environment received a request that a renewal license be issued to operate the Sioux Plant Utility Waste Landfill (UWL) on October 24, 2013 in a letter from Mr. Paul Pike of Ameren Missouri to Mr. Ryan Tilley of St. Charles County Government.

Whereas, the licensee has demonstrated compliance with the requirements and request of the Division Director and the *Solid Waste Management Code of St. Charles County* (SCC SWMC) to the division's satisfaction; a renewal operating license will be granted. The renewal is hereby granted for Cell 1, as shown on drawing 7 of 22 in appendix G of the WFP for St. Charles County.

Before operation of Cell 4 and the revised WFP may be granted final approval, the division must complete the review of the WFP and allow additional time for Ameren to complete any revisions deemed necessary by the director. In addition, DNR must issue an operating permit approving Cell 4 before we will approve of the revised WFP and operation of Cell 4. In the future, applications must be delivered to the Division Director at least (30) days prior to each anniversary date as required in section 240.810 of the SCC SWMC.

The attached license includes the provisional approval to operate Cell 4 utilizing the revised WFP contingent upon their formal approval by the appropriate agencies. Any necessary exceedance of the conditional license for permitted maximum monthly tonnage or permitted monthly traffic volume will require at least seven (7) days' notice to the division.

The license issued shall be for a fixed number of years equal to the estimated operating life of the facility as contained in the approved WFP. Notwithstanding the issuance of a license for a fixed number of years, the WFP and the license must be reviewed annually subject to the provisions of Section 240.810 et seq., and the modifications requested by the operator in the annual application may include a request that the term of the license be changed.

The operating license may be suspended or revoked, following a hearing before the Division Director, based on any of the following criteria:

- 1. Failure to comply with the provisions of the WFP;
- 2. Failure to comply with the provisions of the SCC SWMC;
- 3. Failure to operate the facility in a manner consistent with the public health and welfare and the health and welfare of persons operating and/or using the facility, or in a manner deemed not to be protective of the environment.

The division is committed to working together with the community as a partner to achieve excellence in environmental health and protection within St. Charles County. I appreciate the opportunity to address your questions and further this partnership.

If the Environmental Health and Protection Division can be of any more assistance, please feel free to contact me at (636) 949-7406 or via email at <u>rtilley@sccmo.org</u>. If you have trouble reaching me, our office assistant Suzanne Lovasco, can be contacted at 636-949-1800.

Respectfully,

Ryon Tilley

Ryan Tilley, REHS Director, Division of Environmental Health and Protection

cc:

The Honorable Steve Ehlmann, County Executive, St. Charles County Government <u>SEhlmann@sccmo.org</u> Ms. Julie Eckstein, Director, Community Health and the Environment, St. Charles County Government <u>JLeykam@sccmo.org</u> Ms. Joann Leykam, County Administrator, St. Charles County Government <u>JLeykam@sccmo.org</u> Mr. Harold Ellis, County Counselor, St. Charles County Government <u>HEllis@sccmo.org</u> Mr. Wayne Anthony, Director, Community Development, St. Charles County Government <u>WAnthony@sccmo.org</u> Ms. Dorothy E. Franklin, Regional Director, St. Louis Regional Office, MO DNR <u>dorothy.franklin@dnr.mo.gov</u> Ms. Charlene Fitch, P.E. Engineering Section Chief, SWMP, MO DNR <u>charlene.fitch@dnr.mo.gov</u> Mr. Paul Pike, Environmental Science Executive, Ameren Missouri <u>PPike@ameren.com</u>

SOLID WASTE FACILITY ST. CHARLES COUNTY LICENSE COMMUNITY HEALTH & THE ENVIRONMENT 1650 Boone's Lick Road • St. Charles, MO • 63301 • 636-949-1800 • http://health.sccmo.org/health 3 3 Q 8 1 **1. Facility Number** Ο 2. State Permit No. 0 3. Name and Street Address AMEREN MISSOURI SIOUX POWER PLANT UTILITY WASTE LANDFILL of Facility SOUTHSIDE OF HWY 94 NORTH, EAST OF DWIGGINS ROAD **UNINCORPORATED** 4. Name and Mailing Address MICHAEL L. MENNE, VICE-PRESIDENT, ENVIRONMENTAL SERVICES AMEREN MISSOURI of Operator **ONE AMEREN PLAZA, 1901 CHOUTEAU AVENUE** ST. LOUIS, MO 63103 **Name and Mailing Address** 5. MICHAEL L. MENNE, VICE-PRESIDENT, ENVIRONMENTAL SERVICES AMEREN MISSOURI of Owner **ONE AMEREN PLAZA, 1901 CHOUTEAU AVENUE** ST. LOUIS, MO 63103 6. Specifications: Upon a significant change in design or operation from that described herein, this permit is subject to revocation or suspension. The attached permit findings and conditions are integral parts of this permit and supersede the conditions of any previously issued solid waste facility permit. a. Permitted Operations: Solid Waste Disposal Site Composting Facility (Green Material) Transfer/Processing Facility (MRF) Other: **b.** Permitted Hours of Operations: Receipt of Refuse/Waste* 0 0 0 0 0 0 to 0 0 *24 hours per day, 7 days per week Ancillary Operations/Facility Operating Hours 0 6 0 0 to 1 c. Permitted Maximum Tonnage: 30,000 Tons per month d. Permitted Traffic Volume: **≤ 1000** Vehicles per month e. Key Design Parameters (Detailed parameters see facility Waste Facility Plan): Total Disposal Transfer/Processing Composting Transformation 398.04 183.5 N/A N/A N/A Permitted Area (in acres) N/A N/A 21,900,000 N/A Design Capacity (cu. Yards) 525 Max. Elevation (Ft. MSL) 100 Max. Depth (Ft. MSL) 2068 Estimated Closure Year 7. Legal Description of Facility:

The Ameren Missouri Sioux Power Plant Utility Waste Landfill (UWL) site is located south of State Highway 94, adjacent to the power plant, in unincorporated St. Charles County, in the southeastern part of Township 48 North, Range 6 East. The site is approximately two (2) miles east of the town of Portage des Sioux, and twelve (12) miles west-northwest of the confluence of the Mississippi and Missouri Rivers. The UWL is proposed within a tract of land totaling 398.04 acres, of which 183.5 acres are proposed for use as the active disposal area. The remaining acreage includes a proposed 19.6 acre wastewater recycle pond (permitted separately by the Water Pollution Control Program), soil borrow areas for soil liner and final cover as needed, access roads, flood protection berms and buffer area.

SOLID WASTE FACILITY LICENSE

Facility Number

0

4	3	0	3	St

ate Permit No.

Ω

8. Findings:

a. DEFINITIONS

Unless the context otherwise requires, the words used in the License have meanings ascribed to them in Solid Waste Management Code of St. Charles County, Missouri (SCC SWMC) (Ord. No. 01-061 sections--8, 5-30-01)

b. LICENSE ACTIONS

This license is for operation(s) of Cell 1 until the Division Director authorizes it's extension to include Cell 4. This License is based upon the information submitted in the application for a solid waste facility permit and the Waste Facility Plan for St. Charles County, April 2010 (WFP), and as approved by the St. Charles County, Department of Community Health and the Environment, Division of Environmental Health and Protection (Division or LEA). The License may be modified by the Division for cause in accordance with SCC SWMC sections 240.750, 240.810, or if there is a change in the statutes or regulations upon which the issuance of the License is based, or if modification is otherwise necessary to protect public health and safety and safeguarding environmental health and protection. If the disposal site does not remain in compliance with the applicable statutes and regulations, this license may be revoked or suspended when written notice is given by the Division. The filing of a request by the Licensee for a License modification or termination, or a notification of planned changes or anticipated noncompliance, does not stay any License condition. The Licensee shall inform the Division of any deviation from or change in operations as presented in the WFP, which may affect the Licensee's ability to comply with applicable regulations or conditions of the License. This License may be transferred to a subsequent owner or operator only if the Division approves the transfer based on documentation of financial responsibility provided by the new owner or operator.

This license may include the operation of Cell 4 under the guidance of the revised WFP once the Division Director has agreed to extend the license to Cell 4 and once the director has approved the revised WFP. The director will not agree to such terms until DNR has completed its review and granted approval for operation.

AVAILABILITY OF LICENSE DOCUMENTS c.

The Licensee shall keep at the disposal site a complete copy of this License and incorporated documents, as identified by the Division Director.

SOLID WASTES PERMITTED FOR DISPOSAL d. i. Industrial Wastes: Fly Ash & Bottom Ash **Boiler Slag & Gypsum**

ii. Special Wastes:

9. Prohibitions:

The Licensee is prohibited from placing in the landfill the following wastes:

i. Other than in Cell 1 and Cell 4, any liquid waste material that is determined to contain free liquids as defined by Method 9095 (Paint Filter Liquids Test), as described in Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA Pub. No. SW-846); ii. Hazardous waste, as defined by State and Federal Regulations;

- iii. PCB waste, as defined by State and Federal Regulations; and
- iv. Waste not identified in License Condition 8(d).

10. The following documents describe and/or restrict the operation of this facility:

	Date		Date
Detailed Geologic and Hydrologic Site Investigation Report for Ameren UE Sioux Power Plant, Proposed Utility Waste Disposal Area St. Charles County,	9/20/07	AmerenUE Sioux Power Plant Utility Waste Landfill Proposed Construction Permit Modification Construction Permit Number 0918301 St. Charles County, Missouri	06/2010
Missouri (DSI)		Missouri DNR Solid Waste Disposal Area Operating	
AmerenUE Sioux Power Plant Construction Permit Application for a Proposed Utility Waste Landfill, St.	9/20/07	Permit Permit Number 0918301 AmerenUE Sioux Power Plant Utility Waste Landfill	07/2010
Charles County, Missouri (CPA)		AmerenUE Sioux Power Plant Utility Waste Landfill	
Ameren UE Sioux Power Plant, Proposed Utility Waste Landfill, St. Charles County, Missouri (Plans)	9/20/07	Proposed Construction Permit Modification Construction Permit Number 0918301 St. Charles County, Missouri (Revised)	02/2012
Missouri DNR Solid Waste Disposal Area Construction Permit No. 0918301	3/28/08	Revised Waste Facility Plan	10/2013

1

	SOLI	D	W	Ά	ST	Έ	F/		ΓΥ	LJ		EN	IS	Ε	
Faci	lity Number	0	4	3	0	3		ate Permit No.	0	9	1	8	3	0	1
Siou	The following do x Power Plant Utility	Waste	Landfill	Const	ruction			the operation of License Renewa		_					
Perm	it No. 0918301, Perr D	mit Mod rains	ification	ı - Cell	1 Ring	11/	2009				aste Landfill				/2013
	Waste Facility Plan	for St. (Charles	Count	У	4/2	2010								
11. 9	Self Monitoring:														
Dep Jan	owner/operator shal artment of Communi <i>wary - March, the rep</i> <i>nitoring report, unles</i>	ity Healt <i>ort is du</i>	h and t <i>ue by A</i>	he Env <i>oril 30,</i>	rironme	nt with	in 30 da	ays of the end of the	reportir	ng perio	d (for	exampl	le, 1st d	quarte	r = `
				P	rogra	m					Re	eporti	ng Fre	eque	ıcy
a).	The Licensee shall s report must be sub							vaste received at the	site. Th	ne	Quarterly				
b).	Financial Assurance	e Report	ing: The	e Licen	see Sha	all:									
	i. Notify the Division of any adjustments made to the estimates for the amounts of closure and post-closure care in accordance with SCC SWMC; and Annually														
	ii. The Licen inflation.	see shal	ll submi	t the c	losure a	and pos	st-closu	e cost estimates adj	usted fo	r					
c).	Groundwater monit	oring re	ports									Q	uarter	ly	
d). The Licensee shall submit to the Division a report of the surface impoundment inspections at the site. The report must be submitted in a format approved by the Division.					at the	Annually									
12.	ocal Enforceme	nt Age	ency (I	LEA)	Condi	tions:									
1.	1. The operator shall comply with all Federal and State Minimum Standards for solid waste handling and disposal.														
2.	2. The Licensee shall keep at the disposal site a complete copy of this License and incorporated documents, as identified in Section 10.														
with shal	The Licensee shall fur this License or to de l also furnish to the D frame within a mutua	termine Division,	whethe upon re	r cause quest,	e exists copies o	for moo of recor	difying, i ds as a	evoking and reissuin	g, or ter	minating	g this L	icense.	The Lie	censee	ce
Dep	Licensee shall furnisl artment may request conable timeframe wit	in order	to dete	ermine	complia	nce wit	h count	y rules, laws, regulati							the
5.	Licensee shall not op	oerate Ce	ell 4 or i	mplem	ent the	revised	l WFP u	ntil subsequently app	roved by	y the Div	vision D	irector			

SOLID WASTE FACILITY LICENSE

3

0

Facility Number

State Permit No.

1	8	3	
---	---	---	--

1

9 0

12. Local Enforcement Agency (LEA) Conditions: (continued)

4

3

6. In accordance with SCC SWMC section 240.1150, the Licensee shall report incidents to the Division as provided in the Waste Facility Plan for St. Charles County, April 2010 (WFP) or October 2013. In addition, the Licensee shall report any noncompliance, imminent or existing hazard from a release of waste or hazardous constituents, or from a fire or explosion at the facility, which may endanger human health or the environment. Such information shall be reported by telephone to (636) 949-1800 within twenty-four (24) hours from the time the Licensee becomes aware of the circumstances. A written report shall be submitted within fifteen (15) days of the incident and shall include the following:

- 1. Name and title of person making report;
- 2. Date, time, and type of incident;
- 3. Name and quantity of material(s) involved:

0

- 4. A complete description of the occurrence and its cause;
- 5. The extent of injuries, if any;
- 6. An assessment of actual or potential hazards to the environment and human health outside the facility, where this is applicable;
- 7. Estimated quantity and disposition of recovered material that resulted from the incident; and
- 8. Actions taken by the Licensee in response to the incident.

7. The Licensee shall give advance notice to the Division Director of any planned changes in the permitted facility or activity, which may result in noncompliance with License requirements.

8. The Licensee shall allow the Division of Environmental Health and Protection, or an authorized representative, upon the presentation of credentials or other documents as may be required by law to:

- 1. Enter at reasonable times (any time during the permitted hours of operation found in 6b) upon the Licensee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this License; and
- 2. Have access to and copy, at reasonable times, any records that must be kept under conditions of this License; and
- 3. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this License; and
- 4. Sample, photograph, or monitor at reasonable times, for the purposes of assuring License compliance or as otherwise authorized, any substances, locations, or parameters at any location subject to the License.
- 9. The Licensee shall: Follow and document a program for quality assurance and quality control for the construction of the facility.
- 10. The Licensee shall notify the Division in writing within sixty (60) days following the commencement of construction of a new cell.
- 11. The Licensee shall maintain the following records at the site in accordance to SCC SWMC section 240.1150(36):
 - 1. Major problems and complaints regarding operation of the landfill;
 - 2. All environmental media sampling/testing data;
 - 3. In the event of documented exceedence of applicable standards established by Missouri Department of Natural Resources for any monitoring system;
 - 4. Records of vector control efforts:
 - 5. Records of dust and litter control efforts;
 - 6. A copy of the SCC SWMC supplied by the division; and
 - 7. Records of quantity of waste handled. Such records shall be made contemporaneously with the matters recorded.

12. Despite the approval of the WFP and the issuance of a license for the construction and operation of facility, the licensee shall apply to renew such license annually for each year beginning with each anniversary date of the issuance of license. The renewal application as set forth in the schedule in subsection (2) of section 240.810 of the SCC SWMC shall be addressed and delivered to the Division Director at least thirty (30) days prior to each anniversary date of the initial license and shall contain:

- 1. A request that a renewal license be issued for a period of one (1) year, and
- 2. A report containing the information required in Section 240.820. (Ord. No 01-061 sections 1--8, 5-30-01)

SOLID WASTE FACILITY LICENSE

Facility Number

State Permit No.

0

g

12. Local Enforcement Agency (LEA) Conditions: (continued)

4

13. Surface Impoundment Inspection(s) Requirements:

0

1. All existing UWL surface impoundments shall be examined as follows:

3

a. At intervals not exceeding 7 days for appearances of structural weakness and other hazardous conditions;

3

O

b. At intervals not exceeding 7 days all instruments shall be monitored;

c. All inspections required by sections (1)(a) and (1)(b) above shall be performed by a qualified person as defined in (5) of this section, designated by the Licensee;

d. All existing UWL surface impoundments shall be inspected annually by a registered professional engineer to assure that the design, operation, and maintenance of the surface impoundment is in accordance with generally accepted engineering standards. The Licensee must notify the Division Director that a registered professional engineer has found that the design, operation, and maintenance of the surface impoundment is in accordance with generally accepted engineering standards. The Division Director that a registered professional engineer has found that the design, operation, and maintenance of the surface impoundment is in accordance with generally accepted engineering standards and such findings has been placed in the operating record.

2. When a potentially hazardous condition develops, the Licensee shall immediately:

- a. Take action to eliminate the potentially hazardous condition;
- b. Notify potentially affected persons and state and local first responders;

c. Direct a qualified person to monitor all instruments and examine the structure at least once every eight hours, or more often as required by an authorized representative of the state.

3. After each inspection and instrumentation monitoring referred to in sections (1) and (2), each qualified person who conducted all or any part of the inspection or instrumentation monitoring shall promptly record the results of such inspection or instrumentation monitoring in a book which shall be available in the operation record and such qualified person shall also report the results of the inspection or monitoring to the Division Director as required in Section 11, Self Monitoring of this License. A report of each inspection and instrumentation monitoring shall also be available for public review if requested.

4. All inspection and instrumentation monitoring reports recorded in accordance with section (3) shall include a report of the action taken to abate hazardous conditions and shall be promptly signed by the person designated by the Licensee as responsible for health and safety at the UWL.

5. The qualified person or persons referred to in 12(1)(c) of this section shall be trained to recognize specific signs of structural instability and other hazardous conditions by visual observation and, if applicable, to monitor instrumentation.

6. The Licensee must record and retain at the site in an operating record, all records, reports, studies or other documentation required to demonstrate sections (1) - (5).

14. All reports, notifications, or other submissions which are required by this License shall be submitted to:

Division of Environmental Health and Protection

Department of Community Health and the Environment St. Charles County Government 1650 Boones Lick Road St. Charles, MO 63301

License issued: 1 1 / 0	1 / 1 3	
	License expires: 10	/ 31 / 14
Signature of Approving Officer		Signature of Health Officer
Ryon Tilley		Julia M. Eckstein
Ryan Tilley, REHS Director, Division of Environmental	Public Health Prevent. Promote. Protect.	Julie Eckstein Director, Department of Community

Health and Protection

Health and the Environment

1

Jeremiah W. (Jay) Nixon, Governor • Sara Parker Pauley, Director NT OF NATURAL RESOURCES

www.dnr.mo.gov

FEB 08 2013

Mr. Paul Pike Ameren Services One Ameren Plaza 1901 Chouteau Avenue P.O. Box 66149 St. Louis, MO 63166-6149

RE: Ameren Missouri Sioux Power Plant Utility Waste Landfill Dry Cell Permit Modification, Permit Number 0918301, St. Charles County

Dear Mr. Pike:

This letter is in response to the report and accompanying plan sheets titled, "<u>Ameren UE Sioux</u> <u>Power Plant, Utility Waste Landfill, Proposed Construction Permit Modification</u>," dated June 2010, revised March 2011, August 2011, November 2011, and February 2012, last received February 17, 2012. This report is signed and sealed by Thomas R. Gredell, P.E. of Gredell Engineering Resources, Inc. In the report the facility is requesting to modify the Ameren Missouri Sioux Power Plant Utility Waste Landfill permit in order to implement dry disposal of CCPs in 86.6 acres (cells 4, 5, 6, and 7) of the 183.5 acre permitted landfill. The Missouri Department of Natural Resources' (Department) Solid Waste Management Program has reviewed this report and plan sheets and hereby approves this modification request.

The following condition is an integral part of this approval. Compliance with this condition shall determine compliance with Permit Number 0918301:

CONDITION:

The Split Sampling Contract is in the process of being reviewed and agreed upon and must be executed once complete.

The following documents are hereby incorporated into permit number 0918301:

DOCUMENTS:

 A report titled, "<u>AmerenUE Sioux Power Plant, Utility Waste Landfill, Proposed</u> <u>Construction Permit Modification, Construction Permit Number 0918301, St. Charles</u> <u>County, Missouri</u>" dated June 2010, received June 25, 2010, signed and sealed by Thomas R. Gredell, P.E. of Gredell Engineering Resources, Inc.

Mr. Paul Pike Ameren Missouri Sioux Power Plant UWLF Page 2 of 3

- 2. A letter dated April 8, 2011, received April 13, 2011, written in response to the October 7, 2010, comment letter. The following were revised:
 - a. Report Covers
 - b. Title Page, Table of Contents, and Text
 - c. CD of the report
 - d. Appendix K
 - e. Appendix M
 - f. Appendix N
 - g. Appendix O
 - h. Appendix P
 - i. Appendix R
 - j. Appendix T
 - k. Appendix AA
 - 1. Plan Sheets 2 through 25, 28, and 33
- 3. A letter dated August 24, 2011, received August 25, 2011, written in response to the June 24, 2011, comment letter. The following were revised:
 - a. Report Covers
 - b. Title Page, Table of Contents, and Text
 - c. CD of the report
 - d. Appendices Cover
 - e. Appendix K
 - f. Appendix M
 - g. Appendix N
 - h. Appendix O
 - i. Appendix P
 - j. Plan Sheets 1, 26, 29, 30, 31, and 32
- 4. A letter dated November 17, 2011, received November 18, 2011, written in response to the October 18, 2011, comment letter. The submittal includes the "<u>Ameren Missouri Sioux Plant Dry Cell Demonstration: Base of UWL Liner in Intermittent Contact with Groundwater</u>" report dated November 2011, received November 18, 2011, prepared by Reitz & Jens, Inc. Consulting Engineers and Gredell Engineering Resources, Inc. and signed and sealed by Thomas R. Gredell, P.E. of Gredell Engineering Resources, Inc. The following were revised with this submittal:
 - a. Report Covers
 - b. Title Page, Table of Contents, and Text
 - c. CD of the report
 - d. Appendices Cover
 - e. Appendix K

Mr. Paul Pike Ameren Missouri Sioux Power Plant UWLF Page 3 of 3

- f. Appendix M
- g. Appendix O
- h. Appendix P
- 5. A letter dated February 17, 2012, received February 17, 2012, written in response to a January 18, 2012, e-mail. The following were revised with this submittal:
 - a. Report Covers
 - b. Title Page, Table of Contents, and Text (3-38, 3-39, 4-23, 4-24)
 - c. CD of the report
 - d. Appendices Cover
 - e. Appendix P
 - f. Plan Sheet 27

This approval is not to be construed as compliance with any existing federal or state laws other than the Missouri Solid Waste Management Law; nor should this be construed as a waiver for any other regulatory requirements. This approval is not to be construed as compliance with any existing local permitting or zoning ordinances; nor does it supersede any local permitting and/or zoning requirements.

The Department reserves the right to revoke, suspend, or modify this approval and/or Permit Number 0918301 after due notice, if the permit holder fails to maintain the facility in compliance with the Missouri Solid Waste Management Law and rules, the terms and conditions of the permit, and approved engineering plans and specifications.

If you have any comments or questions, please contact Ms. Katherine Huxol at (573) 526-3940 or at P.O. Box 176, Jefferson City, Missouri 65102-0176, or at katherine.huxol@dnr.mo.gov.

Sincerely,

SOLID WASTE MANAGEMENT PROGRAM

Joulene S. L. tch

Charlene S. Fitch, P.E. Chief, Engineering Section

CSF:khl

c: Thomas Gredell, P.E., Gredell Engineering Resources, Inc. Mr. Ryan Tilley, Director, St. Charles County Government St. Louis Regional Office

DEC 062013

Mr. Paul Pike Ameren Services One Ameren Plaza 1901 Chouteau Avenue P.O. Box 66149 St. Louis, MO 63166-6149

RE: Cell 4A Construction Quality Assurance (CQA) Report for Ameren Missouri Sioux Energy Center Utility Waste Landfill, Permit Number 0918301, St. Charles County

Dear Mr. Pike:

This letter is in response to the letter dated November 14, 2013, and received November 14, 2013, requesting approval to operate the western half of Cell 4 (Cell 4A) of the Ameren Missouri Sioux Energy Center Utility Waste Landfill. The documentation of the construction of Cell 4A was presented in the Cell 4A Construction Quality Assurance (CQA) Reports submitted in four parts in which the last report is dated November 14, 2013, and was received on November 14, 2013, and was submitted on your behalf by Reitz & Jens, Inc. Consulting Engineers. Cell 4A is approximately 15 acres and has been modified from a Gypsum landfill to implement dry disposal of coal combustion products (CCP's). The Missouri Department of Natural Resources' (Department) Solid Waste Management Program (SWMP) approved the modification from a Gypsum landfill to a dry disposal landfill on February 8, 2013, with the condition that a Split Sampling Contract be executed. A letter dated November 26, 2013, and two copies of the signed Groundwater Sampling Agreement were received December 2, 2013, to satisfy the February 8, 2013, condition.

The SWMP has reviewed these submittals. Whereas the permittee has demonstrated compliance with requirements of 10 CSR 80-2.020(4)(C) to the Department's satisfaction, the authorization to operate (ATO) is hereby granted. This ATO is hereby made an official part of Permit Number 0918301.

The following documents are hereby approved and incorporated into Permit Number 0918301:

DOCUMENTS:

 A report titled, "<u>Cell 4A Construction Quality Assurance (CQA) Report, Part 1 –</u> <u>Summary of Lab Test Data on Clay Liner</u>," dated September 9, 2013, received September 20, 2013, signed and sealed by Jeffrey Lynn Fouse, P.E. of Reitz & Jens, Inc. Mr. Paul Pike Ameren Missouri Sioux Energy Center Utility Waste Landfill Page 2 of 3

- A report titled, "<u>Cell 4A Construction Quality Assurance (CQA) Report, Part 2 –</u> <u>Perimeter Berms and Clay Liner</u>," dated September 27, 2013, received October 1, 2013, signed and sealed by Jeffrey Lynn Fouse, P.E. of Reitz & Jens, Inc.
- A report titled, "<u>Cell 4A Construction Quality Assurance (CQA) Report, Part 3 HDPE</u> <u>Geomembrane and Leachate Collection System</u>," dated October 14, 2013, received October 15, 2013, signed and sealed by Jeff Bertel, P.E. of Reitz & Jens, Inc.
- A report titled, "<u>Cell 4A Construction Quality Assurance (CQA) Report, Part 4 CCP</u> <u>Berm and Appurtenances</u>," dated November 14, 2013, received November 14, 2013, signed and sealed by Jeff Bertel, P.E. of Reitz & Jens, Inc.
- 5. A letter dated November 14, 2013, received November 14, 2013, signed by Mr. Paul Pike, Environmental Science Executive of Ameren requesting authorization to operate Cell 4A of the Ameren Missouri Sioux Energy Center Utility Waste Landfill.
- 6. A memorandum dated November 8, 2013, received November 14, 2013, responding to comments concerning "<u>Cell 4A Construction Quality Assurance (CQA) Report, Part 3,</u> <u>HDPE Geomembrane and Leachate Collection System</u>".
- A report dated November 27, 2013, received on December 2, 2013, titled, "<u>Cell 4A</u> <u>Construction Quality Assurance (CQA) Report, Response to MDNR-SWMP Comments,</u>" signed and sealed by Jeff Bertel, P.E. of Reitz & Jens, Inc.

The following conditions are an integral part of this approval. Compliance with these conditions shall, in part, determine compliance with Permit Number 0918301:

CONDITIONS:

- On page 18 of the Construction Quality Assurance Plan in Appendix P of the report titled, "<u>Ameren Missouri Sioux Power Plant, Utility Waste Landfill, Proposed</u> <u>Construction Permit Modification</u>" revised February 2012, approved February 8, 2013, the destructive testing specifications for the geomembrane are listed. These specifications do not match the construction specifications stated in the response to comment 17. Within 45 days of the date of this letter please evaluate the geomembrane destructive test specifications and determine if the specification used for Cell 4A is adequate and indicate what specifications will be used for future cells. We typically accept the Geosynthetic Research Institute (GRI) GM19 as the industry standard reference in geomembrane seaming. If you want to use standards that do not match these standards, you would need to provide justification.
- 2. Within 45 days of the date of this letter, please provide an update to the construction quality assurance plan for this facility which specifies updated compaction specifications for both the perimeter berms and the CCP berms for use in future cells.

Mr. Paul Pike Ameren Missouri Sioux Energy Center Utility Waste Landfill Page 3 of 3

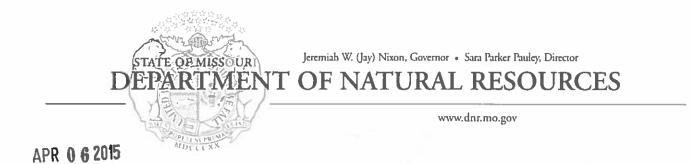
3. Within 45 days of the date of this letter please provide evidence that the exterior of the perimeter berms for Cell 4A were constructed at a 3:1 slope.

This ATO shall not to be construed as compliance with any existing federal or state environmental laws other than the Missouri Solid Waste Law; nor should this be construed as a waiver for any other regulatory requirements. This approval is not to be construed as compliance with any existing local permitting or zoning ordinances; nor does it supersede any local permitting and/or zoning requirements.

The Department reserves the right to revoke, suspend, or modify this approval and/or Permit Number 0918301 after due notice, if the permit holder fails to maintain the facility in compliance with the Missouri Solid Waste Management Law and regulations, the terms and conditions of the permit, and approved engineering plans and specifications.

If you have any comments or questions, please contact Mr. Tom Roscetti at (573) 526-3940, or at P.O. Box 176, Jefferson City, Missouri 65102-0176.

Sincerely,


SOLID WASTE MANAGEMENT PROGRAM

harlene S. f. tch

Charlene S. Fitch, P.E. Chief, Engineering Section

CSF:khl

c: Jeff Bertel, P.E., Reitz & Jens, Inc. Consulting Engineers
 Jeffrey Fouse, P.E., Reitz & Jens, Inc. Consulting Engineers
 Mr. Ryan Tilley, St. Charles County Division of Environmental Health and Protection
 St. Louis Regional Office via Electronic Shared File

Mr. Paul Pike Ameren Services One Ameren Plaza 1901 Chouteau Avenue P.O. Box 66149 St. Louis, MO 63166-6149

RE: Cell 4A Initial Ash Placement, Ameren Missouri Sioux Power Plant Utility Waste Landfill, Permit Number 0918301, St. Charles County

Dear Mr. Pike:

This letter is in response to a letter from you, dated November 21, 2014, with an attached report from Reitz and Jens, Inc. The submittal is a response to a comment letter from the Solid Waste Management Program (SWMP), dated August 4, 2014, on the initial filling of Cell 4A. The initial filling was described in a report, dated May 29, 2014, also from Reitz and Jens, Inc. Both of these documents also address slope stability using updated material properties.

Based on our review of the submitted information, the SWMP is satisfied with both the initial report and the follow-up. However, the SWMP does have concerns; please note the conditions listed below.

The following conditions are an integral part of this approval. Compliance with these conditions shall, in part, determine compliance with Permit Number 0918301.

CONDITIONS:

- 1. During the October 1, 2014, on-site meeting between representatives of Ameren, Reitz and Jens, and the SWMP, it was agreed that Ameren would provide a flooding plan for Cell 4A, which would counteract hydrostatic uplift on the landfill liner should a 100-year flood occur before additional waste is added to the cell. This was to increase the safety factor and therefore provide additional assurance that uplift could not occur. This was not included in the November 2014 response. We would expect such a plan to address, at a minimum:
 - Pump sizing and availability
 - Pumping rates necessary
 - Minimum depth of water necessary
 - The triggering event to start pumping water into the cell

Please provide this within 120 days of the date of this letter.

Mr. Paul Pike Ameren Missouri – Sioux Power Plant UWLF Page 2 of 2

 The November 2014 Reitz and Jens report (Document 2 below) states that the coal combustion waste was placed in thick lifts because it was too wet to spread in thin lifts. If, in the future, waste is to be placed in thicker lifts than the currently approved 2 foot lifts, please submit a request to modify the permit.

The following documents were reviewed and are incorporated by reference into Permit Number 0918301.

DOCUMENTS:

- 1. A report titled "<u>Cell 4A Construction Quality Assurance (CQA) Summary Report for Phase 3</u> <u>– Initial Filling</u>", dated May 29, 2014, and prepared by Reitz and Jens, Inc.
- 2. A letter from Mr. Paul Pike of Ameren Missouri, dated November 21, 2014, and attached report from Reitz and Jens, Inc. titled "<u>Response to MDNR-SWMP Cell 4A Authorization to</u> <u>Operate Follow-up and Initial Ash Placement</u>", and dated August 4, 2014.

This approval is not to be construed as compliance with any existing federal or state environmental laws other than the Missouri Solid Waste Management Law; nor should this be construed as a waiver for any other regulatory requirements. This approval is not to be construed as compliance with any existing local permitting or zoning ordinances; nor does it supersede any local permitting and/or zoning requirements.

The department reserves the right to revoke, suspend, or modify this approval and/or Permit Number 0918301 if the permit holder fails to maintain the facility in compliance with the Missouri Solid Waste Management Law and rules, the terms and conditions of the permit, and the approved engineering plans and specifications.

We appreciate your continued efforts toward environmentally sound solid waste management practices. Should you have any questions, please contact Thomas Roscetti, P.E. of my staff at (573) 526-3940 or P.O. Box 176, Jefferson City, MO 65102-0176.

Sincerely,

SOLID WASTE MANAGEMENT PROGRAM

Loller Sittel

Charlene S. Fitch, P.E. Chief, Engineering Section

CSF:trl

c: Jeffrey Fouse, P.E., Reitz and Jens Mr. Larry Lehman, Chief, Compliance/Enforcement Section, SWMP St. Louis Regional Office via Electronic Shared File

Jeremiah W. (Jay) Nixon, Governor • Sara Parker Pauley, Director

YT OF NATURAL RESOURCES

www.dnr.mo.gov

OCT 28 2015

Mr. Paul Pike Ameren Services One Ameren Plaza 1901 Chouteau Avenue P.O. Box 66149 St. Louis, MO 63166-6149

RE: Flood Protection Plan for Cell 4A, Ameren Missouri Sioux Power Plant Utility Waste Landfill, Permit Number 0918301, St. Charles County

Dear Mr. Pike:

This letter is in response to a letter from you, dated August 3, 2015, which responds to Condition 1 of the Solid Waste Management Program (SWMP) letter of April 6, 2015, approving the information previously submitted on the initial filling of Cell 4A. Attached to your letter was a flood protection plan for Cell 4A, submitted in the form of Section 5.3 of a document titled "<u>Cell 1 and 4A and Recycle Pond Operations & Maintenance</u>". The flood protection plan discusses the procedures to be taken to counteract hydrostatic uplift on the landfill liner if the flood elevation is expected to be at the 100 year level. In addition, we have received a letter dated October 19, 2015, from Jeffrey Fouse, P.E. of Reitz and Jens, Inc., which discusses the moisture holding capability of the utility waste. Attached to Mr. Fouse' letter is a revised flood protection plan (revised date October 2015).

We have reviewed the documents submitted and believe they fulfill the condition of the April 6, 2015, letter. In addition, we hereby modify Permit Number 0918301 to incorporate the October 2015 flood protection plan.

If you have any questions, please contact Thomas Roscetti, P.E. of my staff at (573) 526-3940 or at P.O. Box 176, Jefferson City, MO 65102-0176.

Sincerely,

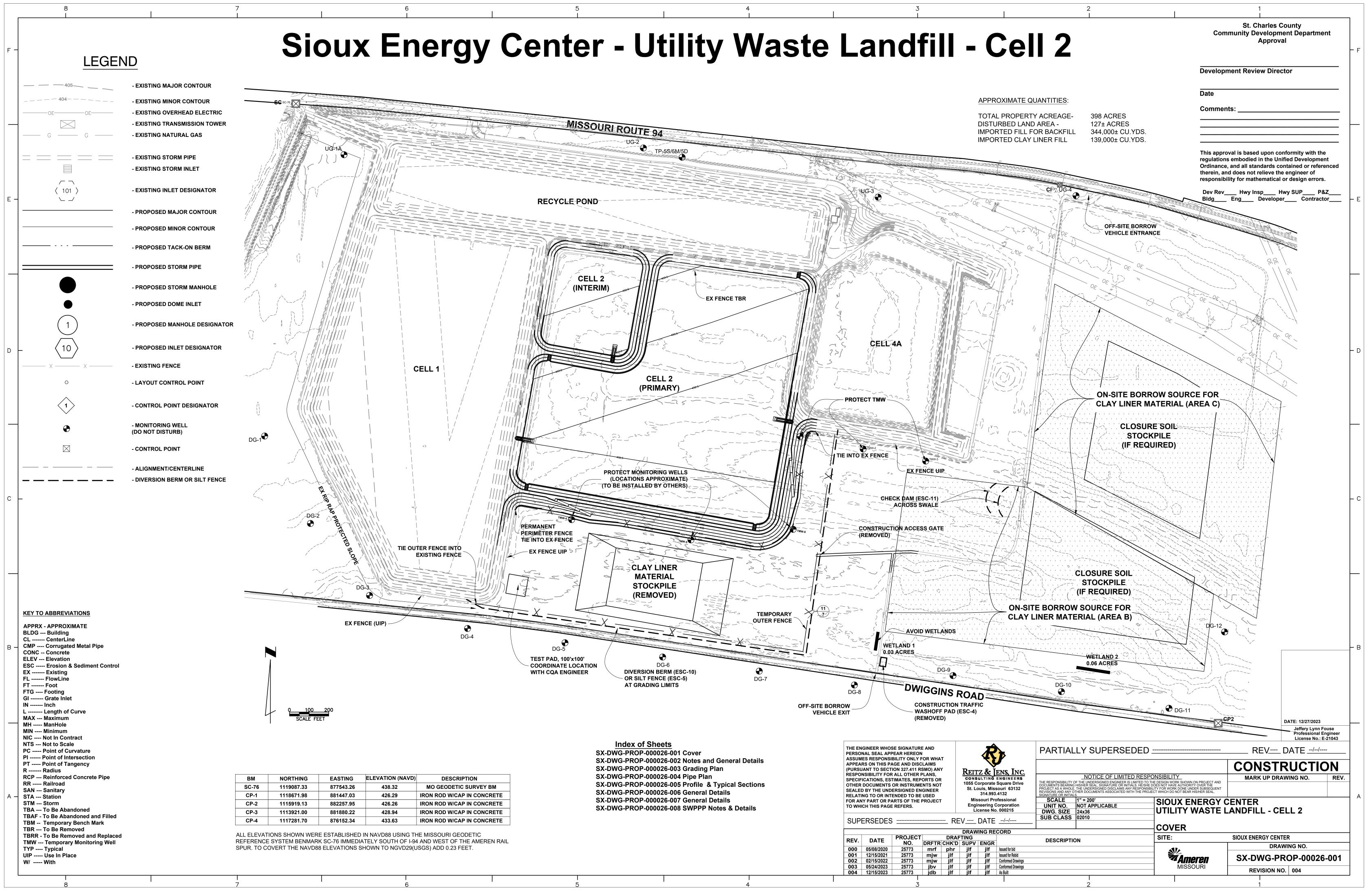
SOLID WASTE MANAGEMENT PROGRAM

poulane S Lich

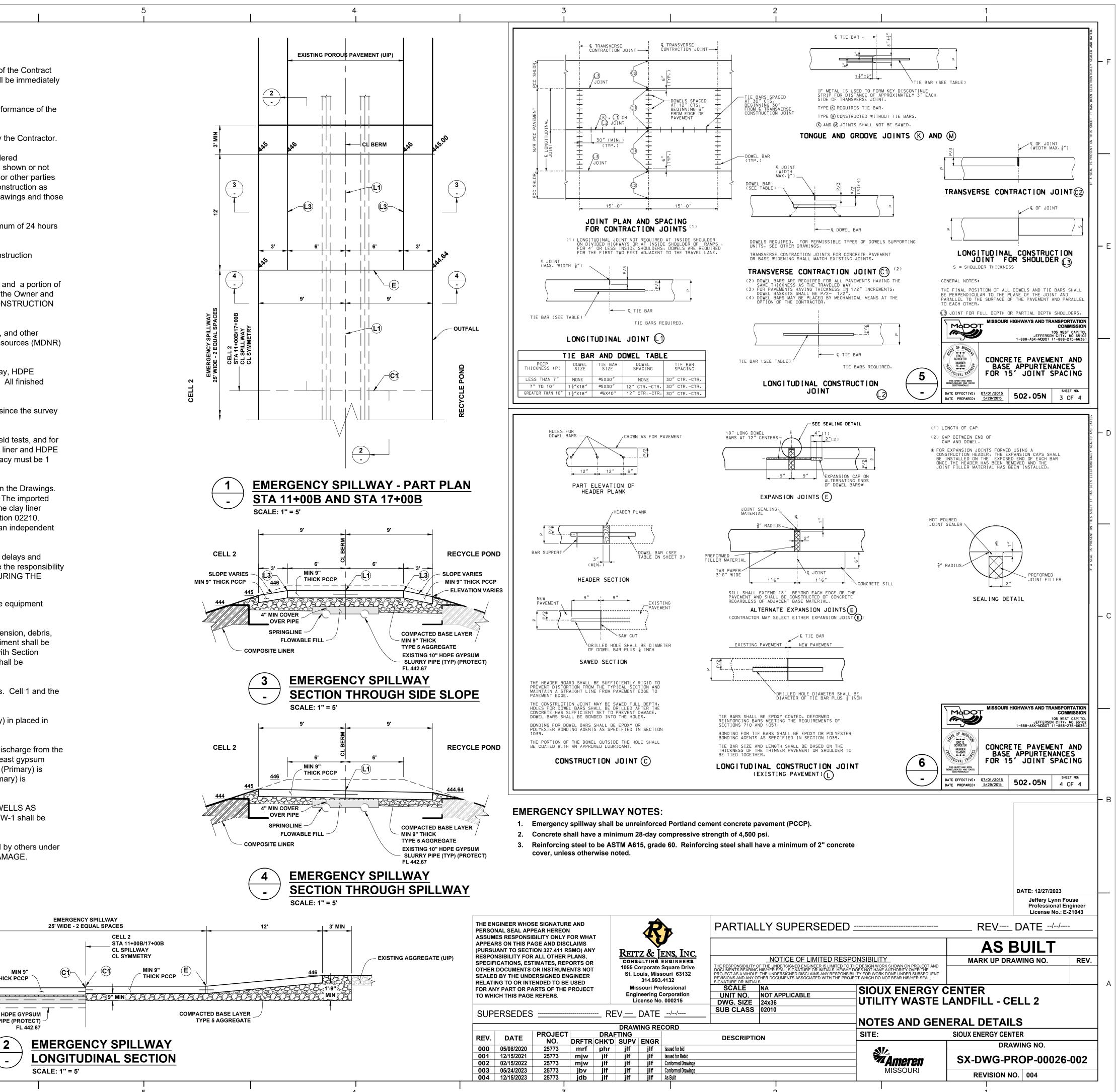
Charlene S. Fitch, P.E. Chief, Engineering Section

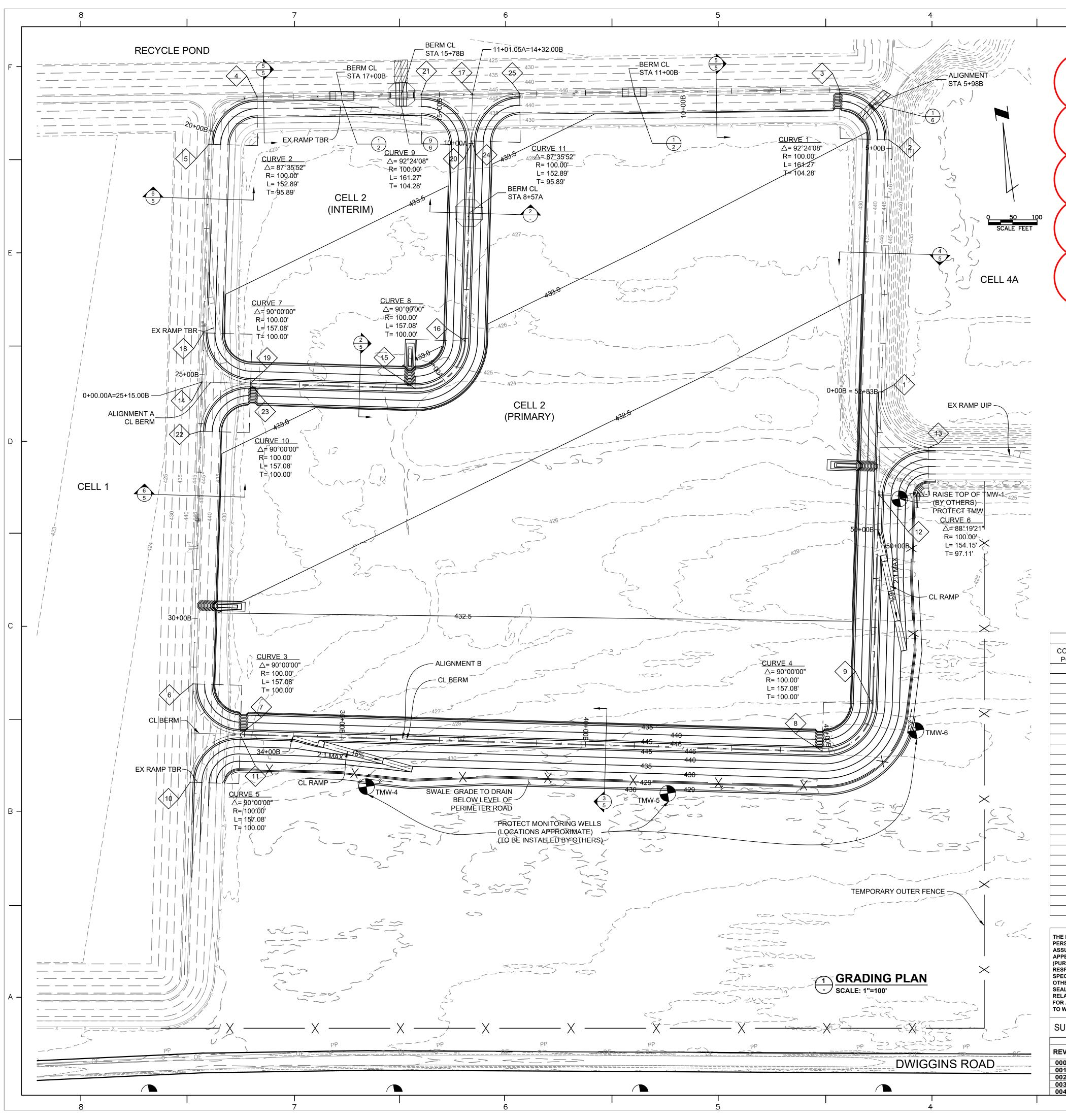
CSF:trl

c: Jeffrey Fouse, P.E., Reitz and Jens, Inc. Mr. Larry Lehman, Chief, Compliance/Enforcement Section, SWMP St. Louis Regional Office via Electronic Shared File


Recycled Paper

Biennial Airspace Estimate

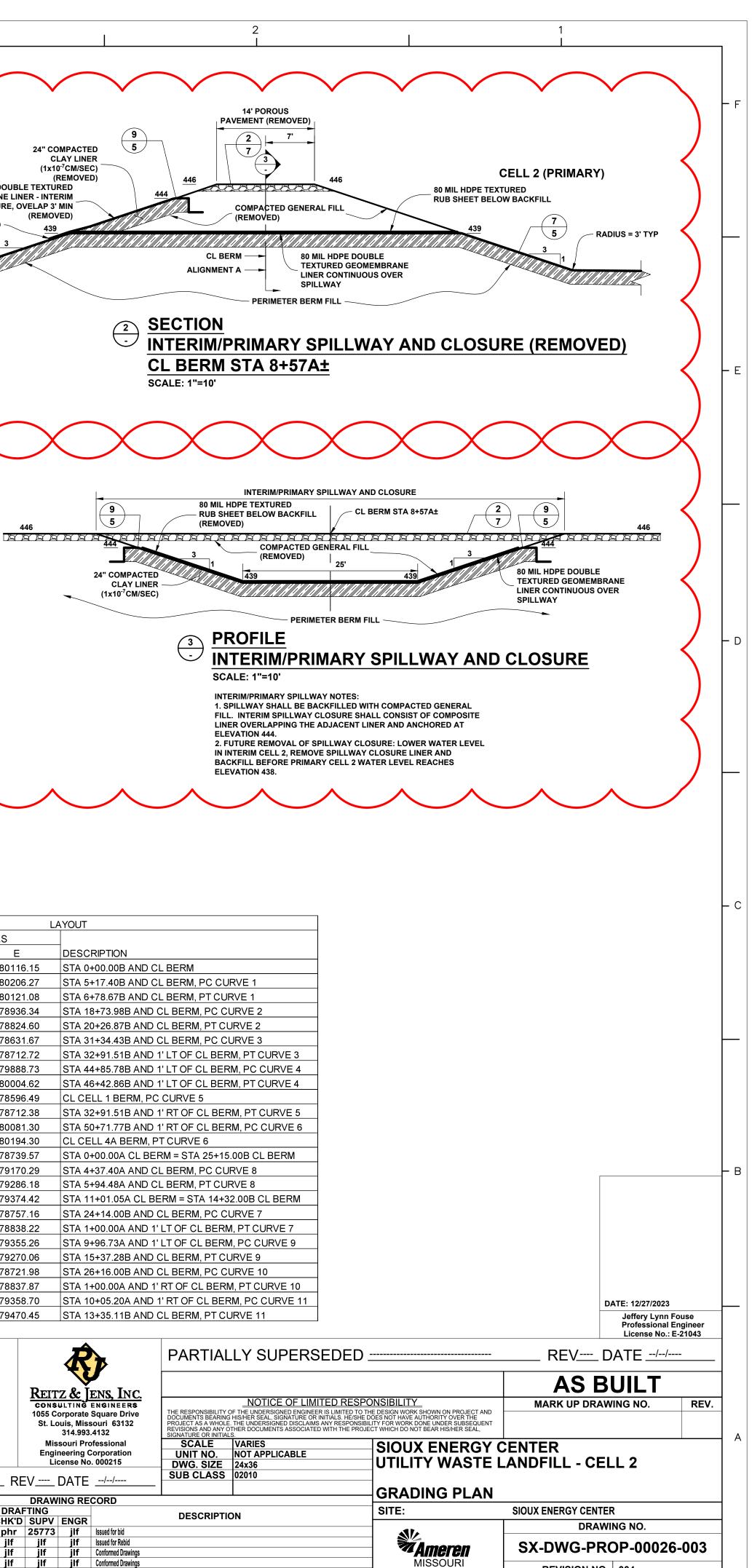

	Date	
Facility Name		
Permit Number	Total size of permitted area	 acres
Date of current topographic	survey	
Date of previous topographic	c survey	
Airspace filled during this re	porting period	 cubic yards
Total permitted airspace		 cubic yards
Total airspace filled as of da	te of current survey	 cubic yards
Remaining disposal airspace	2	 cubic yards


Note: Airspace refers to the landfill volume above the leachate collection system (or protective layer if one exists), and below the final cover. It includes waste, daily cover, and intermediate cover.

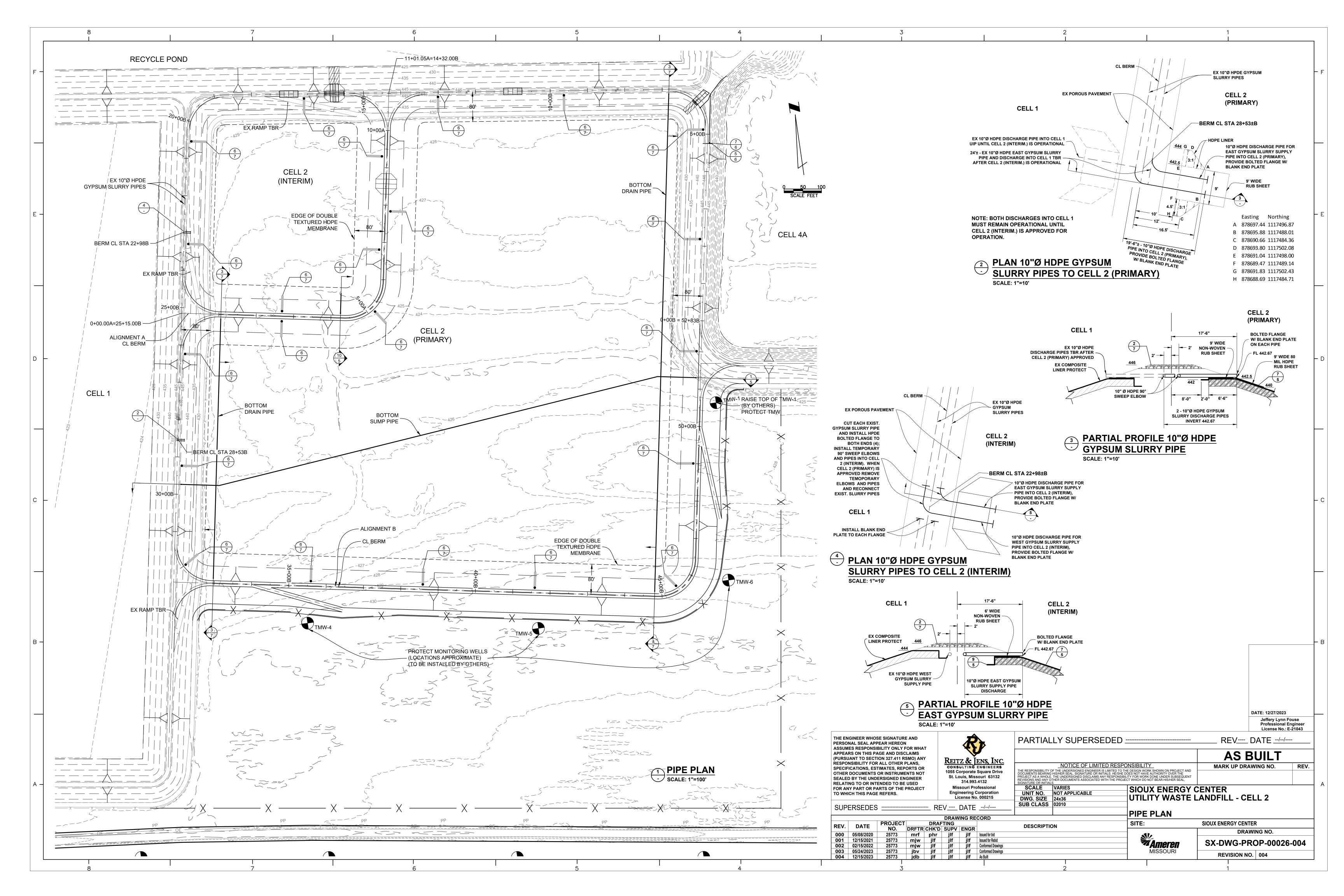
Remarks

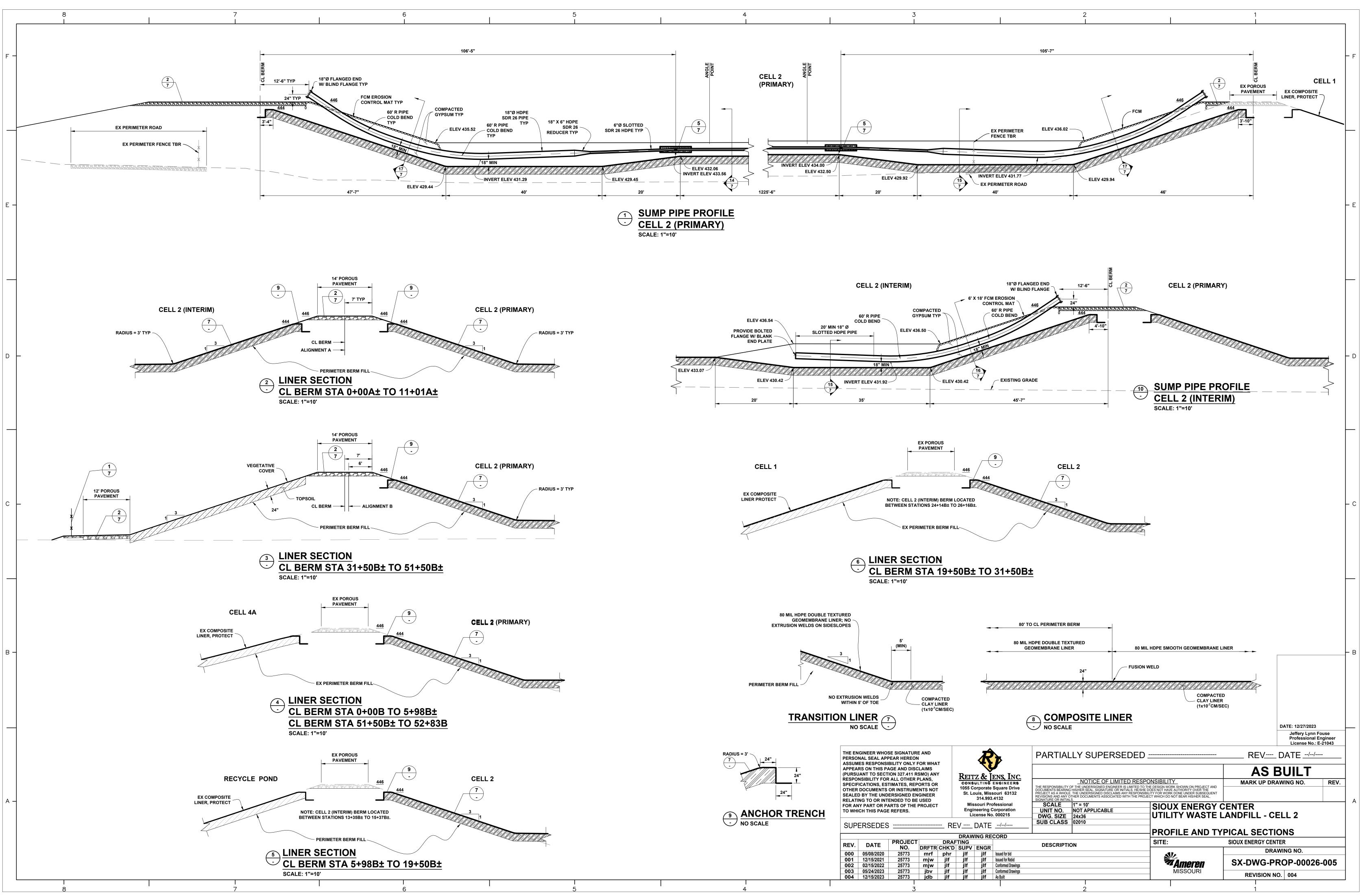
		8 I		7 		6 I
	GEN	ERAL CONSTR				
F -	1.	The Contract Documents is a	Documents shall be interprete	g in all Contract Documents. Any d		Any requirement occurring in any one one one one of the Drawings and the Specifications shal
	2.			sponsible for the conditions of the journal wo		ty of all persons and property during per
	3.	Field verify all	dimensions before constructio	on. Do not scale drawings; follow di	mensions shown. All	construction points shall be provided by
	4.	approximate of shown, shall be affected to hav soon as practio	nly. There may be others, the e the responsibility of the Con e all necessary adjustments o cal or possible. Any discrepa	e existence of which is at present no tractor. Contractor shall make suita of public or private utilities, pipelines	ot known. Verification able and timely reques or other appurtenance ty, or location of unde	therefore, their locations must be consid of the locations of underground utilities, sts to all utility owners, pipeline owners, ces within, or adjacent to, the limits of co rground improvements shown on the Dra
_	5.		Ill notify the Chief Inspector of ing any construction within the		epartment and Missou	uri Department of Transportation a minim
-	6.					er. If Contractor wants a temporary con arles County with permission of Owner.
	7.	Cell 4A as sho meet perimeter	wn on the Drawings. Demolit r security requirements. CON	ion of the fence shall not start until t	the temporary constru NTROL OF ACCESS	1, the south berm of the Recycle Pond, iction fence is in place and accepted by t TO THE UWL THROUGHOUT THE CO
_	8.		I devices in accordance with S	•		porary access with wash-down facilities, and Missouri Department of Natural Res
	9.	geomembrane		getative cover or other). Elevations		ubgrade to receive designated cover (cla souri State Plane and NGVD88 datums.
	10.		own on the Drawings represer or sedimentation.	t conditions surveyed in 2019 or pro	eviously. Existing ele	vations and grades may have changed s
	11.	periodic topogr liner. The GPS	raphic surveys. Two (2) GPS'	s must be provided to the CQA Eng neer MUST have the ability to store	ineer for their sole us	o control earthwork operations, locate fie e during construction of the berms, clay s taken during testing. Horizontal accura
	12.	All clay liner m clay liner mate material to the	aterial in the stockpile shall be rial must be tested and qualifi site, place it in the designated Il have Registered Surveyor s	e blended, moisture conditioned as ed by the CQA Engineer prior to tra d stockpile area, blend, and moistur	required, and compac insport of the material e condition as require	material to construct Cell 2 as shown or cted in accordance with Section 02210. to the site. Contractor shall transport th d, and compact in accordance with Sect d clay liner material. Owner may have a
	13.	expenses asso of the Contract	ociated with damage or the pro-	evention of damage to existing facili	ities, roadways and cr	nis construction activities. All damages, ops outside of the area of Work shall be 4A SHALL REMAIN IN OPERATION DU
; _	14.			ved roadways free of CCP, mud or approved by the Ameren Construct		ing site operations. Contractor shall use
	15.	waste, frozen r mixed with clay 02210. Contra	materials, vegetation, or other yey soil so that there are no p actor shall submit samples of o	deleterious matter. Soil materials sockets of relatively higher permeable	shall be mixed to proc ility. Materials obtaine eer in accordance with	e of rock larger than 2 inches in any dime luce a homogeneous fill. Sand and sedi ed from off-site shall be in accordance wi Division 1, Section 4.6.2. Contractor sh al to the site.
	16.			fluent Structure from Cell 2 (Interim ughout this construction and followi		l as specified in the Contract Documents
	17.			he Interim/Primary Spillway and Clo emporary fill from the Interim/Prima		im berm (Sheet 3). After Cell 2 (Primary re.
	18.	east gypsum s slurry supply p	lurry supply pipe into Cell 2 (li ipe into Cell 1 shall be relocat	nterim) shall be provided as specifie ed into Cell 2 (Primary) as specified	ed in the Contract Doc d in the Contract Docu	ated with the Plant operations. A new di cuments. The existing discharge of the e iments and shall be plugged until Cell 2 ed into Cell 2 (Primary) after Cell 2 (Prim
3 -	19.		O PREVENT DAMAGE. Dam	-	-	OR SHALL PROTECT MONITORING W ne Contractor's expense. The top of TM
	20.	contract with C	Owner during construction of C		DID MONITORING WE	g wells with protection are to be installed ELLS AS REQUIRED TO PREVENT DA
	21.	Contractor sha	III maintain one set of marked	plans showing all changes and "as-	-built" information.	
					3' MIN	12'
				EXISTING AGGREGATE	/(IIIP)	
\ _				COMPACTED BASE LAY		<u>46</u> Е тн
				TYPE 5 AGGREGA		
					FLOWABLE	
		 8		 7		

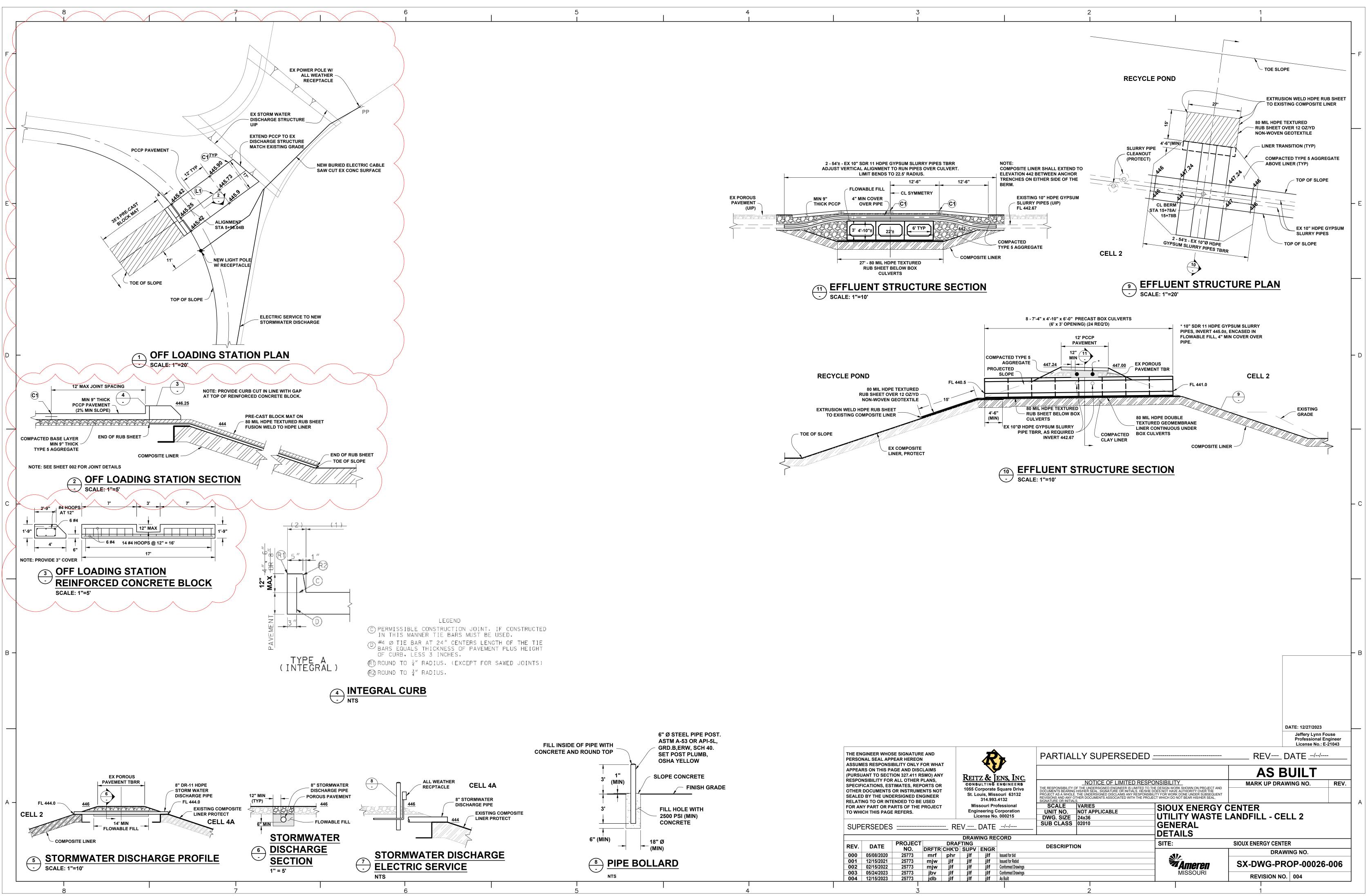
24" COMPACE CELL 2 (INTERIM) SI UNAY CLOSURE OVELAP 37 MIN SI UNAY CLOSURE OVELAP 37 MIN (REMOVED) 43 44 24" COMPACEED CLAY LINER (1x10"CM/SEC) 446 MER REMER

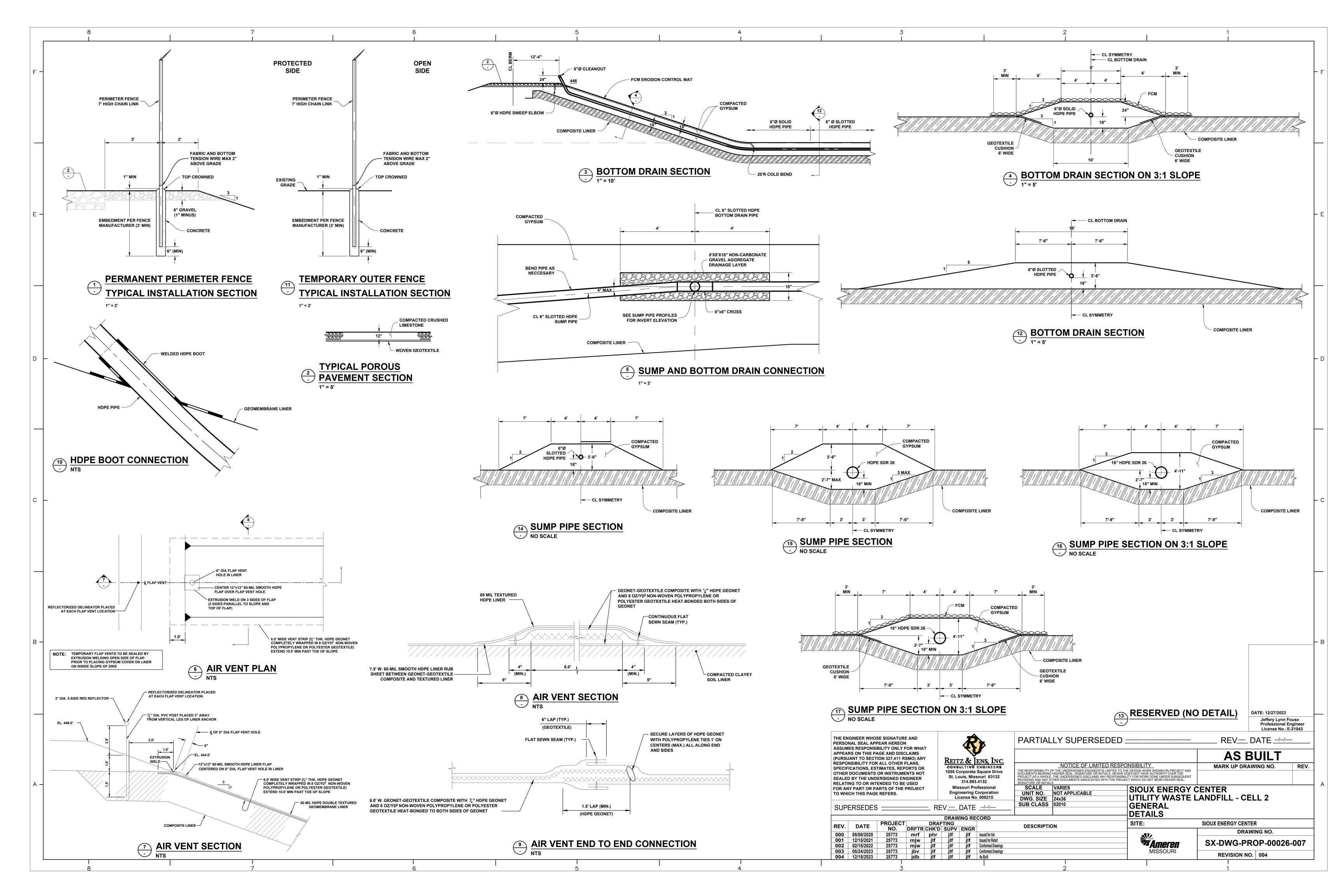

CONTROL	COORE	INATES
POINT#	Ν	
1	1117607.40	8801
2	1118116.89	8802
3	1118233.42	8801
4	1118392.11	8789
5	1118310.42	8788
6	1117219.78	8786
7	1117103.89	8787
8	1116895.87	8798
9	1116976.92	8800
10	1117020.87	8785
11	1117101.93	8787
12	1117398.93	8800
13	1117480.45	8801
14	1117829.75	8787
15	1117753.56	8791
16	1117834.61	8792
17	1118333.43	8793
18	1117929.21	8787
19	1117813.32	8788
20	1118230.88	8793
21	1118347.41	8792
22	1117730.29	8787
23	1117811.35	8788
24	1118238.88	8793
25	1118320.57	8794

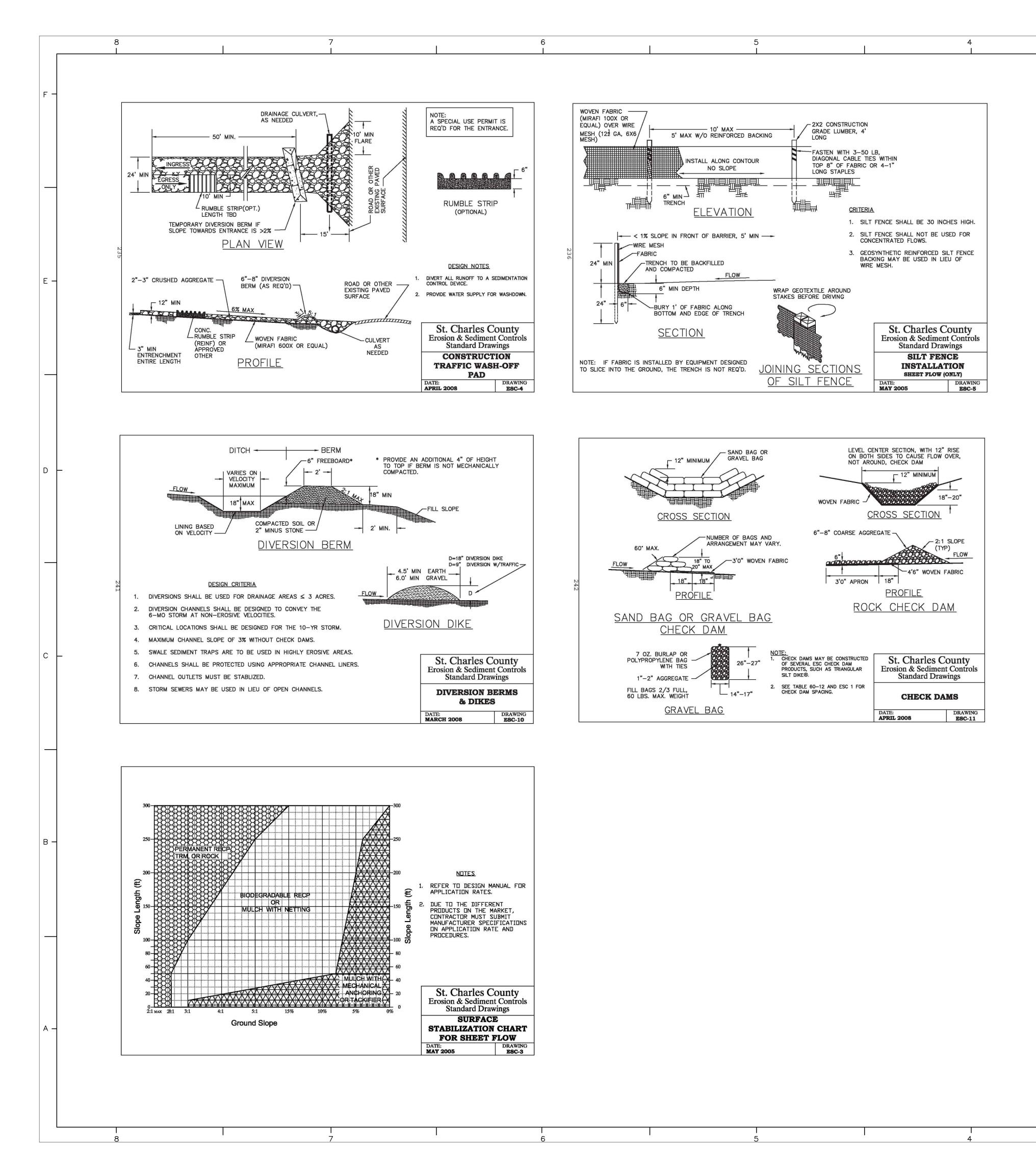
THE ENGINEER WHOSE SIGNATURE AND PERSONAL SEAL APPEAR HEREON ASSUMES RESPONSIBILITY ONLY FOR WHAT APPEARS ON THIS PAGE AND DISCLAIMS (PURSUANT TO SECTION 327.411 RSMO) ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS NOT SEALED BY THE UNDERSIGNED ENGINEER RELATING TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS PAGE REFERS.


SUPERSEDES


REV.	DATE	PROJECT		DI
REV.	DATE	NO.	DRFTR	CHI
000	05/08/2020	25773	mrf	pł
001	12/15/2021	25773	mjw	jl
002	02/15/2022	25773	mjw	jl
003	05/24/2023	25773	jbv	jl
004	12/15/2023	25773	jdb	jl


As Built




REVISION NO. 004

THE ENGINEER WHOSE SIGNATURE AND PERSONAL SEAL APPEAR HEREON ASSUMES RESPONSIBILITY ONLY FOR WHAT APPEARS ON THIS PAGE AND DISCLAIMS (PURSUANT TO SECTION 327.411 RSMO) ANY RESPONSIBILITY FOR ALL OTHER PLANS, SPECIFICATIONS, ESTIMATES, REPORTS OR OTHER DOCUMENTS OR INSTRUMENTS NOT SEALED BY THE UNDERSIGNED ENGINEER RELATING TO OR INTENDED TO BE USED FOR ANY PART OR PARTS OF THE PROJECT TO WHICH THIS PAGE REFERS.

3

SUPERSEDES -----

REV. 000	DATE	PROJECT	DRAFTING					
	DATE	NO.	DRFTR	CHK'D	SUPV			
000	05/08/2020	25773	mrf	phr	jlf			
001	12/15/2021	25773	mjw	jlf	jlf			
002	02/15/2022	25773	mjw	jlf	jlf			
003	05/24/2023	25773	jbv	jlf	jlf			
004	12/15/2023	25773	jdb	jlf	jlf			

	2 	I	1 1	
GRAD	DING SEDIMENT & EROSION	CONTROL NOTES	S	
1) Sedir contract	nent and erosion control shall not be limit tor, with the approval of the County inspe sediment from entering adjacent properti	ed to the measures show ctor, shall utilize best mar	— n on the plans. The nagement practices to	F
trench b density	led places under proposed storm and sar backfills within and off the road right-of-wa as determined by the "Modified AASHTO all be verified by a Soils Engineer concur	ay shall be compacted to 9 T-180 Compaction Test"	90 percent of maximum (ASTM D-1557). All	
compac "Modifie same co	led places in proposed and existing St. Cl sted from the bottom of the fill up to 90 pe ed AASHTO T-180 Compaction Test" (AS compaction requirements. All tests shall b operations.	rcent maximum density as TM D-1557). Paved area	s determined by the is in cuts shall meet the	
proper v	ucking operations shall follow the approve washouts, as approved by the County ins ot clear of mud, sediment, and any other o	pector. County and state	roads shall be cleaned	 - E
either ei foundati	n-site trash, litter, discarded building mate xisting or from construction, must be rema ion material from any existing on-site buil development must be properly disposed o	oved and properly dispose ding or structure which is	ed of off-site. Debris and	
	ractor shall provide sufficient temporary to		number of workers on	
hazardo federal a	ractor shall provide the County Inspector ous and toxic substances brought onto the and state regulations concerning storage measure plans for clean-up.	e site. The Contractor will	adhere to applicable	
manner	wells and/or springs which may exist on th acceptable to the St. Charles County Hig ment Division of the Community Develop	hway Department and the		
Belle Qu Highway entrance along ar Dwiggin road ane addition	rted soils for backfill and clay liner will be uarry in St. Louis County. The imported s y 67 north to Highway 94 west entering th e off of Highway 94. Once on Ameren pro n existing gravel road. Empty trucks will l is Road traveling east to Highway 94 ultin d entrances onto Highway 94 and Dwiggi al crushed rock and maintained to handle f Pad (ESC-4) will be added at the Dwigg	soil haul route will be from the Ameren property at an operty the trucks will access eave the site at an existin mately returning to the Qua ns on Ameren Property w the truck traffic and a C	Ft. Belle Quarry along existing crushed rock ss the construction site og entrance onto arry. The existing gravel vill be improved with	- D
10) All c	construction vehicles and equipment will e way 94 and exit the site at the existing er	enter Ameren property fro	-	
grass m perman County (structur	en grading operations are completed or su nust be established at sufficient density to ent grass seeding periods, temporary cov Director of the Division of Development F ral) shall be maintained until vegetative co erosion control on the site.	provide erosion control o ver shall be provided acco Review. Temporary siltatio	n the site. Between ording to the St. Charles on control measures	
1. 2 3 4 Seeded	following submittals are required prior to . Seeding date . Seed mixture(s) and rate(s), supplier, pu . Mulching material(s) and application rate . Mowing height and schedule areas shall be re-fertilized 4 weeks after	urity percentage e(s) initial seeding. All areas i	dentified as bare and	– c
•	(less than 30% ground cover) during the i t be cut until 4 inches of growth occurs.	nspection shall be re-see	ded and mulched. Grass	\vdash
shall be	St. Charles County Erosion Control Inspension notified a minimum of 48 hours prior to the the commencement of construction to arr	he commencement of clea	aring, grading, and/or	
Constru	er to Ameren's "Stormwater Pollution Previ action" and "Construction Specification SX dditional details and requirements.			
				_– B
			DATE: 12/27/2023 Jeffery Lynn Fouse Professional Engineer License No.: E-21043	
	PARTIALLY SUPERSEDED :		REV DATE// AS BUILT	
REITZ & JENS, INC. CONSULTING ENGINEERS 1055 Corporate Square Drive St. Louis, Missouri 63132	NOTICE OF LIMITED RESPONSIBILITY OF THE UNDERSIGNED ENGINEER IS LIMITED TO TH DOCUMENTS BEARING HIS/HER SEAL, SIGNATURE OR INITALS, HE/SHE DI PROJECT AS A WHOLE. THE UNDERSIGNED DISCLAIMS ANY RESPONSIBIL REVISIONS AND ANY OTHER DOCUMENTS ASSOCIATED WITH THE PROJECT	E DESIGN WORK SHOWN ON PROJECT AND DESIGN WORK SHOWN ON PROJECT AND DESINOT HAVE AUTHORITY OVER THE ITY FOR WORK DONE INNER STREED	MARK UP DRAWING NO. REV.	_
A St. Louis, Missouri 63132 314.993.4132 Missouri Professional Engineering Corporation License No. 000215	PROJECT AS WHOLE. THE UNDERSIGNED DISCLAIMS ANY RESPONSIBIL REVISIONS AND ANLY OTHER DOCUMENTS ASSOCIATED WITH THE PROJECT SIGNATURE OR INITIALS. SCALE VARIES UNIT NO. NOT APPLICABLE DWG. SIZE 24x36 SUB CLASS 02010	SIOUX ENERGY C	ANDFILL - CELL 2	_ A
DRAWING RECORD DRAFTING HK'D SUPV ENGR	DESCRIPTION	SITE:	SIOUX ENERGY CENTER DRAWING NO.	
phr jlf jlf lssued for Bid jlf jlf jlf lssued for Rebid jlf jlf jlf conformed Drawings jlf jlf jlf As Built		MISSOURI	BRAWING NO. SX-DWG-PROP-00026-008 REVISION NO. 004	_

REPORT 2019012439

AMEREN MISSOURI SIOUX ENERGY CENTER CONSTRUCTION PERMIT MODIFICATION FOR PERMITTED UTILITY WASTE LANDFILL (PERMIT NO. 0918301) ST. CHARLES COUNTY, MISSOURI

REVISED GEOTECHNICAL ENGINEERING REPORT

Prepared by

January 24, 2020

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

AMEREN MISSOURI SIOUX ENERGY CENTER CONSTRUCTION PERMIT MODIFICATION FOR PERMITTED UTILITY WASTE LANDFILL SOLID WASTE DISPOSAL AREA (PERMIT NUMBER 0918301) ST. CHARLES COUNTY, MISSOURI

REVISED GEOTECHNICAL ENGINEERING REPORT

TABLE OF CONTENTS

Section

Page

1.0 1.1 1.2	HISTORY OF GEOTECHNICAL INVESTIGATIONPrevious Revisions and AmendmentsSummary of Revisions for 2020 CPM1.2.1 Field Investigation1.2.2 Laboratory Testing1.2.3 Seismic Risk Assessment and Analyses1.2.4 Slope Stability Analyses1.2.5 Settlement Analyses1.2.6 Impacts Due to FloodingSummary Conclusion	1 2 2 2 3 3 3
2.0 2.1 2.2	GEOTECHNICAL INVESTIGATIONS Detailed Site Investigation (DSI) Phase 2 Investigation	4
3.0 3.1 3.2 3.3 3.4	LABORATORY TESTING. Classification of Phase 2 Test Holes. Tests on Natural Soil Deposits. Tests on CCR from Sioux Plant. Tests on Composite Samples. 3.4.1 Formation of Composite Samples. 3.4.2 Hydraulic Conductivity Tests. 3.4.3 Triaxial Shear Strength Tests.	5 5 6 8 9
4.0 4.1 4.2 4.3 4.4	DESCRIPTION OF SOILS General Stratigraphy Materials for Bottom Liner Materials for Aquiclude Soil Protection and Final Cover Materials for Berm Construction 1	9 2 3
5.0	SEISMIC ANALYSES	3
6.0	LIQUEFACTION ANALYSES 1	4
7.0 7.1 7.2	CONSTRUCTION RECOMMENDATIONS 1 Field Classification of Soils 1 Compaction Criteria 1	7

TABLE OF CONTENTS (cont.)

Section

7.3	Quality Assurance	
	7.3.1 Test Pad	
	7.3.2 QA During Construction	
8.0	STABILITY ANALYSES	
8.1	Stability of Perimeter Berm	
8.2	Global Stability of Full Cells	
8.3	Seismic Slope Stability	
8.4	Post-Seismic Event with Liquefaction	
8.5	Stability of Final Cover	
9.0	SETTLEMENT ANALYSES	
9.1	Estimated Settlements	
9.2	Strain of HDPE Liner	
9.3	Slopes of Leachate Collection Pipes	
10.	BEARING CAPACITY	
11.0	HYDROSTATIC PRESSURES	
11.1	Liner	
11.2	Perimeter Berm	
12.0	EROSION PROTECTION	
13.0	REFERENCES	

Table

List of Tables

Table		Page
1	Geotechnical Properties of Samples from Phase 1 Borings	7
2	Summary of Classifications of Phase 2 Samples	10
3	Summary of Geotechnical Properties of Composite Samples	11
4	Results of Liquefaction Analyses	15
5	Estimate of Settlements Due to Liquefaction	
6	Summary of Results of Stability Analyses	

List of Figures

Figure

REITZ & JENS, INC.

Page

TABLE OF CONTENTS (cont.)

<u>List of Figures</u> (cont.)

F	igure
Peak Acceleration (%g) with 2% Probability of Exceedance in 50 Years	5
Relationship for Earthquake Induced Settlement	6
Relationship for Loss of Shear Strength Due to Liquefaction	7
Comparison of Corrected N-Values with Depth, Sioux Plant and UWL Site	8
Comparison of Elastic Modulus (Es) of Sands Versus Depth	9
Profile of Estimated Settlement, East – West Centerline	10
Profile of Estimated Settlement, North – South through Cells 4B and 7	11
Profile of Estimated Settlement, North – South through Cell 2	12
Recommended Riprap Protection for West and South Perimeter Berms	13

List of Sub-Appendices

	Sub-Appendix
Laboratory Classification of Phase 2 Soil Samples	1
Study of Geotechnical Engineering Properties of Ash from Sioux Power Plant	2
Results of Grain Size Analyses on Composite Samples	
Results of Standard Proctor Moisture-Density Compaction Tests on Composite Samples	
Results of Flexible-Wall Hydraulic Conductivity Tests on Compacted Composite Samples	5
Results of Triaxial Shear Strength Tests on Compacted Composite Samples	6
Results of Liquefaction Analyses	7
Results of Slope Stability Analyses	
Results of Cone Penetrometer Tests (CPT) at Sioux Power Plant	9
Results of Settlement Analyses	
Design of Riprap for Perimeter Berm	

AMEREN MISSOURI SIOUX ENERGY CENTER CONSTRUCTION PERMIT MODIFICATION FOR PERMITTED UTILITY WASTE LANDFILL SOLID WASTE DISPOSAL AREA (PERMIT NUMBER 0918301) ST. CHARLES COUNTY, MISSOURI

REVISED GEOTECHNICAL ENGINEERING REPORT

1.0 HISTORY OF GEOTECHNICAL INVESTIGATION

1.1 Previous Revisions and Amendments

Reitz & Jens, Inc. (R&J) completed a geotechnical investigation for the design of the Utility Waste Landfill (UWL) for the Ameren Missouri Sioux Energy Center (SEC), located on Hwy. 94 in St. Charles County, Missouri. R&J was part of a design team for the UWL that included Gredell Engineering Resources, Inc. (GER) and Ardaman & Associates, Inc. (A&A). The principal component of the waste in the original UWL was gypsum, to be deposited in six wet stacks or cells. The gypsum is the by-product of the wet flue gas desulphurization (WFGD) scrubbers installed at the SEC. R&J's scope of work included: 1) field boring and laboratory testing programs to characterize the geotechnical engineering properties of the subsurface soils strata, 2) global stability analyses of the gypsum stack and the perimeter berm, 3) settlement analyses of the consolidation of the foundation soils, 4) liquefaction analyses of the foundation soils, 5) design of the perimeter berm, and 6) recommendations for the earthwork construction of the UWL. Because the wet gypsum stacks were to exceed 35 feet, the UWL was permitted as an industrial dam by the Missouri Department of Natural Resources – Dam and Reservoir Safety Program (MDNR-DRSP). Part of R&J's scope was compliance with the MDNR-DRSP regulations. The design of the gypsum stack – including the internal stability, drainage, liner, and operation – was the responsibility of A&A and was covered in a separate report. This geotechnical report pertains to R&J's scope of work. The original Geotechnical Report was included as Appendix K of the Construction Permit Application (CPA) submitted to the MDNR - Solid Waste Management Program (MDNR-SWMP) on January 29, 2007, and revised in September 2007. Construction Permit No. 0918301 was issued on March 28, 2008. Cell 1 and the Recycle Pond were constructed in 2008 and 2009, and began operation in 2010.

A modification to the original CPA was first submitted in June 2010 to change future gypsum Cells 4, 5 and 6 to be reconfigured as Cells 4, 5, 6 and 7 for the storage of dry Coal Combustion Residuals (CCRs) from the SEC. R&J's Geotechnical Report was revised accordingly in February 2011, August 2011, November 2011, and finally amended in August 2014. The August 2014 amendment has been incorporated into this revised Geotechnical Report. The modified Construction Permit No. 0918301 was approved in February 2013.

Construction of the western half of Cell 4 (designated "Cell 4A") was completed in November 2013. The third phase of the construction of Cell 4A was the initial filling with CCR (fly ash) to resist potential hydrostatic uplift on the bottom liner due to flooding. R&J submitted a Construction Quality Assurance (CQA) Summary Report for Phase 3 on May 29, 2014. This report included the results of additional laboratory testing on the fly ash placed in Cell 4A and additional slope stability analyses in response to questions from MDNR-SWMP during Phase 3. Also, this report included calculations of the resistance to hydrostatic uplift in response to questions from MDNR-SWMP. These findings have been incorporated into this revised Geotechnical Report.

REITZ & JENS, INC.

1.2 Summary of Revisions for 2020 CPM

The Amended 2014 Geotechnical Report has been revised in accordance with the proposed changes to the SEC UWL, specifically: 1) the gypsum cells will not be wet stacked but will be closed with the gypsum left in place; 2) wet gypsum Cells 2 and 3 will be combined to form a single Cell 2; 3) an "aquiclude" geomembrane will be constructed below the composite liners in the new cells to comply with the EPA CCR Rule; and 4) the permanent caps for closure of the wet gypsum Cells 1 and 2 and dry CCR Cells 4, 5, 6 and 7 will include a HDPE membrane on the top and side slopes to comply with the EPA CCR Rule. The overall footprint of the UWL will not be changed. Also, the approved height of the dry CCR cells will not be changed (top el. 525).

The wet gypsum cells will not exceed a height of 35 feet. Therefore, no portion of the UWL will require regulation by the MDNR-DRSP. Cell 1 was built under MDNR-DRSP Construction Permit C-426 (MO40160), which had to be renewed annually as Cell 1 would be "under construction" until it was closed. This permit is no longer required. The gypsum in Cell 1 was never "wet stacked" above the perimeter berm. The configuration of the closed Cell 1 as described in the 2020 CPM is analyzed for slope stability and settlement herein. The original Geotechnical Report addressed dam safety requirements – dam type and downstream environmental class, seismic analyses, precipitation and spillway capacity, and operations and maintenance. Because the gypsum cells are no longer regulated by the MDNR-DRSP, these sections have been removed except for the seismic analyses. The seismic analyses have been significantly revised as explained in Section 5.

1.2.1 Field Investigation

No additional geotechnical field investigation was required because the UWL will occupy the same footprint. The geotechnical investigation for the UWL was completed in two phases: Phase 1 for the Detailed Site Investigation, and Phase 2 for the construction permit application. The description of the geotechnical investigation from the original approved CPM is included herein.

1.2.2 Laboratory Testing

No additional laboratory testing of soils was completed for this revision. Additional laboratory testing on CCR (fly ash) was performed previously for the modification to the CPM in 2011 for the addition of the dry cells. Also, additional laboratory testing on CCR from Cell 4A was performed in response to questions from MDNR-SWMP on the Phase 3 CQA Report for Cell 4A. These additional tests are included in this revised report, as explained in Section 3.3.

1.2.3 Seismic Risk Assessment and Analyses

The original seismic analyses for the Sioux UWL was based upon the criterion established in the MDNR-DRSP regulations. The required design criterion for an industrial water retention dam over 50 feet high and a Class II downstream environment was 0.5 PMA or 0.10g. Because Ameren will not be wetstacking the gypsum in Cells 1 and 2, the UWL will no longer be regulated by the MDNR-DRSP. Therefore, the seismic design criterion has been revised to comply with the EPA 2015 CCR Rule. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground

Acceleration (PGA) for the geometric Maximum Credible Earthquake (MCE_G) with a 2% probability of exceedance in 50 years. The basis for the seismic analyses is presented in Section 5. The potential for liquefaction of the subsurface soil strata were analyzed for the revised PGA and are presented in Section 6.0.

1.2.4 Slope Stability Analyses

The stability of the side slopes of the perimeter berms and the CCR fill at six sections were analyzed which had varying geometries and subsurface soil profiles. Each section was analyzed for the short-term (end of construction) geometry and for the completed cell, and using the short-term and long-term shear strength properties as appropriate. The seismic loading conditions were also analyzed, as well as the postseismic condition with liquefaction occurring in the subsurface soil strata where indicated by the liquefaction analyses. Potential sliding block failures along the interface with the composite liner and aquiclude and the stability of the final cover were also analyzed. All of these analyses demonstrate that the proposed design meets or exceeds the minimum factors of safety for slope stability in accordance with the MDNR-SWMP regulations, the *Draft Technical Guidance Document on Static and Seismic Slope Stability for Solid Waste Containment Facilities* by MDNR-SWMP and Dr. Timothy Stark, and the EPA CCR Rule. Because the factors of safety against slope failure under the design seismic event were all greater than 1.0 for the various sections, the potential lateral displacement would be minor. The potential lateral displacements due to the seismic load were not estimated.

1.2.5 Settlement Analyses

The consolidation of the subsurface soils and the resulting settlement of the final UWL was estimated using the data from the boring logs and data from Cone Penetrometer Test (CPT) soundings for the Sioux Energy Center. The analyses were done using the SETTLE3D. These results demonstrate that the composite liner will not be subjected to damaging strains due to settlement. Also, the top of the perimeter berms will not settle below the 100-year flood level. The estimated settlement was used for design of the leachate collection system for the dry cells. Potential settlement due to liquefaction was also considered.

1.2.6 Impacts Due to Flooding

Because the site of the UWL is located in a floodplain, the Missouri solid waste regulations require that the design of the UWL prevent damage to the composite liner that could result from hydrostatic uplift during the 100-year flood. This requirement is satisfied by the initial operation of the UWL, during which sufficient process water will be placed in the wet cells or CCR fill will be placed in each dry cell to resist the hydrostatic uplift. The design of the perimeter berms prevents flood water from contacting the CCR in the cells. Another potential consequence of flooding would be erosion of the west perimeter berm and a portion of the south perimeter berm for Cell 1 should there be a breach of the BNSF Railroad embankment to the south of the UWL such as occurred in 1993. Riprap erosion protection has been designed for such an occurrence.

1.3 Summary Conclusion

Other findings and recommendations in this Geotechnical Report pertain to the bearing capacity of subsurface soils, earthwork construction procedures, soil material requirements, and quality assurance. Our professional engineering judgment is that the Sioux Energy Center UWL design and operating procedures described in this report are in accordance with generally accepted engineering practice, utilizing conservative assumptions where necessary, and therefore meet or exceed all of the requirements of the Missouri Soil Waste Management Law and Regulations, MDNR-SWMP engineering guidelines, and the EPA CCR Rule.

2.0 GEOTECHNICAL INVESTIGATIONS

No additional geotechnical field investigation was required because the UWL will occupy the same footprint. Therefore, the following Section 2 has not changed. The geotechnical investigation for the UWL was completed in two phases: Phase 1 for the Detailed Site Investigation, and Phase 2 for the construction permit application.

2.1 Detailed Site Investigation (DSI)

The field investigation for the DSI consisted of 57 geologic test holes (PZ-1 through PZ-57), in which PVC standpipe piezometers were installed, and 57 geotechnical borings (B-58 through B-114). The locations of these test holes and borings are shown in Figure 1. Fifty of these borings, B-58 through B-107, were located along the proposed alignment of the perimeter berm at that time (Fall 2005). The borings were alternately staggered approximately 50 feet on either side of the proposed centerline of the berm to provide a broader coverage, and were spaced approximately 250 feet apart. Seven other borings were made on the inside and outside of the proposed berm, to provide cross-sections of the subsurface conditions for stability analyses and settlement calculations.

All but three of the borings were made to a minimum depth of 30 feet. Three borings (B-58, B-75 and B-113) were extended to auger refusal, primarily to obtain N-values from the Standard Penetration Test (SPT) for seismic site classification and liquefaction analyses. The shallow borings were extended beyond the minimum depth of 30 feet to a depth where the following two criteria were met: 1) the uncorrected N-value from the Standard Penetration Test (SPT) was a minimum of 12 blows/foot, and 2) the last 15 feet of soil was classified as sand or gravel (Unified Soil Classifications of SW, SP, SM, GW,GP, GP-SP). The actual depths of the shallow borings were all 31 to 31.5 feet; that is, the two criteria were met at the planned minimum depth. The three deep borings were extended to drilling or sampler refusal on bedrock. The final depths of the deep borings were: 114.15 feet in B-58, 115.5 feet in B-75, and 114.85 feet in B-113.

Details of the Phase 1 geotechnical investigation and the individual boring logs are included in Appendix 7 of the report "Detailed Geologic and Hydrologic Site Investigation Report for AmerenUE Sioux Power Plant Proposed Utility Waste Disposal Area, St. Charles County, Missouri," Volume 2, August 2006.

2.2 Phase 2 Investigation

Geotechnical samples were not taken from the geologic test holes. The Phase 1 geotechnical borings were limited to the proposed alignment of the perimeter berm. Additional samples were needed throughout the area of the UWL to quantify the soils on site that would be suitable for construction of the liner and final cover. Also, the potential borrow area south of Dwiggins Road and north of the right-of-ways for the buried petroleum pipelines ("South Borrow"), and the area between Ameren's railroad spur into the Sioux Plant and the proposed western edge of the UWL ("West Borrow"), had to be investigated. Therefore, a second field investigation was done over four days between October 17 through 24, 2006.

The Phase 2 investigation consisted of 90 test holes (TH-115 through TH-205, without TH-179), the approximate locations of which are shown in Figure 1. These tests holes were located between the geologic test holes to maximize coverage of the UWL area. Each test hole was "continuously" sampled using hydraulically-pushed 3-inch O.D. Shelby tubes. Each Shelby tube was pushed 24 inches, beginning at the ground surface. The test hole was cleaned with a 4-inch diameter continuous-flight auger after each sample was taken. The sampling was continued to approximately el. 420. The elevation at the ground surface was estimated from the topographic survey by Kuhlmann Design Group (KdG). The field work was directed by R&J's geotechnical engineer. All Shelby tubes were sealed with plastic caps and duct tape, and taken to R&J's lab.

3.0 LABORATORY TESTING

No additional laboratory testing was performed on soils for this revision. Additional laboratory testing on CCR (fly ash) was previously performed as explained in Section 3.3. The other portions of Section 3.0 have not been changed from the previous Appendix K.

3.1 Classification of Phase 2 Test Holes

All of the Phase 2 Shelby tube samples were extruded in R&J's lab. The soil samples were classified and logged by a senior soils technician in general accordance with ASTM D2487-00 "Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System)" and D2488-00 "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)." The samples were sorted into five groups based upon the visual soil classification: 1) high plastic clay, 2) low plastic clay, 3) borderline silty clay or clayey silt, 4) non-plastic silt, and 5) sand. The non-plastic silt and sand were discarded because these soils would not be suitable for the liner or final cover. Moisture content and dry unit weight were measured on selected samples, to develop shrinkage factors for construction. The results of the classification of the samples are presented in the table in Appendix A.

3.2 Tests on Natural Soil Deposits

The general purpose of the Phase 1 testing program was to obtain soil properties for the determination of: bearing capacity, short-term and long-term slope stability, seepage characteristics of the top stratum finegrain soils and the underlying sand strata, grain-size analyses for liquefaction potential, settlement

characteristics, and soil classifications for the potential use of soils for fill materials. The procedures for assigning lab tests and the results are presented in Appendix 8 of the above-referenced DSI report. Grain-size analyses (ASTM D422) were performed on selected cohesionless samples (Unified Soil Classifications of SW, SP, SM, GW, GP, GP-SP). If the percentage of fines (passing #200 U.S. sieve) was greater than 25%, then a hydrometer analysis would have been performed on the fine-grain portion of the sample. A total of 186 grain-size analyses were performed. No hydrometer analyses were run.

Unconsolidated-undrained (U-U) triaxial shear strength tests (ASTM D2850) were performed on selected Shelby tube samples from each major cohesive soil stratum. The U-U tests were performed at the estimated confining pressure of the sample in the field conditions, to measure the *in situ* shear strength of the soil. Twenty-six U-U tests were performed.

Series of consolidated-undrained (C-U) triaxial shear strength tests (ASTM D3080) were performed on each major cohesive soil stratum and at intervals around the proposed perimeter berm. The tests were performed with the measurement of internal pore water pressures so that the effective strength properties of the soil could be determined. Ten series of C-U tests were performed.

Four one-dimensional consolidation tests (ASTM D2435) were performed on selected relatively undisturbed Shelby tube samples from each major cohesive soil stratum beneath the UWL.

Six flexible-wall hydraulic conductivity tests (ASTM D5084) were performed on selected relatively undisturbed Shelby tube samples of the upper clays.

The results of the triaxial shear strength tests, consolidation tests and hydraulic conductivity tests are summarized in Table 1.

3.3 Tests on CCR from Sioux Plant

It was originally planned that ash from the Sioux Plant will be used for construction of at least a portion of the perimeter berm and possibly some interior dikes. R&J performed a study in 2002 of the geotechnical engineering properties of the ash stored in the pond at Sioux Plant for the construction of a railroad loop expansion at the plant. A description of the study and the results are reproduced in Appendix 2.

Two series of consolidated-undrained (CU) triaxial compression tests with pore pressure measurements were run on samples of the fly ash from the Sioux Plant, to obtain the effective cohesion (c') and effective internal friction angle (ϕ ') for new stability analyses. A bulk sample of the fly ash was obtained from the fly ash that Kolb Construction hauled into Cell 1 for the construction of the ring drain and access roads. Cylindrical test specimens of the fly ash were formed in two ways: Sample 1 was formed in a mold with as little compaction as possible so as to form a specimen that still could be prepared for testing; Sample 2 was compacted in a mold to 100% of the maximum dry unit weight (γ d) based on the standard Proctor Moisture-Density tests performed on the fly ash for construction of the ring drain in Cell 1. The γ d of Sample 1 was 64.1 lbs/ft³ (pcf). This represents the condition of the fly ash if it is placed in the dry cell with minimal compaction. In practice, some compaction of the fly ash will be necessary for the dozers,

Ameren Missouri Sioux Energy Center Utility Waste Landfill

				Table I	. Geoleo	innical F	roperties								1
			I					Undraine	ed Shear	Effective	e Shear	Consc	olidation Pro	perties	Hydraulic
			I	Moisture	Dry Unit	Liquid	Plasticity	Strength F	Properties	Strength F	Properties	1	Recomp.	Comp.	Conduct.
Boring	Sample	Sample	USCS	Content	Weight	Limit	Index	Cohesion	Friction	Cohesion	Friction	Pc	Index	Index	k
No.	No.	Depth	Class.	%	pcf	%	%	c, psf	Angle, ø	c', psf	Angle, ø'	psf	Cs	Cc	cm/sec
B-58	ST-2	4	CH	34	85.2	71	62	c, psi	γ angle, φ	c, p3i	Angie, φ	p3i	03	00	5.0E-08
								640	0						5.0E-06
B-59	ST-3	6.5	CH	30.9	82.4	74	51	640	0						
B-61	ST-1	4	CH	33.4	84.2			1370	0						
B-62	ST-2	4	CH	30	88.4			2090	0						
B-64	ST-2	4	CH	32.2	85.4	84	61	2300	0						
B-66	ST-1	1.5	СН	33.4	87.5	86	61	1780	0						
B-66	ST-2	6.5	CL	32.9	87.6			960	0						
B-70	ST-2	4	CH	43	77.3	99	70	470	14.5	330	24.4				
						99	70			330	24.4				0.05.00
B-70	ST-4	9 4	CH	35.2	84.4			1120	0						2.3E-06
B-71	ST-2		СН	37.9	80.6			1360							
B-72	ST-2	4	CH	37.9	80.9			410	15.0	350	24.6				
B-73	ST-3	6	SM	21.2	83.3	29	2					2940	0.01	0.18	
B-76	ST-1	1	СН	39.7	79.5			540	9.3	480	14.7				
B-76	ST-4	8.5	CL	23.2	76.7	31	8					4260	0.01	0.11	
B-77	ST-2	4	CH	28	91.6	01	0	2330	0			4200	0.01	0.11	
B-77	ST-4	9	CL-ML	32.7	85.9			880	0						
B-81	ST-3	6.5	CH	35.6	86.8	64	43	750	13.7	340	27.4				
B-82	ST-1	1.5	CH	35.3	86.3			2050	0						
B-83	ST-2	4	СН	35.5	84.9			1760	0						
B-84	ST-1	1.5	CH	36.8	84.4			2790	0						
B-85	ST-2	4	CL	40.6	79.5	48	23	1050	0						6.6E-05
B-86	ST-1	1.5	CH	42.3	79.1			1000	<u>_</u>						5.0E-09
B-87	ST-2		CH	36.1		90	62	1560	0						5.0L-03
		4			84.7	89				000	00.0				
B-88	ST-1	1.5	СН	31.9	88.4	75	24	360	20.6	300	39.8				
B-90	ST-2	4	CL	36.4	81.4			1610	0						
B-91	ST-1	1.5	CH	30.6	87.4			970	0						
B-96	ST-2	4	ML	17.2	80.3	31	3	1740	0						
B-99	ST-3	6.5	ML	27.8	89.8			130	41.2	360	34.4				
B-100	ST-1	1	СН	27.9	92.4	60	32								6.8E-08
B-100	ST-1	1.5	CH	33.9	86.3	59	38								4.7E-08
B-101 B-101	ST-2	4	ML	11	88.9			4250	0						4.7 ⊑-00
						75	40		-						
B-103	ST-2	4	CH	33.8	73.4	75	49	1480	0						
B-103	ST-2	5.25	CL-ML	26.6	89.2			1190	0						
B-104	ST-1	1.5	СН	32.6	86.9			1250	0						
B-105	ST-2	4	CH	30.5	90.6	87	61	3112	0						
B-105	ST-5	11	CL-ML	32.4	86.4			1450	0						
B-106	ST-2	4	CH	26.8	95	88	63	3760	0						
B-100	ST-2	4	CH	42.2	80.7			1410	0						
	ST-2 ST-2														
B-109		4	CL-ML	26.6	93			2410	0						
B-110	ST-1	1.5	СН	26.5	92.4			1300	0						
B-111	ST-2	3.5	CH	37	78.7	94	54					5100	0.07	0.36	
B-112	ST-1	1.5	CH	33.6	88.3	91	66	1780	0			3560	0.08	0.31	
B-112 B-113	ST-1					42		820	10.0	420	25.0				

Table 1: Geotechnical Properties of Samples from Phase 1 Borings

REITZ & JENS, INC.

trucks and other vehicles to traverse the dry cell. The γ_d of Sample 2 was 78.9 pcf at a moisture content of 35.2%. The results of the two series of CU triaxial tests are presented in Appendix 2.1. Sample 1 had a ϕ ' of 19.4° and a c' of 200 psf. Sample 2 had a ϕ ' of 35.7° and a c' of 280 psf. A series of direct shear tests was also performed on a lightly-compacted sample of fly ash on a textured HDPE liner. The results are presented in Appendix 2.1. The interface friction angle measured 34.8°.

Our CQA Report for Phase 2 of the construction of Cell 4A reported the field density testing of the perimeter soil berms and the CCR berm. The compaction criterion stated in Appendix K of the modified Construction Permit Application (CPM) was based upon standard Proctor moisture-density tests performed on CCR samples at the time of our analyses. However, the properties of the CCR are variable. We found after construction of the CCR berm began that the maximum dry unit weight of 79 pcf was greater than could be achieved with the CCR that had been excavated from the pond and stockpiled. This is explained in our response to Comment 22 in "Cell 4A Construction Quality Assurance (CQA) Report, Response to MDNR-SWMP Comments" dated November 27, 2013. Based on previous tests and additional standard Proctor tests on new samples of the CCR, the maximum dry unit weight for ponded CCR was changed to 68 pcf. The criterion was established to achieve the desired engineering properties of the perimeter CCR berms. The actual average moist unit weight of the compacted CCR in the temporary east berm of Cell 4A is 104.8 pcf.

In response to questions from MDNR-SWMP regarding the compaction of the CCR berm, and to develop a better understanding of the shear strength of ash placed at a dry unit weight less than initially specified, we molded a specimen of the CCR to a density of approximately 57.5 pcf for a consolidated-undrained (CU) triaxial compression test (ASTM D4767). The dry unit weight of the specimen was much less than that achieved in the field for either the CCR fill or the CCR berm. Therefore, the shear strength properties of the test specimen are less than that of the *in situ* CCR fill and CCR berm. The effective angle of internal friction (ϕ ') obtained from the triaxial compression test was 27°. A plot of the CU test results is presented in Appendix 2.2 from our Phase 3 CQA report for Cell 4A. The assumed shear strength properties of the CCR fill for design was ϕ ' = 19° and effective cohesion (c') of 200 psf.

3.4 Tests on Composite Samples

3.4.1 Formation of Composite Samples

The retained soil samples from the Phase 2 borings were designated as high plastic clay ("CH"), low plastic clay ("CL"), and borderline very silty clay and clayey silt ("MCL"), based on the initial visual classification. In order to maintain the aerial location of each class of soil sample, the 90 Phase 2 borings were divided between 11 sections. The plan of the sections ("A" through "K") is shown in Appendix 1. The samples with the same classification and in the same section were combined to form 11 composite samples of each of the three classes of soil. Atterberg liquid and plastic limits tests were performed on each of the three soil types from each section. These results are shown in Table 2. Grain-size analyses (sieve and hydrometer) were also performed on each sample. The results of the gain-size analyses are included in Appendix 3. Many of the samples that were visually classified as CL were actually high plastic, that is the samples had a liquid limit equal to 50% or higher. Based on the soil classifications and Atterberg limits, soil samples. These composite samples, Nos. 1 through 10, are listed in Table 2.

REITZ & JENS, INC.

Atterberg liquid and plastic limits and standard Proctor moisture-density tests (ASTM D698) were performed on each of the 10 composite samples. The results of the Atterberg limit tests are presented in Table 3. A representative bulk sample of the upper silty sands and sandy silts was obtained, to mix with a composite clay sample for a hydraulic conductivity test. A standard Proctor was also performed on the sandy silt. The maximum dry unit weights (γ_d) and optimum moisture contents from the standard Proctor tests are shown in Table 3 and the test results are included in Appendix 4.

3.4.2 Hydraulic Conductivity Tests

Five test points were molded for each standard Proctor test. One of the compacted specimens from each of the 10 composite samples and the sandy silt was selected for a hydraulic conductivity test (ASTM D5084). The sample that was selected had a γ_d about equal to 95% of the maximum γ_d and compacted at a moisture content that was 0 to 4% above the optimum. Each selected compacted specimen was trimmed from the standard Proctor mold to have a diameter of 2 inches and a length of 3 to 4 inches. Because the specimen was trimmed from the center of the mold, the specimen had an initial γ_d that was greater than 95% of the maximum γ_d . The initial γ_d and moisture content of each specimen is shown in Table 3. Each specimen was placed in a triaxial cell with a flexible membrane and was then saturated under 70 psi pressure. Multiple pressure increment tests were performed to verify that the specimen was saturated. Then, the specimen was consolidated under a differential pressure of 5 psi. After consolidation, a differential pressure between the top of the sample and the bottom of the sample was applied to create a pressure gradient in accordance with the ASTM procedure. The results of the hydraulic conductivity tests are presented in Table 3 and the data and results are included in Appendix 5.

3.4.3 Triaxial Shear Strength Tests

Following the hydraulic conductivity test, the cell was broken down to apply side drains to the specimen, and then the triaxial cell was reassembled to run a consolidated-undrained (C-U) triaxial shear strength test with pore pressure measurements (ASTM D4767). The results of the C-U tests are included in Appendix 6.

4.0 DESCRIPTION OF SOILS

4.1 General Stratigraphy

The site of the UWL is located in the flood plains of the Mississippi River and the Missouri River, although now the embankment for the BNSF railroad track effectively separates the site from the Missouri River. Deposition of soils in a flood plain of a river is dependent on the velocity of the water – as the flood waters slow the larger size particles are deposited first, and then the finer particles. The velocities of the water vary over the flood plain and with each flood as the topography changes. Therefore, soil deposits in a flood plain ("alluvial" deposits) vary greatly both with depth and in horizontal extent. The borings and test holes in the site reveal a typical alluvial stratigraphy.

Composite Group #	R&J ID #	Composite Sample Number	% Passing #200 Sieve	% Silt	% Clay	LL	PL	PI
1	H-1	H-CH	96.9	16.4	80.5	80	21	59
	E-1	E-CH	99.3	12.5	86.8	82	28	54
2	G-1	G-CH	93.4	25.2	68.2	69	21	48
	D-1	D-CH	99.2	19.7	79.5	76	31	45
	F-1	F-CH	98.7	23.7	75.0	72	28	44
	B-1	B-CH	99.0	25.1	73.9	71	27	44
3	A-1	A-CH	98.7	19.4	79.3	69	26	43
	E-2	E-CL	99.0	19.7	79.3	67	24	43
	C-1	C-CH	99.0	27.1	71.9	62	20	42
	C-2	C-CL	97.9	36.9	61.0	52	19	33
	D-2	D-CL	98.9	36.0	62.9	59	27	32
4	A-2	A-CL	97.9	38.2	59.7	52	21	31
	G-2	G-CL	92.3	43.5	48.8	47	18	29
	E-3	E-MCL	96.3	48.1	48.2	46	19	27
5	H-2	H-CL	95.6	51.7	43.9	43	21	22
	C-3	C-MCL	93.5	49.8	43.7	40	20	20
	A-3	A-MCL	90.7	47.7	43.0	39	19	20
	B-2	B-CL	90.0	49.7	40.3	41	22	19
6	D-3	D-MCL	94.8	51.3	43.5	40	23	17
	B-3	B-MCL	97.2	58.5	38.7	39	22	17
	F-2	F-CL	85.3	41.5	43.8	39	22	17
7	G-3	G-MCL	96.7	61.1	35.6	37	21	16
	H-3	H-MCL	93.2	56.8	36.4	36	22	14
	F-3	F-MCL	83.2	52.3	30.9	33	20	13
Q	J-1	J-CH	99.3	18.2	81.1	70	22	48
8	K-1	K-CH	99.3	17.5	81.8	75	29	46
9	K-2	K-CL	98.1	30.8	67.3	60	22	38
	I-1	I-CH	99.3	29.0	70.3	61	24	37
	I-2	I-CL	98.0	32.7	65.3	55	20	35
	J-2	J-CL	98.2	32.2	66.0	53	20	33
	I-3	I-MCL	95.7	42.7	53.0	44	19	25
10	K-3	K-MCL	95.8	51.0	44.8	37	22	15
	J-3	J-MCL	95.5	58.1	37.4	34	21	13

Table 2 Summary of Classifications of Phase 2 Samples

				Standard Proctor, ASTM D698 Permeability Sample		Shear Strength Properties						
Composite #	USCS Classification	Liquid Limit	Plastic Index	Maximum Dry Density, pcf	Optimum Moisture Content	Initial Dry Density, pcf	Initial Moisture Content	Hydraulic Conductivity k, cm/sec	Undrained Cohesion, c, psf	Undrained Friction Angle, ø	Effective Cohesion, c', psf	Effective Friction Angle, ¢'
1	СН	85	62	89.9	27.9%	90.7	29.3%	1.5E-09	500	14.8°	600	20.9°
2	СН	77	53	93.2	25.5%	93.7	27.1%	2.2E-09				
3	СН	74	52	93.0	26.3%	92.7	28.2%	1.9E-09				
4	СН	54	34	100.4	21.7%	100.5	23.8%	3.0E-09				
5	CL	42	22	102.5	19.6%	103.7	20.6%	2.7E-08				
6	CL	40	18	101.7	20.2%	94.2	26.5%	1.7E-08				
7	CL	36	14	101.7	19.5%	96.1	25.0%	2.3E-07	160	19.4°	200	26.9°
8	СН	80	58	90.6	26.5%	91.3	27.8%	3.6E-09				
9	СН	61	41	96.9	23.2%	95.2	26.5%	2.8E-09				
10	CL	42	25	101.6	19.4%	99.2	22.3%	1.6E-08				
70% Composite #7 plus 30% fine Sandy SILT	CL	30	23	102.3	18.0%	98.1	23.6%	4.5E-07	130	21.3°	100	29.7°
Fine Sandy SILT	ML			99.6	16.9%	99.7	19.1%	2.5E-05				

Table 3: Summary of Geotechnical Properties of Phase 2 Composite Samples

The generalized logs from the geotechnical borings around the perimeter berm are illustrated in the profiles in Figures 2 through 4. The surface soils are generally clays and silty clays with scattered seams and layers of low plastic silt, underlain by silts. The thicknesses of these fine-grain deposits ranged from 0 to 24 feet, but generally between about 5 to 10 feet. The large number of Atterberg liquid limit (LL) and plastic limit (PL) tests performed on the Phase 2 test holes reveal that the clay soils are almost all high plastic (with a LL \geq 50%). The LL measured on samples from the Phase 1 geotechnical borings ranged from 2% to 77% and averaged 44%. The LL measured on the samples from the Phase 2 test holes ranged from 2% to 77% and averaged 70%. The PI of samples from the Phase 2 test holes ranged from 13% to 59%. The fine-grain soils are firm to stiff, with undrained cohesive shear strengths of 500 psf to over 2000 psf.

The upper fine-grain soils are underlain by sandy silts, silty fine sands, and fine sands, generally to a depth of 30 feet. These upper sandy soils are generally loose to medium-dense. The upper sandy soils are underlain by fine to coarse, poorly-graded sands (SP) and well-graded sands (SW), with some silty sands (SM) and gravelly sands at greater depths. Limestone bedrock is at a depth of about 115 feet. These lower sands generally ranged from medium dense to very dense, increasing in density with increasing depth.

4.2 Materials for Bottom Liner

Soils for the bottom composite liner must have the following properties from 10 CSR 80-11.01(10):

- Have particles with 30% or more passing a #200 U.S. sieve
- Have a liquid limit $\geq 20\%$
- Have a plasticity index $\geq 10\%$
- USCS Soil Classification of CL, CH or SC

The results on the Phase 2 soil samples presented in Table 2 show that all of the soils tested meet these criteria for use in the liner.

The report on the design of the gypsum stack previously submitted to SWMP by GER and A&A stated that the compacted soils for the liner will have a maximum hydraulic conductivity (K) of 1×10^{-7} cm/sec. The measured K for composite samples #1 through #6 from the main area of the UWL, and samples #8 through #10 from the south borrow area, all met or exceeded this criterion. The only composite sample that had a greater K (2.3×10^{-7} cm/sec) was the low plastic clay (#7). The mixture of low plastic clay and 30% by weight sandy silt had a K of 4.5×10^{-7} cm/sec. Therefore, the low plastic clay, or a mixture with up to 30% sandy silt, meets the requirement for the final cover, which is a K of 1×10^{-5} cm/sec or less.

The descriptions of the Phase 2 soil samples presented in Appendix 2 show that both the suitable and unsuitable soils have the same range of colors, from dark gray or brown, to medium gray or brown, except that the light tan soils are generally non-plastic silts or sands that are not suitable. The soils will have to be segregated in the field on the basis of plasticity – that is, soils with a LL of 40% or greater will be suitable for the liner. All of the soils be suitable for the final cover, although cohesive soils are recommended rather than non-plastic silts or sands.

The surface plowed zone, varying from 0 to 15 inches deep, contains roots and decaying organic matter from the agricultural use. The surface soils containing organic matter should be excluded from the materials to be used in the liner. Where corn has been planted, the top soil may contain an abundance of root balls; this material should not be used for fill. The soils containing fine roots and organic matter may be used for surface vegetative covers and for construction of the perimeter berm.

4.3 Materials for Aquiclude Soil Protection and Final Cover

After the Aquiclude Geomembrane has been placed, tested and surveyed, a 12-inch thick layer of silty clay or clayey silt will be placed and semi-compacted by tracking with a small wheeled compactor or a low-ground pressure tracked dozer. The soil used will not contain rocks or any objects which might damage the geomembrane. The type of equipment will be selected based upon the Test Pad. The protective soil layer will be compacted such that there will be no rutting or displacement by the compaction equipment for the compacted clay of the bottom composite liner. The semi-compacted soil protection layer will have an approximate unit weight of 120 lbs./ft³ and a minimum interactive friction angle of 15° with the aquiclude membrane as assumed for the stability analyses. Laboratory testing will be required to verify these properties once the soils and membrane are proposed.

Similarly, the soil for the final cover will be silty clay or clayey silt. The final cover will be placed and semi-compacted similar to the aquiclude soil protection layer. The soil used will not contain rocks or any objects which might damage the geomembrane. The semi-compacted soil layer will have an approximate unit weight of 120 lbs./ft3 and a minimum interactive friction angle of 20.5° with the HDPE membrane for the final cover as assumed for the stability analyses. Laboratory testing will be required to verify these properties once the soils and membrane are proposed.

4.4 Materials for Berm Construction

The other excavated materials, silty clays, clayey silts, sandy clays and clayey sands will be suitable for the construction of the perimeter berm, interior dikes and other fills. Cohesionless, permeable soils (poorly-graded sands, fine sands and gravels) should not be used for perimeter berms because these soils are erodible and may permit the build-up of hydrostatic pressures below the interior composite liner. The properties of the compacted berm soils will have a minimum undrained cohesive strength (s_u) of 800 psf, and a minimum effective cohesion (c') of 10 psf and a minimum effective internal friction angle (ϕ ') of 30°. Laboratory testing will be required to verify these properties.

5.0 SEISMIC ANALYSES

The original seismic analyses for the Sioux UWL was based upon the criterion established in the MDNR-DRSP regulations. The Probable Maximum Acceleration (PMA) of bedrock was defined as 20% of gravity (0.20g) for St. Charles county. The required design criterion for an industrial water retention dam over 50 feet high and a Class II downstream environment was 0.5 PMA or 0.10g. Because Ameren will not be wet-stacking the gypsum in Cells 1 and 2, the UWL will no longer be regulated by the MDNR-DRSP. Therefore, the seismic design criterion has been revised to comply with the EPA 2015 CCR Rule.

REITZ & JENS, INC.

Typical cross-sections were analyzed for slope stability using a pseudo-static horizontal acceleration as a body force on the soil and CCR masses to calculate the minimum factors of safety for a design seismic event. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground Acceleration (PGA) for the geometric Maximum Credible Earthquake (MCE_G) with a 2% probability of exceedance in 50 years. A portion of the 2014 map which includes the SEC is reproduced in Figure 5. The PGA is 0.187g. This PGA must be adjusted to account for the soil profile at the site. This adjustment was based upon the ASCE7-10 code. The adjustment (F_{PGA}) from Table 11.8-1 for Seismic Site Class E is 1.434. Therefore, the adjusted Peak Ground Acceleration for the site effects (PGA_M) is equal to $F_{PGA} \times PGA = 0.268g$. This PGA_M was used for liquefaction analyses.

A seismic coefficient of 0.5 was applied to the PGA_M to determine the pseudo-static horizontal acceleration for stability analyses. This is consistent with the Mine Safety and Health Administration (MSHA) 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, in particular Chapter 7, "Seismic Design: Stability and Deformation Analyses." The manual cites research by Hynes-Griffen and Franklin (1984) which found that for a seismic coefficient of 0.5 the probable deformations would be less than 3 feet for a factor of safety of 1.0. Therefore, the pseudo-static horizontal acceleration of 0.134g was used for stability analyses.

6.0 LIQUEFACTION ANALYSES

Each of the geotechnical borings within the UWL was analyzed for liquefaction potential. The potential of liquefaction in the sands and silty sands was estimated using the analysis developed by H. Bolton Seed and others (H. Bolton Seed, et al, 1985). Liquefaction is the loss of shear strength during an earthquake due to the build-up of pore pressures and the corresponding decrease in effective stress (σ '). Liquefaction generally occurs in loose to medium-dense clean sands or silty sands below the ground water table. The analysis uses corrected N-values, (N₁)₆₀, from the SPT to estimate the cyclic stress ratio (CSR) that will cause liquefaction. The CSR is compared to the applied stress ratio (ASR) from the design seismic acceleration. N-values are corrected for a number of factors, such as the type of SPT hammer, the length and size of the drill rods, the diameter of the hole, etc. in accordance with ASTM D6066. The factor of safety (FS) against liquefaction is equal to the ratio of (CSR/ASR). A FS \leq 1.0 is considered a high risk of liquefaction; 1.0 < FS \leq 1.28 is considered a moderate risk of liquefaction, and FS > 1.28 is considered a low risk. The liquefaction analyses are included in Appendix 7 and are summarized in Table 4. The studies of liquefaction show that it does not occur below 50 feet. Therefore, the result of the analyses shown in the tables in Appendix 7 is shown as "n.a." for not applicable.

The maximum acceleration for the analyses is 0.268g. The moment magnitude (M_w) of the earthquake was assumed to be 7.5 which is the peak from the New Madrid Seismic Zone. The depth of the ground water table is critical in the liquefaction analyses. The elevation of the ground water table during the year of monitoring for the DSI varied between about 411 and 417. The water table was assumed to be at el. 417 for these analyses, because the probability of a flood occurring simultaneous with the design earthquake was assumed to be low. The onset of liquefaction decreases with increasing vertical effective stress. Therefore, the risk of liquefaction will decrease as the CCR height increases. Table 4 summarizes the results of the liquefaction analyses at locations where analyses determined there is greater than a low risk of liquefaction; the risk of liquefaction at the other locations of the Phase 1 geotechnical borings was low.

REITZ & JENS, INC.

Risk With Depth(s) Where Risk Under Risk Under Boring Existing Liquefaction 30 Feet of 40 Feet of No. Ground Occurs, feet CCR CCR Surface B-58 18.5, 29, 36, 49 High Low High B-59 24.29 High Low Low 15, 19, 24 B-60 High High Low 19, 24, 29 B-61 High High High B-62 19,29 High High Low B-63 10, 29 High High High 14 High High **B-64** High 24, 29 High B-65 High Low B-66 10, 19, 24, 29 High High High Low B-67 High Low B-68 Moderate Low Low 19, 29 B-69 High High Low B-70 29 High Low Low B-71 24 High High High 29 High B-72 Low Low B-73 14, 19, 24, 29 High High Low **B-74** Moderate Moderate Low B-75 19, 39, 49 High High Low B-76 15, 20, 25, 29 High High Low **B-77** 25,30 High Moderate Low B-78 20, 25, 30 High High Low B-79 20, 30 High High Low 25,30 High Moderate B-80 Low High High B-81 10 High B-82 15, 20, 30 High High Moderate B-83 19, 29 High High Low B-84 14, 19, 24 High Low High B-85 19,24 High High Low 19, 29 B-86 High High Moderate 14, 24 High Low **B-87** High 14, 19 High B-88 High Low B-89 29 High Low Low B-90 14 High High Low 19 B-91 High High Low B-92 Low Low Low 19,24 High B-93 High Low B-94 Low Low Low B-95 19, 24, 29 High High Low B-96 24, 29 High Moderate Low B-97 24, 29 High Moderate Low B-98 24, 29 High Moderate Low B-99 Moderate Low Low B-100 29 High Moderate Low B-101 14, 19, 29 High High Low B-102 19 High High Low B-103 14, 24, 29 High High Low B-104 Moderate Moderate Low B-105 19 High High Low B-106 29 Low Low High B-107 24 High Moderate Low B-108 24, 29 High Moderate Low B-109 29 High Low Low B-110 19, 24, 29 High High Low B-111 29 High High Low 24, 29 B-112 Moderate Low High B-113 14, 24, 44 High High Low

19,29

High

High

Low

B-114

Ameren Missouri Sioux Energy Center Utility Waste Landfill Table 4 - Summary of Results of Liquefaction Analyses

A high risk of liquefaction is pervasive on the site at the natural ground surface, as shown in Table 4. The risk of liquefaction will be beyond the perimeter berms where the existing vertical effective stress will not be increased by the placement of CCR in the cells. The liquefiable strata are the silty sand or poorly-graded sand below the upper cohesive soils and silts. The potential consequences of liquefaction are loss of shear strength and settlement. The loss of shear strength would impact the stability of slopes, and therefore is addressed under that section of this report. Potential settlement due to liquefaction may occur beneath the cells and under the perimeter berms at least until the level of the CCR exceeds about 40 feet. The magnitude of the settlement due to liquefaction is estimated using the empirical relationship between volumetric strain, ASR and $(N_1)_{60}$ developed by Tokimatsu and Seed (1987), which is reproduced in Figure 6. The estimated settlements are shown in the following table:

		Liquefaction Settlement (in)					
Boring	Section	Outside of the UWL (in)	Under Berm and 20' of Ash	Under 30' of Ash			
B-108	A	4.8	4.3	-			
B-61	В	3.8	3.1	-			
B-110	С	4.7	4.3	1.8			
B-84	D	3.9	3.5	0.9			
B-113	E	3.2	1.9	-			
B-95	F	7.8	6.7	-			

Table 5 – Estimate of Settlement Due to Liquefaction

The maximum estimated settlement due to liquefaction is about 7 inches in the vicinity of Boring B-95 either outside the cells or beneath 20 feet or less of CCR, but averages about 4 inches. Below about 30 feet of CCR, the estimated settlement due to liquefaction is about 2 inches or less. Tokimatsu and Seed estimate that the predicted strain is accurate to $\pm 25\%$, so an estimated settlement of 5 inches is probably reasonable. So, the risk of damage to the composite liner and final cover due to liquefaction is minimal.

The data from the borings were analyzed to determine the PGA above which the potential for liquefaction is "moderate" to "high" for M_w between 5 and 7.5. For the natural ground surface outside of the UWL, the minimum PGA for the potential occurrence of liquefaction is 0.04g to 0.06g. Under the berms or 20 feet of CCR, the minimum PGA for the potential occurrence of liquefaction is the same. Ameren should complete a topographic survey of the tops of the perimeter berms following a seismic event with a PGA of 0.04g or greater to determine where there may be settlement that would make the top of the berm less than the design flood event. Also, there may be some subsidence of the outside of the perimeter berms which would need to be addressed.

7.0 CONSTRUCTION RECOMMENDATIONS

7.1 Field Classification of Soils

The field classification of soils will require full-time observation and testing by experience soils technicians due to the variability of the strata. If the soils from on site are used, then the results of the laboratory testing that are summarized in the report may be used. If soils are imported from offsite, then laboratory testing of those imported fill soils will have to be performed to verify that the shear strength properties and other properties of the compacted fills will meet or exceed the parameters used in analyses. Since such laboratory testing will take some time, it would be best if the fill soils are stockpiled on site prior to construction.

As stated previously, the top soil with organic matter must be stripped for use in fills other than the liner or stockpiled on site. Based on the Phase 2 borings, the depth of stripping to remove organics and surface non-plastic soil will vary from 0 to 1.4 feet, and may average about 0.6 feet. The compacted composite samples of fine-grain soils all had suitable permeabilities for use in the bottom composite liner (less than 1×10^{-7} cm/sec), except Sample 7 which was composed of the silty soils ("MCL") from Areas F, G and H (see Figure 8-0). These silty soils had fine sand contents up to 17%, clay contents less than 36%, and a liquid limit (LL) of 36%. Clays and silty clays with a liquid limit (LL) of 40% or greater may be used as liner material. The low plastic clay and silty clay, containing up to 30% silt or sandy silt, will be suitable for the final cover. The soils will have to be segregated on the basis of plasticity.

The natural moisture content of the clayey soils measured in the Phase 1 and Phase 2 borings ranged from about 24% to 43%, and averaged about 33%. The optimum moisture contents ranged from about 20% to 28%. So, these soils will have to be partially dried prior to placement. Soils may be dried by spreading the loose soil in lifts about 8 inches thick, and discing the soil using multiple passes.

Clays and silty clays that will be used for constructing the clay component of the bottom liner will be segregated and stockpiled prior to construction of the test pad or liner to provide sufficient time to test the homogeneity of the stockpile and to develop compaction criteria. The initial segregation soils for the liner will be based on ASTM D2488 "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)." This procedure will enable an experienced soils technician to segregate soils as they are excavated based on plasticity. Specifically, three simple hand procedures are used to describe the plasticity of the soil: dry strength, dilatancy and toughness. If a sample has low to medium strength upon drying, rapid dilatancy and low toughness, then the soil probably would not be suitable for the liner and therefore will be stockpiled separately. Also, if the soil has more than a trace of sand, then it also will be stockpiled separately.

The soils technician and construction superintendent will delineate an area of soil to be excavated that is suitable for liner material based on the plasticity of the exposed surface. Scrapers will load the soil cutting no more than 6 inches deep. The newly exposed surface will be evaluated and the limits of the area will be changed, if necessary, to separate unsuitable soil. In this way, the classification of the soils going to the stockpile of liner material can be controlled sufficiently.

Page 18

The high plasticity clay probably will come out of the scrapers in "slabs." A disc will be run over the newly-deposited material to break up the large pieces. A dozer will grade the newly-deposited material to form a loose lift about 12 inches thick. Then, a large soil stabilizer, such as a Caterpillar SS250 will make a pass over the newly-deposited material. A soil stabilizer is used to excavate the surface up to 18 inches deep, pulverize the high plastic clay, thoroughly mix a stabilizing chemical such as lime or fly ash with the soil, and redeposit a blended, homogeneous mix. The newly-deposited soil will be blended with the previous lift by limiting the thickness to 12 inches and cutting up to 18 inches deep. Bag samples will be collected randomly from each lift in the stockpile for subsequent testing in the lab, to verify the homogeneity of the stockpile.

7.2 Compaction Criteria

Bag samples from the stockpile of liner material will be tested for grain-size distribution (i.e. hydrometer test), and liquid and plastic limits. If any volume of the stockpile differs significantly in these index properties, then that volume can be delineated, and separate compaction criteria can be developed for that material, or it can be rejected as liner material. Compaction criteria for the blended liner material in the stockpile will be developed using the "Daniel Method." Daniel and Benson (1990) have determined that compaction criterion as a percentage of the maximum dry unit weight alone is not sufficient to assure the required minimum hydraulic conductivity. They recommend performing a series of compaction tests and hydraulic conductivity tests on each soil type to determine the acceptable "window" of dry density and moisture content that will meet the hydraulic conductivity requirements.

The stability of the perimeter berm requires higher shear strength than for the liner, etc. Therefore, the compaction of the materials in the perimeter berm should be an average of 100% of the maximum dry unit weight determined by the standard Proctor moister-density test, with no tests less than 95% of the same maximum dry unit weight. The moisture content at the time of compaction should be at optimum or a maximum of 4% above optimum.

Fill supporting structures, such as the pump building, should be compacted to the same criterion for the perimeter berm. There are no limits on the moisture content at the time of compaction for fills outside of the perimeter berm except as necessary to achieve the required dry unit weight.

Fills should be placed in horizontal lifts not exceeding 8 inches in thickness and compacted by uniform coverage with a suitable compactor. Cohesive fill should be compacted using a heavy tapered-foot compactor, with or without vibration. The final lift of cohesive fill should be compacted by a smooth-drum roller. Cohesionless fill, such as the silty sand or fly ash, should be compacted by a heavy vibratory compactor.

7.3 Quality Assurance

7.3.1 Test Pad

The plasticity indices of the bottom liner materials exceed 30%. Therefore, a test pad is required prior to construction to test the materials to be used for the liner, and the construction methods. The test pad must be large enough to accommodate the actual construction methods and equipment that will be used for the

actual construction of the liner. The test pad should include a section on a 3(h)-to-1(v) slope to test the construction of the aquiclude membrane and protective soil layer on the interior berm slopes. This may be completed at the existing perimeter berm for Cell 1 or Cell 4A. The compaction criteria previously developed for the liner material will be used to construct the test pad. The geotechnical engineer is required to take undisturbed samples of the fill to measure the density and hydraulic conductivity. Bulk samples of the fill material must be taken to perform LL and PI tests and standard Proctor tests. Also, a minimum of two test pits are required to examine the interface between lifts of materials, to verify bonding of the lifts. A field permeability test is also required. A test pad is not necessary for the fill to be placed in other areas, such as the perimeter berm.

The proposed plastic membrane aquiclude will be placed on the suitable subgrade and then 12 inches of protective soil cover will be placed and lightly compacted on the membrane. Where the aquiclude membrane is on the floor of the cell, the protective soil cover may be a sand. However, sand is not acceptable on the 3(h)-to-1(v) side slope of the perimeter berm. A low plastic silty or sandy clay would be preferred.

7.3.2 QA During Construction

The successful completion of the test pad will verify the acceptable construction methods for the dual liner and the proposed high plastic clay for the composite liner. Field density tests must be made of each lift of fill during compaction. If this is accomplished using a nuclear density gauge, then the gauge must be checked regularly by taking undisturbed drive tube samples and measuring the dry unit weight and moisture content by laboratory tests. This is particularly true for the high plastic clays. MDNR-SWMP rules also require taking bulk samples of the fill material used in the liner, to perform LL and PI tests, standard Proctor tests, and a hydraulic conductivity tests for every 5000 cubic yards of liner placed.

Following the completion of the protective soil layer, the membrane installation subcontractor will perform a non-destructive survey of the aquiclude geomembrane to demonstrate that there are no leaks in the geomembrane. This survey may be a "spark" test or an electrical conductivity test or other method approved by the CQA Engineer. The same survey method may be used for the Test Pad.

8.0 STABILITY ANALYSES

Seven sets of slope stability analyses were performed on the proposed UWL profile. Generalized soil profiles were developed for widely-spaced sections, A through F, the locations of which are shown in Figure 8-0. The soil properties for the natural cohesive soils were estimated from the triaxial shear strength tests performed for the Phase 1 geotechnical investigation. The internal friction angle and unit weight of sands were estimated from the corrected N-values using standard empirical relationships. The soil properties of compacted fills were estimated from tests on compacted samples. The soil properties used in the slope stability analyses are shown on the profiles Appendix 8. <u>The stability analyses were completed based upon the design with the geomembrane aquiclude. If the design of the dry cells is changed to include the base fill below the bottom liner instead of the aquiclude, then the stability analyses will have to be recalculated for the permit modification based upon the properties of the soils used for the base fill.</u>

The slope stability analyses were performed using the computer program SLIDE 18. This program uses the Spencer method, which resolves the static forces on each vertical slice of soil profile along randomly generated failure surfaces. Two methods are used. The first method is to assume circular failure surfaces. A grid of possible centers for the circular failure surface is specified, as well as the possible bottom elevation of the failure surface. The program searches for the minimum factor of safety (FS) against slope failure for each center point in the grid by incrementally varying the radius of the failure surface. The plotted results from the program show the minimum FS, the center and radius of the failure surface with the minimum FS. The output of the program also plots contours of equal FS within the grid of possible center points. The second method is based upon a multi-linear failure surface. This method is used where there is a plane of weak shear strengths, such as along a composite liner or dual liner. The analyses are the same, that is searching for a configuration of a multi-linear failure surface which results in a minimum factor of safety. All of the results are presented graphically in Appendix 8. Stability analyses were performed at each section for initial and final stages of construction, and using short-term (undrained) properties and long-term properties as appropriate. Stability analyses were also performed for the pseudoseismic loading, and the post-seismic static conditions were liquefaction exist in the natural soil strata below the groundwater table where there is a high risk. The results of the stability analyses are presented in the following Table 6.

	End of Initial Construction (Short-Term)	Completed, Full Cell Global Stability	Seismic (0.131g) Completed, Full Cell	Post-Seismic With Liquefied Strata
Required Min. FS	1.4	1.5	1.0	1.0
A) West Berm Cell 1	1.81	1.86	1.46	1.87
B) North Brem Cell 2	2.46	1.83	2.06	1.88
C) North Berms, Cells 4 & 5	2.94	1.85	1.15	1.33
Temporary East Berm, Cell 4A		1.64	1.05	
D) South Berms, Cells 6 & 7	2.68	1.71	1.03	1.83
E) South Berm, Cell 2	1.80	1.84	1.47	1.74
F) Southwest Berm, Cell 1	1.80	1.86	1.27	1.07

Table 6 – Summary of Results of Stability Analyses

8.1 Stability of Perimeter Berm

The short-term stability of the perimeter berm was analyzed at each of the six sections using undrained shear strengths for the compacted clay of the berm. The berm may be constructed of clays, ash or non-plastic silts and sands. For the short-term stability analyses, a cohesive shear strength of 800 psf was used, assuming the berm is built entirely of high plasticity clay. This is not likely, but is the worst case for short-term stability. The height of the CCR was assumed to be el. 441 for the short-term stability analyses. The minimum FS ranged from 1.80 to 2.94, which exceed the required minimum of 1.4. The stability analyses for the Recycle Pond (Section B-B) were run with the pond at the lowest operating level (el. 435). When the Recycle Pond is drained after the UWL is closed, then the FS for the stability of the berm will be about 1.8 similar to the other berms.

8.2 Global Stability of Full Cells

The global stability of the full cells – gypsum and dry CCR – were analyzed using drained-strength properties. An internal friction angle, ϕ' , of 30° was assumed for the perimeter berms because of the various materials which may be used. The average saturated weight of the gypsum was assumed to be 110 pcf based upon information from A&A. The average ϕ of the gypsum was assumed to be 41°, also based on the recommendation from A&A. As summarized in Table 6, the FS varied from 1.64 to 1.86, which meet or exceeds the minimum required FS of 1.5.

The slope stability of the temporary east berm of Cell 4A, which was built with fly ash, was analyzed for the Addendum to the CPM that was submitted in February 2011 based upon new shear strength tests (see Appendix 2.1). The long-term FS was 1.64. The slope stability of the east berm was re-analyzed for the Phase 3 CQA report of Cell 4A based upon new properties of the fly ash placed in Cell 4A (see Appendix 2.2). The long-term FS was 1.73.

8.3 Seismic Slope Stability

Global stability analyses were also performed of the full cells for a seismic event using a pseudo-static horizontal acceleration of 0.134g. The FS for the various sections ranged from 1.03 to 2.06, which meets or exceeds the required FS of 1.0. The temporary east berm of Cell 4A was also re-analyzed for a pseudo-static horizontal acceleration of 0.134g and a full cell. The minimum FS is 1.05 (see Figure 8-13). This is conservative because Cell 4B should be built before Cell 4A is filled to capacity so that this condition will not occur.

8.4 Post-Seismic Event with Liquefaction

At the locations where the liquefaction analyses indicated a high potential for liquefaction in a stratum, a residual cohesive shear strength was input for the liquefied soil stratum. The residual cohesive shear strength was estimated from the empirical relationship recommended by H. Bolton Seed (1987). This relationship is reproduced in Figure 7. Both the global stability of the full cell and the stability of the perimeter berm were analyzed using the post-liquefied shear strength of the subject soil stratum and no applied horizontal acceleration in accordance with the draft technical guidance document from SWMP and Stark (1998). The FS for this condition ranged from 1.07 to 1.88, which meets or exceeds the required FS of 1.0.

8.5 Stability of the Final Cover

The final cover of each cell will consist of a double-textured HDPE geomembrane on top of the CCR, followed a non-woven geotextile and then 24 inches of soil cover. The first 18 inches of soil cover will consist of compacted silty clay or sandy clay, covered with 6 inches of semi-compacted vegetative soil cover. The initial slope of the sides of the gypsum stack will be 4(h)-to-1(h). The stability of the final cover was analyzed. The calculations are included in Appendix 8. The factor of safety against sliding of the cover is the minimum desired of 1.5 for the silty clay with properties given in Section 4.3. As stated in Section 4.3, these properties will be verified by laboratory testing with the proposed soil and HDPE geomembrane.

9.0 SETTLEMENT ANALYSES

9.1 Estimated Settlements

Settlement analyses were completed using the computer program SETTLE3D. Six subsurface profiles were developed from borings within the project area. These are depicted graphically in Appendix 10. The settlement values were calculated assuming that all cells had been filled to an average elevation of 520 ft. Consolidation coefficients (C_C and C_R) for cohesive materials were obtained from load increment consolidation tests run on representative undisturbed samples from the Phase 1 borings. The stress-strain modulus (Es) for granular materials was estimated using cone penetration test (CPT) data obtained from the WFGD project at the Sioux Energy Center. E_S is approximately 3 times the measured CPT q_c-value of resistance (Bowles, 1997). It was assumed that using the CPT data for the proposed UWL site was valid because a plot of standard penetration test (SPT) N-values shows similar stratigraphy for both sites, and N-values obtained at the UWL are generally larger than those at the plant. A plot of the N-values for the Sioux Energy Center and at the UWL site is shown in Figure 8. The CPT data are almost continuous with depth and are more reliable than SPT data. Therefore, the CPT data should provide a better estimate of the E_S for the granular materials. A comparison of the variation in computed Es with depth based on the corrected N-values and the CPT data is shown in Figure 9.

The estimated settlements were calculated for the full load of the cells assuming that all of the loads from the berms and the full cells are placed simultaneously. The pattern of the loading stress is depicted graphically from the SETTLE3D input in Appendix 10. This is conservative with regard to the consequences of settlement (deformations of the berms and strains on the HDPE membranes) because the settlement resulting from the construction of the existing berms, the filling of Cell 1, and the filling of Cell 4A have already occurred. The estimated settlements are depicted graphically in the plan in Appendix 10. The maximum total settlement occurs in the northwest corner of Cell 4A, and is about 22 inches.

The estimated settlements under the full cells on an east-west centerline section are plotted in Figure 10 (Section H-H in Figure 8-0). The maximum settlement along this section occurs in Cell 4A and is about 20 inches. The estimated settlements in the dry cells range from about 20 inches to 14.5 inches on the east side of Cell 5. The estimated settlements in Cells 1 and 2 vary with the height of the gypsum from about 5.5 inches to 8 inches. The estimated settlements at the berms between cells is about 6 inches except for the east berm of Cell 5 which is about 4.5 inches. The maximum differential settlement occurs along the west slope of Cell 4A, which is about 15 inches (20 inches minus 5 inches at the west berm).

The estimated settlements in a north-south section through the full dry CCR Cells 7 and 4B (Section I-I in Figure 8-0) are plotted in Figure 11. The estimated settlement in the interior of the full cells vary from about 14 inches to 18.2 inches.

The estimated settlements in a north-south section through the full Cell 2 are plotted in Figure 12 (Section G-G in Figure 8-0). The estimated settlement in the interior of the full cells vary from about 4.5 inches to 18.5 inches.

The consolidation of the foundation soils may result in up to 6 inches of settlement at the top of the perimeter beam when the CCR reaches the full height and extent. This will be a slow process, so the settlement will occur over a number of years. The top of the perimeter berm will be at el. 446, which is 7 feet above the 100-year flood level, and 5 feet above the 1993 flood level. Therefore, the estimated settlement will not reduce the top of the perimeter berm to below the flood levels. Monuments should be set in the top of the perimeter berm at about 300-foot centers, and the settlement of the top of the berm should be measured as the cells are filled. The measured settlement may be used to adjust the model for the estimated settlements. Also, if Ameren wants to maintain the top of the perimeter berm at el. 446, then it may be necessary in the future to build out the exterior toe of the berm in order to raise the top.

9.2 Strain of HDPE Liner

The estimated settlements will occur over long distances, such that the differential settlement will be small, at a slope of about 1%. The liner will undergo differential settlement 0.9 feet between the crest of the perimeter berm to the inside toe of the berm (a horizontal distance of 69 feet), and 15 inches from the inside toe of the berm to a point below the crest of the Cell 4A (over 190 feet). The increase in lengths of the slopes after full settlement has occurred compared to the initial lengths will be 0.007% and 0.004%, respectively. A strain of less than 1% is acceptable, because the yield strength of most HDPE liners occurs at more than 12%. Therefore, the strain in the HDPE liner resulting from the estimated differential settlements are acceptable.

9.3 Slopes of Leachate Collection Pipes

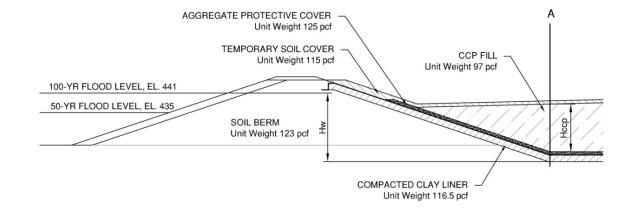
The design slope of the buried leachate collection pipes in the dry cells must be a minimum of 0.5%. The settlement under the central portion of the cells will be relatively uniform. There will be some differential settlement of the pipes from top of the 4(h)-to-1(v) side slope to the sump at the toe of the perimeter berm. The estimated differential settlement on the west side of Cell 4A is about 14.2 inches or a change in the slope of the pipe of about 0.3%. The estimated differential settlement on the north side of Cell 4B is about 11 inches or a change in the slope of the pipe of about 0.3%. Therefore, the constructed slope of the leachate collections pipes from the top of the 4(h)-to-1(v) side slope to the sump should be 0.8%, or preferably 1.0%, to maintain a slope of 0.5% after settlement.

10.0 BEARING CAPACITY

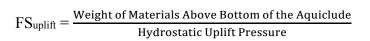
The only structure at the UWL will be the pump house at the Recycle Pond. The pump house will be founded on compacted fill, with the grade at el. 446. Therefore, the bearing capacity of the natural soils is not a concern. The bearing capacity of the natural high plastic clay, which would be the lowest of the natural soils, was analyzed using undrained shear strength of 800 psf, and using drained strength properties. The net allowable bearing pressure for the natural high plastic clay is 2500 psf for continuous or strip footings and 3000 psf for square footings. These values are for the undrained strength and a factor of safety of 2.0.

Using the drained strength properties and a factor of safety of 3.0, the net allowable bearing pressure for the natural high plastic clay is 2500 psf for strip footings and 3000 psf for square footings up to 10 feet in

plan. A factor of safety of 3.0 is used for the drained or long-term case to control settlement. The allowable bearing capacity of shallow footings in compacted fill will also be the lowest where the high plastic clay is used; for example, box culverts over the compacted clay liner. Using the drained strength properties of the compacted sample and a factor of safety of 3.0, the net allowable bearing pressure for the natural high plastic clay is 5000 psf for strip footings and 6500 psf for square footings up to 10 feet in plan. The bearing capacity calculations are included in Appendix 8.


The bearing capacity of the natural soils below the perimeter berms and cells was analyzed using the SLIDE model as shown in Figure 8-28. The profile at Section F-F was selected as the worst case. The ultimate bearing capacity for the natural subgrade (consisting of primarily clayey silts, silty clays and sands, is 50,000 psf. This is applicable to the outside toe of the perimeter berms. This type of slope failure is included in the global slope stability analyses of the various sections in Appendix 8.

11.0 HYDROSTATIC PRESSURES


11.1 Liner

A flood condition surrounding the UWL would impose a hydrostatic uplift pressure on the bottom of the composite liner. This uplift pressure is initially only resisted by the weight of the composite liner, specifically the clay. To maintain a factor of safety of 1.5 against upward displacement and rupture of the liner, the 2 feet of clay can resist an upward pressure equal to about 2.5 feet of water. Therefore, the level of the water in the Recycle Pond and wet disposal cell must initially be no more than 2.5 feet below the level of the flood water surrounding the UWL.

The calculation of the FS against excess hydrostatic pressure (i.e. uplift) on the bottom liner in a dry cell during a flood is illustrated in the following diagram:

The Factor of Safety against uplift (FSuplift) should be calculated at the lowest point which is the inside toe of the exterior soil berm (Point A in above section.)

where the weight of materials is the sum of the weight of CCR fill, weight of temporary soil cover, 2 feet of compacted clay liner, the protective soil cover on the aquiclude membrane where present, and the weight of water in the cell, if any. The average or assumed moist unit weight of each material is shown in the above section.

The hydrostatic uplift pressure is the difference in elevation between the flood level and the <u>level of the</u> <u>aquiclude</u> (Hw) multiplied by the unit weight of water (62.4 PCF). For a dry cell where an aquiclude is present, the FS_{uplift} is calculated by:

At Point A:
$$FS_{uplift} = \frac{Hccp x 97 PCF + (2 ft)(115 PCF) + (1 ft)(125 PCF) + (3 ft)(115 PCF)}{Hw x 62.4 PCF} = \frac{Hccp x 97 PCF + 700 PSF}{Hw x 62.4 PCF}$$

For example, if the aquiclude is at el. 426, then H_W for the design flood is (441 - 426) = 15 feet of water. For a FS_{uplift} = 1.1, the height of CCR in the cell must be 3.4 feet or at el. 433.4 to the top of the CCR. The construction for each new dry cell must require the initial filling of the dry cell as soon as it is operational with CCR to achieve the minimum FS_{uplift} of 1.1.

11.2 Perimeter Berm

The perimeter berm will act as a flood protection levee to separate the UWL from potential flood water. Therefore, the perimeter berm will be designed in accordance with standard practice for flood protection levees. The recommended soil for the construction of the perimeter berms is presented in Section 4.4.

12.0 EROSION PROTECTION

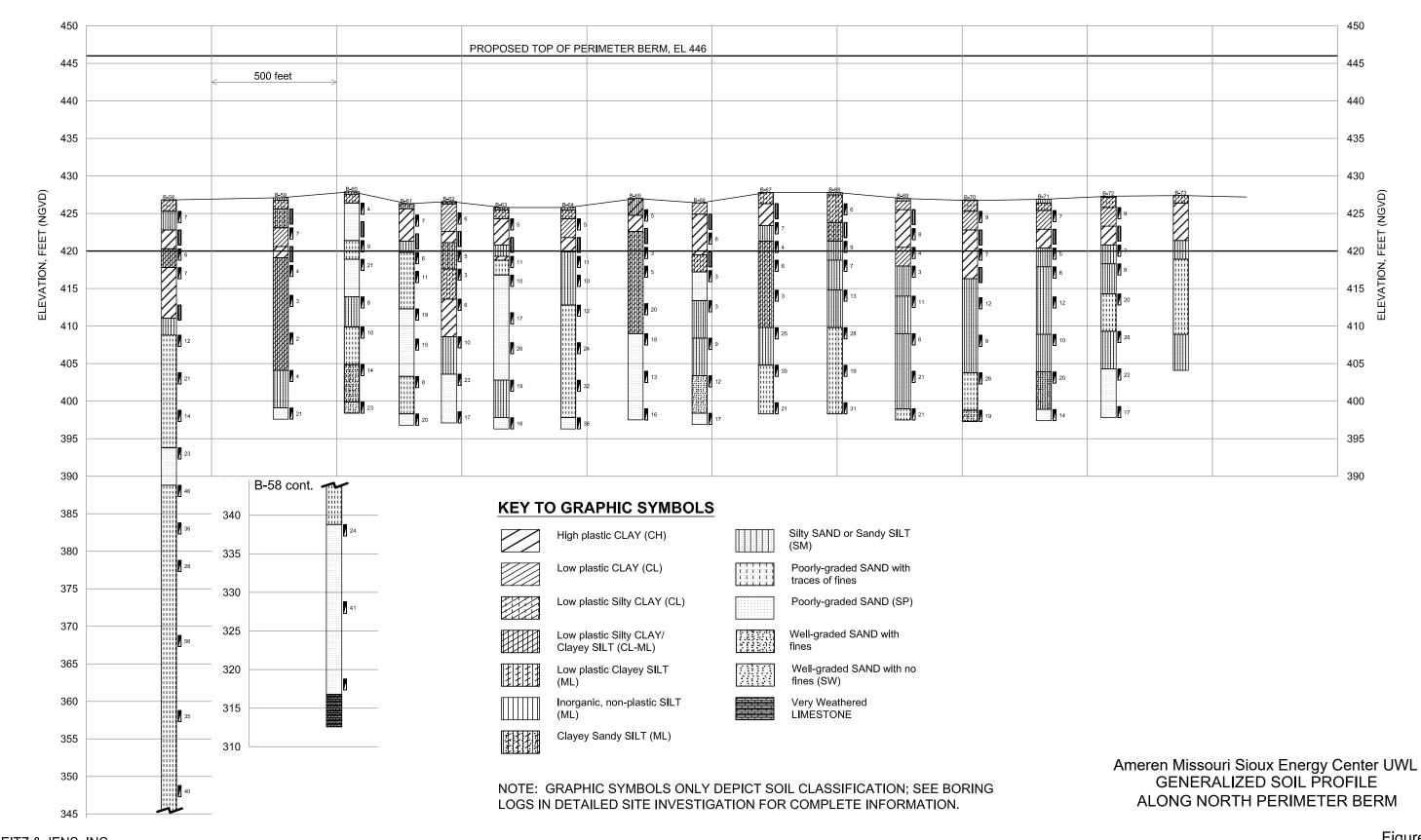
The embankments for the BNSF railroad track and Ameren Missouri's spur track isolate the UWL from the flow of flood waters. Flood water surrounding the UWL will be backwater from the Mississippi River downstream, and therefore will have little flow that could cause erosion of the perimeter berm.

During the flood of 1993, the BNSF embankment separated the higher flood level of the Missouri River from the Mississippi River. Eventually, this differential hydrostatic pressure caused a failure at a weak point in the embankment, creating the scour hole shown in Figure 1. The existing elevation contours indicate that the flow from the scour hole extended across the site of the UWL and extended downstream to the southeast. If this event happened in the future, the UWL would block the flow from the scour hole. Such a failure would not necessarily occur at the same location, but this would be the most likely location even if the scour hole were filled. The surrounding topography and the UWL would create constrictions to the flow at Sections X and Y shown in Figure 8-0. The constrictions would increase the flow of the water and may cause erosion of the perimeter berm at these locations. Also, the reach of the perimeter berm facing the scour hole would be subject to the impact of the flow from the scour hole.

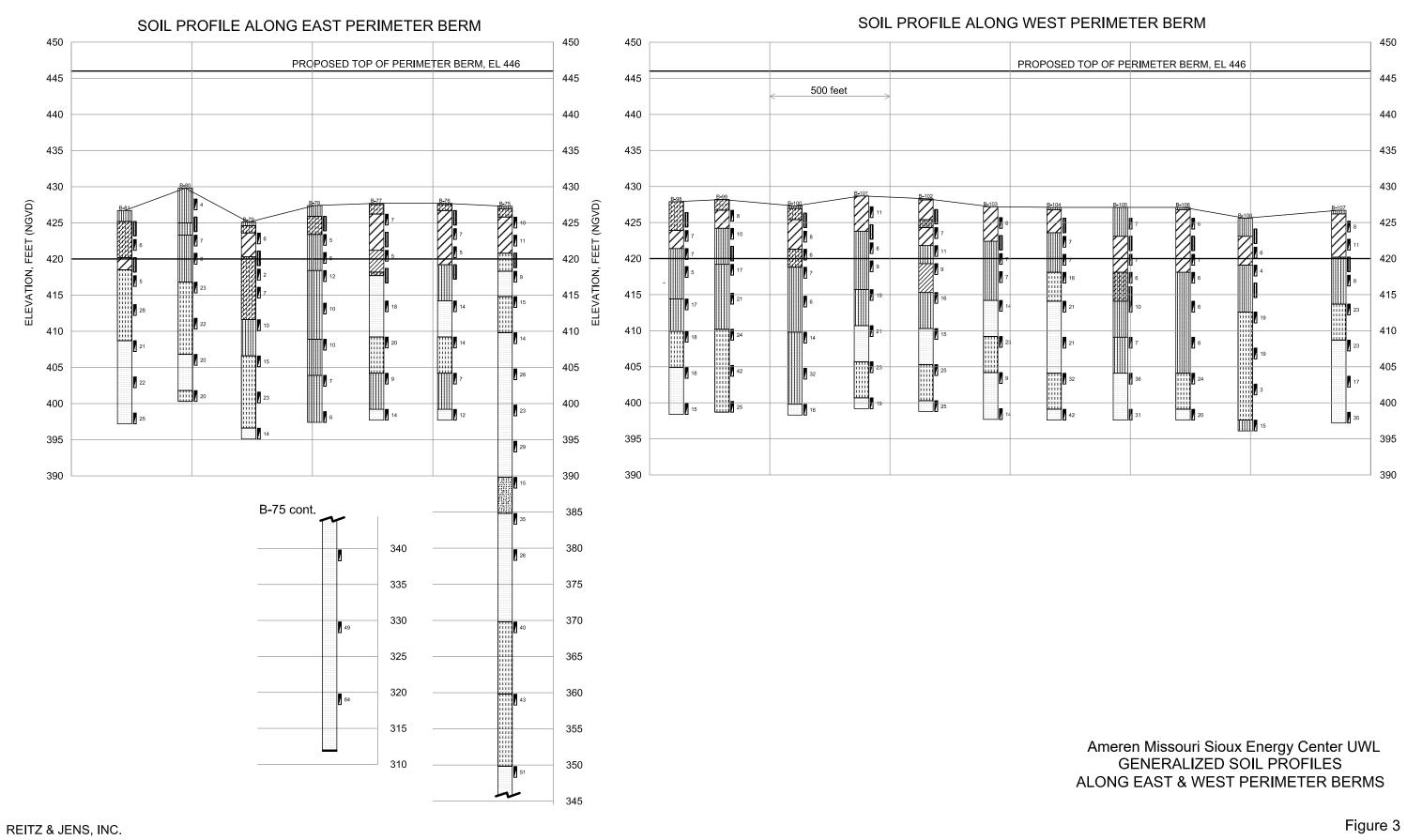
To analyze this emergency condition, several assumptions were made:

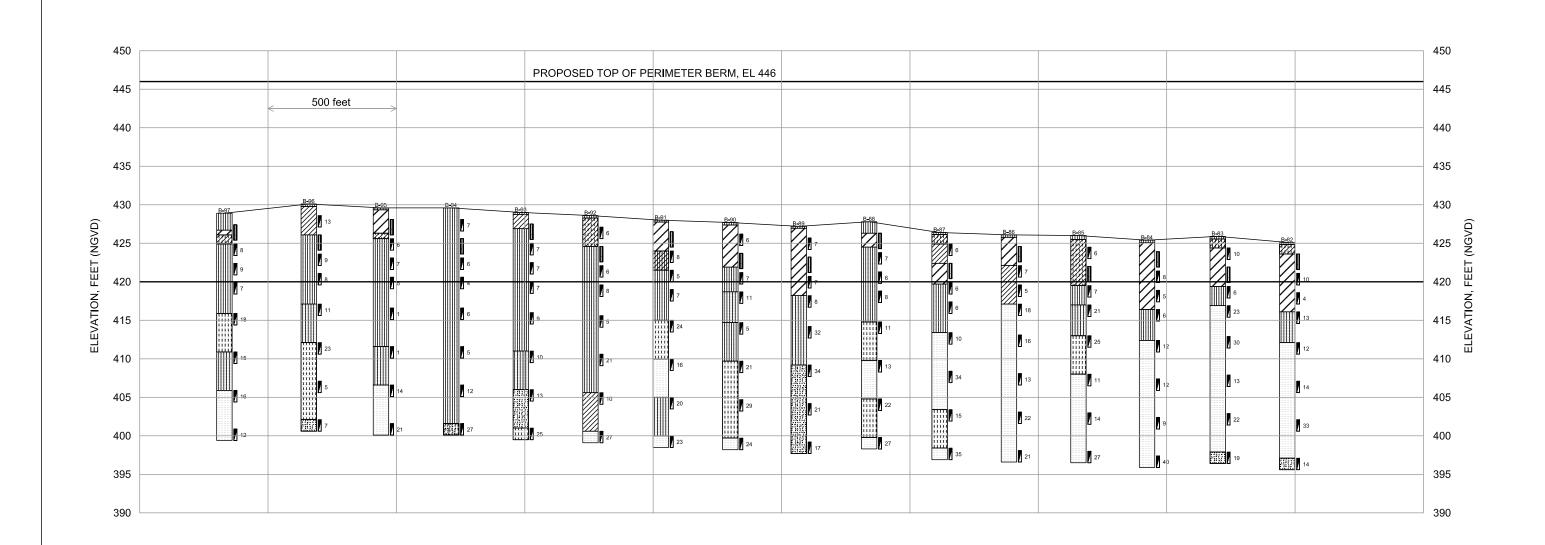
- a breach 160 feet wide occurs at the location of the scour hole, a repeat of the 1993 failure
- water on the Mississippi side ponds to el. 430.
- the water level on the Missouri River side is at el. 439.

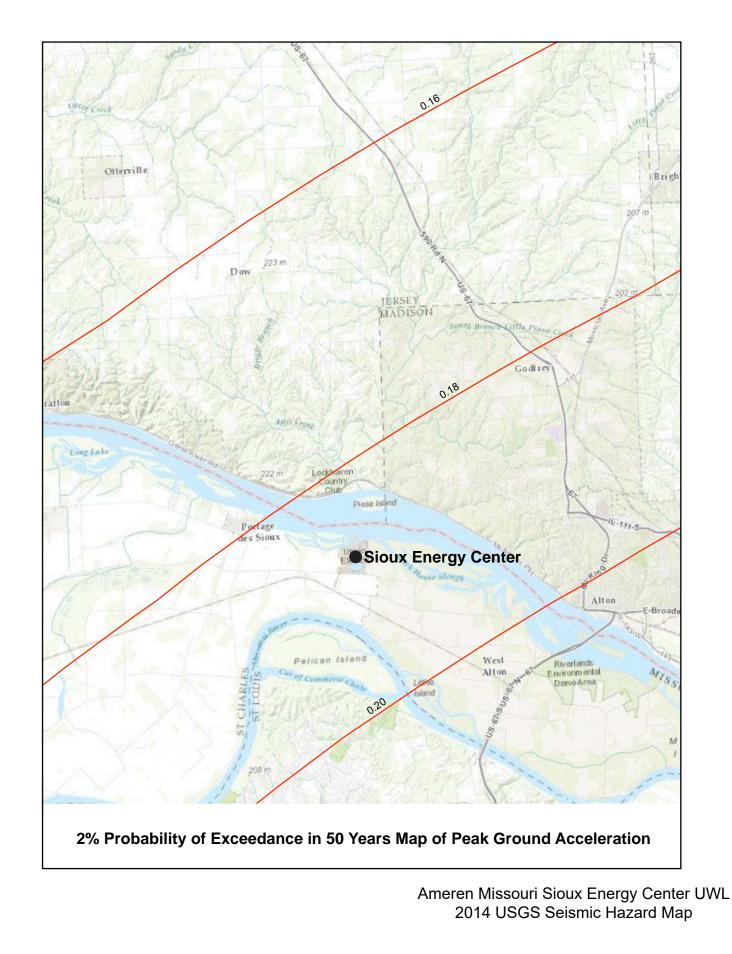
essentially all of the flow from the breach will flow through the south constriction (at Section Y).

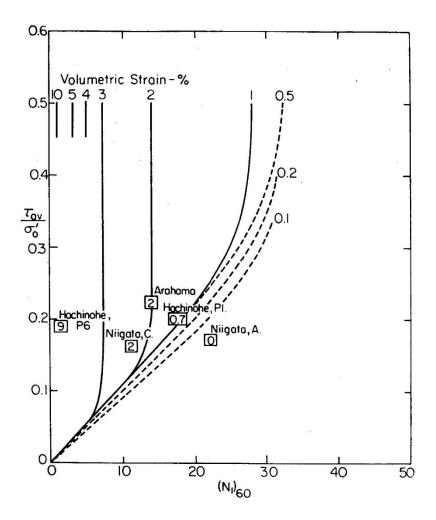

The estimated flow from the breach is 9800 cu. ft/sec. The impact velocity on the southwest reach of the perimeter berm is 6.5 fps. The velocity of the flow through the south constriction is about 4 fps on the side of the berm. The calculations of the velocity of flow from the breach and the design of a riprap layer on the perimeter berm are included in Appendix 11. The riprap layer should be a minimum of 15 inches thick. The riprap should be sound limestone, ranging in size from 4 to 9 inches. The riprap layer should be placed on a 6-inch thick bedding layer of 2-inch minus crushed rock. The riprap should extend up to el. 439 on the perimeter berm. The riprap should extend from a point on the southern berm opposite the east boundary of Cell 1, to a point on the northern berm opposite the same east boundary of Cell 1. The profile of the riprap layer is shown in Figure 13.

13.0 REFERENCES


- American Society of Civil Engineers (2013), *Minimum Design Loads for Building and Other Structures*, Standards ASCE/SEI 7-10, 3rd printing.
- Bowles, Joseph E. (1977), *Foundation Analysis and Design*, 5th Edition, McGraw-Hill Companies, New York, pp. 1175.
- David E. Daniels and Craig H. Benson (1990), "Water Content-Density Criteria for Compacted Soil Liners," *Journal of Geotechnical Engineering*, ASCE, Vol. 116, No. 12, December, pp. 1811 - 1830.
- H. Bolton Seed, K. Tokimatsu, L.F. Harder and Riley M. Chung (1985), "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations," *Journal of Geotechnical Engineering*, ASCE, Vol. 111, No. 12, pp. 1425 – 1445.
- Hynes-Griffen, M.E. and A.G. Franklin (1984), "Rationalizing the Seismic Coefficient Method," Miscellaneous Paper GL-84-13, U.S. Department of the Army, Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- Kohji Tokimatsu and H. Bolton Seed (1987), "Evaluation of Settlements in Sands Due to Earthquake Shaking," *Journal of Geotechnical Engineering*, ASCE, Vol. 113, No. 8, pp. 861 878.
- Mine Safety and Health Administration (2010), *Engineering Design Manual, Coal Refuse Disposal Facilities*, Second Edition.
- Seed, H. Bolton (1987), "Design Problems in Soil Liquefaction," Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp. 827 – 845.

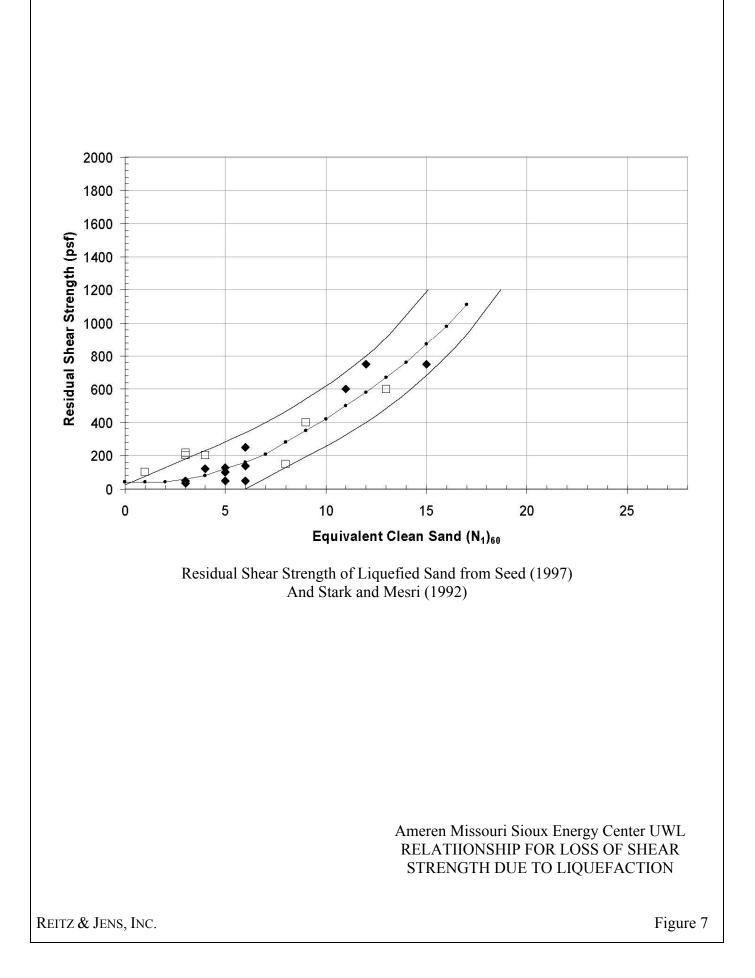

- Solid Waste Management Program and Timothy D. Stark (1998), "Draft Technical Guidance Document on Static and Seismic Slope Stability for Solid Waste Containment Facilities," Division of Environmental Quality, Missouri Department of Natural Resources.
- Stark, T.D. and G. Mesri (1992), "Undrained Shear Strength of Liquefied Sands for Stability Analysis," *Journal of Geotechnical Engineering*, ASCE, Vol. 118, No. 11, pp. 1727 – 1747.
- Swenty, Brian J. (1989), "Engineering Analysis of Dams," Missouri Department of Natural Resources, Division of Geology and Land Survey, Dam and Reservoir Safety Program.
- Terzaghi, Karl and Ralph B. Peck (1948), *Soil Mechanics in Engineering Practice*, John Wiley & Sons, New York, 729 pp.
- Lambe, T. William and Robert V. Whitman (1969), *Soil Mechanics*, John Wiley & Sons, New York, 553 pp.
- Li, K.S. (1995), Discussion "Foundation Uniform Pressure and Soil-Structure Interaction," *Journal of Geotechnical Engineering*, ASCE, Vol. 121, No. 12, pg. 912.

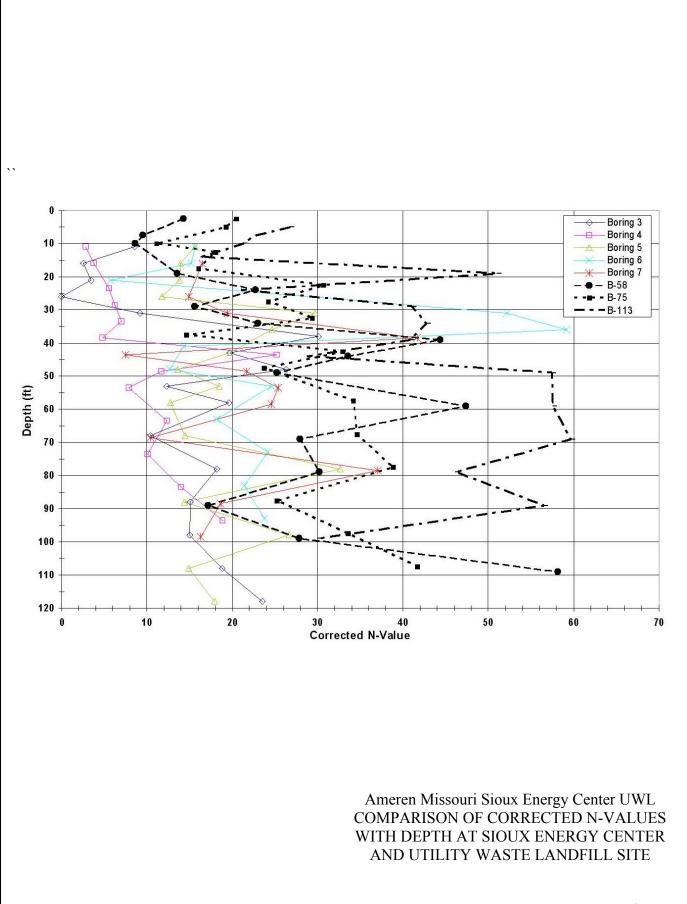

REITZ & JENS, INC.



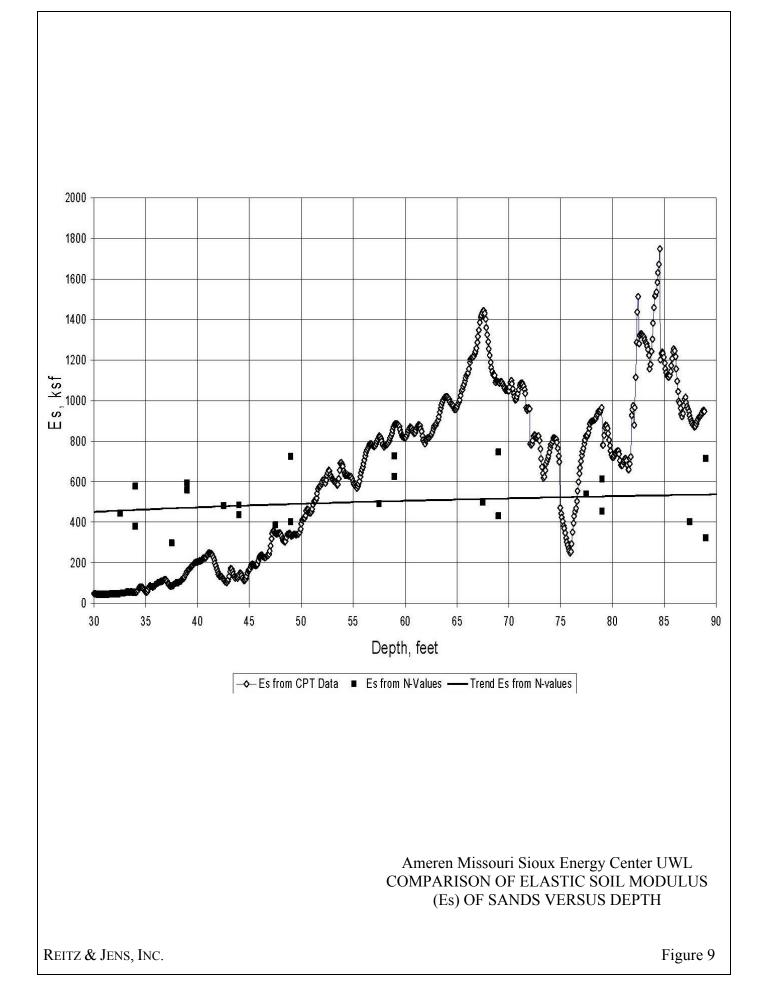
REITZ & JENS, INC.

Ameren Missouri Sioux Energy Center UWL GENERALIZED SOIL PROFILE ALONG SOUTH PERIMETER BERM

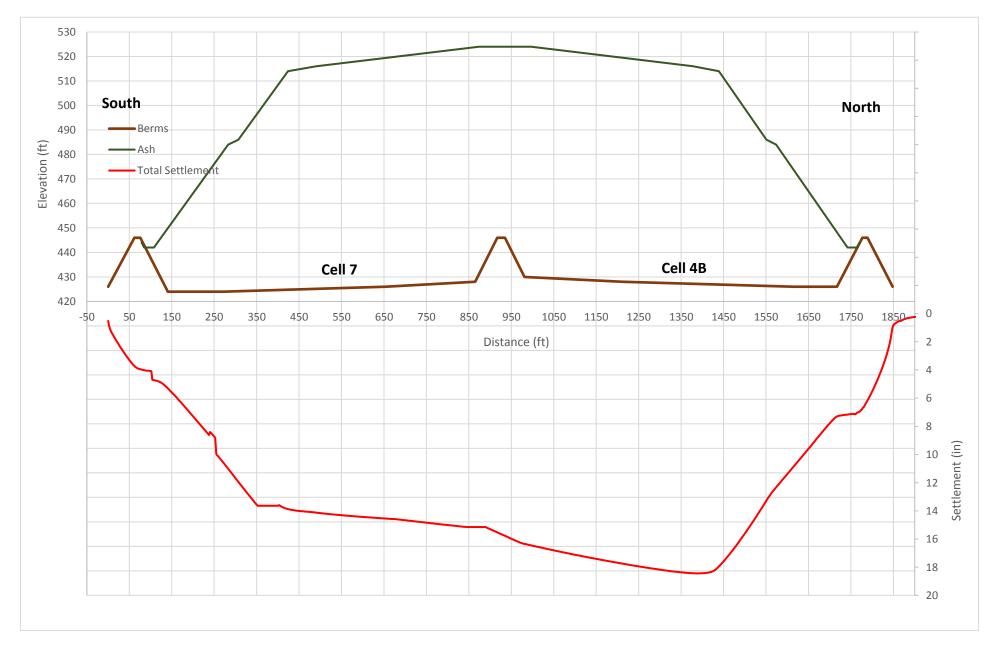




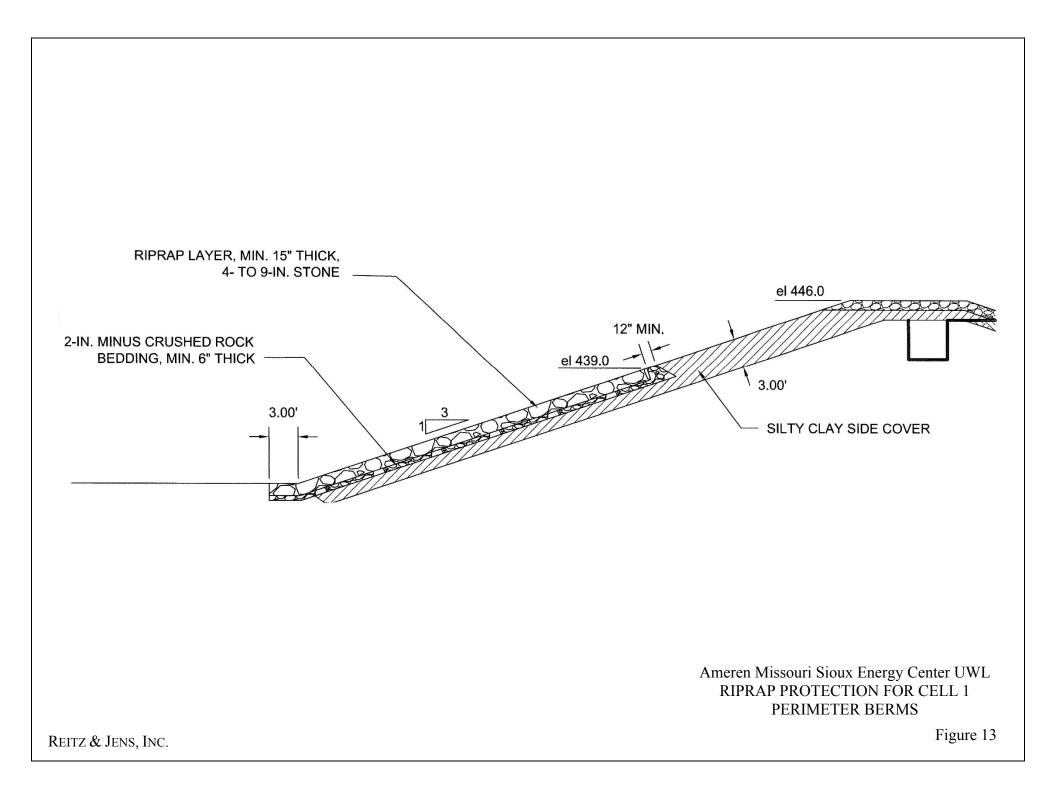
Earthquake Induced Settlements in Saturated Sands, From Tokimatsu and Seed (1987)


Ameren Missouri Sioux Energy Center UWL RELATIIONSHIP FOR EARTHQUAKE INDUCED SETTLEMENT

REITZ & JENS, INC.


REITZ & JENS, INC.

Berms East West - Ash Total Settlement Elevation (ft) Cell 4A Cell 1 Cell 2 Cell 4B Cell 5 47<mark>00</mark> 0 -50 Distance (ft) Settlement (in)


Ameren Missouri Sioux Energy Center Utility Waste Landfill PROFILE OF ESTIMATED SETTLEMENT EAST - WEST CENTERLINE

Ameren Missouri Sioux Energy Center Utility Waste Landfill PROFILE OF ESTIMATED SETTLEMENT NORTH-SOUTH THROUGH DRY CELLS 4B AND 7

Berms Elevation (ft) - Ash - Total Settlement North South Cell 2 -50 1050 1150 1250 1350 1450 1550 1650 1750 1850 Distance (ft) Settlement (in)

Ameren Missouri Sioux Energy Center Utility Waste Landfill PROFILE OF ESTIMATED SETTLEMENT NORTH-SOUTH THROUGH CELL 2

<u>Appendix 1</u>

LABORATORY CLASSIFICATION OF PHASE 2 SOIL SAMPLES

115 118716.09 878136.09 426.0 0.0 424.0 1118716.09 878136.69 426.0 2.7 423.3 426.0 426.0 4.0 422.0 423.0 426.0 3.8 422.3 426.0 4.0 422.0 426.0 3.8 422.3 426.0 420.0 421.0 426.0 <th>No</th> <th>lorthing</th> <th>Easting</th> <th>Approx. Surface Elevation</th> <th>Starting Depth (feet)</th> <th>Starting Elevation</th> <th>Ending Elevation</th> <th>mples from F Thickness (feet)</th> <th>Visually Classified</th> <th>Moisture Content, %</th> <th>Density, pcf</th> <th>Description</th> <th>Composit Sample Sector/Cla</th>	No	lorthing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from F Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composit Sample Sector/Cla
115118716.09878138.08426.02.0424.0426.03.8422.3428.0426.03.8422.3428.0426.03.8422.3428.0426.00.0426.50.0426.50.0426.51.1426.50.0426.5426.5426.52.0424.5426.5426.52.0424.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.51.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.50.0426.5426.5426.51.0426.5426.5426.51.0426.5426.5426.51.0426.5426.5 </td <td></td> <td></td> <td></td> <td>426.0</td> <td>0.0</td> <td>426.0</td> <td>424.6</td> <td>1.4</td> <td>ML</td> <td></td> <td></td> <td>SILT, dark brown, slightly clayey</td> <td>Discarde</td>				426.0	0.0	426.0	424.6	1.4	ML			SILT, dark brown, slightly clayey	Discarde
11181118716.09878138.69426.02.7423.3425.3426.043.0422.0423.0426.0422.0423.0426.05.0421.0426.05.0421.0426.0426.50.0425.60.0425.61.1425.4426.5426.51.1425.4426.51.1425.41.1426.51.0426.51.0426.5420.51.1426.5426.51.0426.51.0426.51.1426.51.1426.5426.51.0426.51.0426.51.1426.51.1426.5426.50.0426.51.0426.51.0426.51.1426.51.0426.5				426.0	1.4	424.6	424.0	0.6	СН			CLAY, brown, high plastic	B-CH
116 116 116 426.0 3.8 422.3 426.0 5.0 422.3 426.5 5.0 422.5 426.5 0.0 426.5 0.0 426.5 0.0 116 1118664.14 878545.38 426.5 2.0 424.5 426.5 1.1 426.5 426.5 1.1 426.5 426.5 1.1 426.5 426.5 1.1 426.5 1.1 426.5 1.1 426.5 426.5 1.1 426.5				426.0	2.0	424.0	423.3	0.7	CL			Silty CLAY, low plastic, brown	Discarde
116448.04.04.22.01184.26.05.0421.0426.5426.50.0426.5426.51.1426.50.0426.5426.52.0424.5426.52.0424.5426.52.0424.5426.52.0424.5426.56.0426.5426.56.0420.5426.56.0420.5426.56.0420.51.8424.8426.5426.51.8424.8426.56.0420.5426.56.0420.51.8424.8420.5426.56.0420.56.0420.5420.5426.56.0420.56.0420.5420.5426.56.0420.56.0420.5420.5426.56.0420.56.0420.5420.5426.56.0420.56.0420.5420.5426.56.0420.56.0420.5420.5426.57.9418.6420.5420.5420.5426.57.9418.6420.5420.5420.5426.57.9418.6420.5420.5420.5426.57.9418.6420.5420.5420.5426.57.9418.6420.5420.5420.5426.57.9418.6420.5420.5420.5426.57.3424.5420.5420.5420.5426.57.3<	111	18716.09	878138.69	426.0	2.7	423.3	422.3	1.1	СН			CLAY, brown, high plastic	B-CH
116118118118118118111				426.0	3.8	422.3	422.0	0.3	ML			Clayey SILT, brownish tan	Discarde
116 1118664.14 878545.38 426.5 0.0 426.5 110 1118664.14 878545.38 426.5 2.0 424.5 426.5 2.0 424.5 426.5 420.5 420.5 426.5 2.0 422.5 420.5 420.5 420.5 426.5 2.0 422.5 420.5 420.5 420.5 426.5 0.0 422.5 0.0 422.5 420.5 426.5 0.8 422.5 0.0 422.5 420.5 420.5 1.8 422.8 420.5 420.5 0.0 420.5 420.5 420.5 420.5 0.0 420.5				426.0	4.0	422.0	421.0	1.0	CL			CLAY, gray-brown, high plastic	B-2
116 1118664.14 878545.8 426.5 1.11 425.4 1 1118664.14 878545.8 426.5 2.0 424.0 1 426.5 2.0 424.0 1 426.5 420.0 1 426.5 4.0 422.5 420.0 1 426.5 1.0 422.5 1 1118612.0 878952.06 1.8 426.5 0.0 426.5 1.8 426.5 1.0				426.0	5.0	421.0							
118 118664.14 87854.38 426.5 2.0 424.5 426.5 2.0 424.5 426.5 420.5 420.5 426.5 0.0 422.5 420.5 420.5 420.5 420.5 420.5 420.5 1.8 422.5 0.00 426.5 0.00 426.5 0.00 420.5 1.8 426.5 0.00 420.5 1.8				426.5	0.0	426.5	425.8	0.8	ML			Clayey SILT, dary grayish brown	B-MCL
1161118664.14878545.38426.52.0424.5426.0426.54.00422.5426.54.00422.5426.56.00426.51.0426.51.0426.50.00426.50.0426.51.0426.50.8426.7426.50.0426.51.0426.50.8426.51.8421.81.0426.51.0426.56.0420.56.0420.51.0426.5 </td <td></td> <td></td> <td></td> <td>426.5</td> <td>0.8</td> <td>425.8</td> <td>425.4</td> <td>0.3</td> <td>CL</td> <td></td> <td></td> <td>Silty CLAY, brown</td> <td>B-CL</td>				426.5	0.8	425.8	425.4	0.3	CL			Silty CLAY, brown	B-CL
1000 1000 1000 1000 1000 426.5 1.0 442.5 100 442.5 426.5 0.0 442.5 100 442.5 111 1118612.20 878952.08 426.5 0.8 442.5 426.5 1.8 442.8 426.5 1.8 442.8 426.5 1.8 442.8 426.5 6.0 422.5 426.5 6.0 442.8 426.5 6.0 422.5 426.5 6.0 442.8 426.5 0.0 426.5 426.5 0.0 442.8 426.5 1.3 422.5 426.5 0.0 442.5 426.5 1.3 422.5 426.5 0.8 442.2 426.5 1.3 422.5 426.5 0.8 442.5 1.3 422.5 1.3 426.5 0.2 426.5 1.3 422.5 1.3 1118508.30 879765.47 426.5 0.2				426.5	1.1	425.4	424.5	0.9	ML			Clayey SILT, tan	Discarde
110426.54.0422.5426.56.0420.5426.5426.50.0426.5426.5426.51.8424.8426.5426.51.8424.8426.5426.51.8422.8426.5426.56.0420.5426.5426.56.0420.5426.5426.56.0420.5426.5426.56.0420.5426.5426.50.0426.51.8426.50.8420.1426.5426.50.8422.2426.5426.50.8422.3426.5426.50.8422.3426.5426.50.8421.7426.5426.51.3422.2426.5426.50.0426.51.3426.50.0426.51.3426.51.0426.51.3426.51.0426.51.3426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.31426.51.3426.51.3426.5 <td>111</td> <td>18664.14</td> <td>878545.38</td> <td>426.5</td> <td>2.0</td> <td>424.5</td> <td>424.0</td> <td>0.5</td> <td>ML</td> <td></td> <td></td> <td>SILT, tan</td> <td>Discarde</td>	111	18664.14	878545.38	426.5	2.0	424.5	424.0	0.5	ML			SILT, tan	Discarde
110426.54.0422.5426.56.0420.5426.5426.50.0426.5426.5426.51.8424.8426.5426.51.8424.8426.5426.51.8422.8426.5426.56.0420.5426.5426.56.0420.5426.5426.56.0420.5426.5426.56.0420.5426.5426.50.0426.5426.5426.50.8422.2426.5426.50.8422.2426.5426.50.8422.3426.5426.50.8422.2426.5426.50.8422.2426.5426.50.8420.1426.5426.50.8421.1426.5426.50.0426.51.0426.51.0426.51.0426.51.0426.51.1426.51.0426.51.1426.51.1426.51.1426.51.3426.31426.51.3422.31426.51.3422.31426.51.3422.31426.51.3422.51426.51.3422.31426.51.3422.31426.51.3422.31426.51.3422.31426.51.3422.51426				426.5	2.5	424.0	422.5	1.5	СН			CLAY, dark brown, high plastic	B-CH
1171118612.20426.56.00420.5426.51181118612.20878952.08426.50.08422.57426.50.0422.51.8422.8426.5426.50.0422.51.8420.2426.5426.56.0420.51.8420.2426.5426.56.3420.2426.50.0426.5426.50.0426.50.0426.51.8426.50.0426.50.0426.51.8426.50.0426.51.3422.11.8426.50.0426.51.3422.11.8426.51.6420.01.8426.51.0426.5426.51.5420.0426.51.0426.51.0426.50.2426.51.0426.51.0426.5426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0426.51.0427.53.8420.7427.5426.51.0427.53.0424.51.0426.51.0427.53.0424.51.0426.51.0427.53.8420.71.4427.53.8420.7427					1		420.5	2.0	CH			CLAY, brown & gray, high plastic	B-CH
117 1118612.20 878952.08 426.5 0.0 422.5 1118612.20 878952.08 426.5 1.8 422.5 426.5 1.8 422.5 423.5 423.5 426.5 6.0 422.5 426.5 6.0 422.5 426.5 6.0 422.5 426.5 6.0 422.5 426.5 6.0 422.5 6.0 422.5 1.0 426.5 0.8 422.5 0.0 422.5 1.0 426.5 0.8 422.5 0.0 422.5 1.0 426.5 0.8 422.2 426.5 0.0 426.5 426.5 0.2 422.5 1.0 426.5 1.0 426.5 0.0 426.5 1.0 426.5 1.0 426.5 426.5 1.0 426.5 1.3 426.5 1.3 426.5 426.5 1.3 426.5 1.3 426.5 1.3 1118508.40 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>MCL</td><td></td><td></td><td>Silty CLAY, brown</td><td>B-CL</td></t<>					1				MCL			Silty CLAY, brown	B-CL
117 1118612.00 878952.08 426.5 0.8 422.1 118612.00 878952.08 426.5 2.6 423.9 1 118 1118612.00 878952.08 426.5 6.0 420.5 1 118 1118560.25 6.0 420.5 6.0 420.5 1 118 1118560.25 879358.78 426.5 0.0 426.5 1 118 1118560.25 879358.78 426.5 0.0 426.5 420.0 426.5 1 422.2 1 118 1118560.25 879358.78 426.5 0.0 422.5 426.5 1							425.7	0.8	CL			Silty CLAY, dark brown	C-CL
117 1118612.20 678952.08 426.5 1.8 424.8 426.5 6.0 420.5 426.5 6.0 420.2 426.5 6.0 420.2 426.5 6.0 420.2 426.5 6.0 420.5 6.3 420.2 426.5 6.0 420.5 426.5 0.0 426.5 6.0 420.2 426.5 6.8 420.2 426.5 6.8 420.2 426.5 6.8 420.2 426.5 6.8 420.0 1 426.5 6.8 420.0 426.5 6.8 420.0 1 426.5 6.8 419.7 1 426.5 6.8 419.7 1 426.5 6.8 419.7 1 426.5 1.0 422.5 1 426.5 1.0 422.5 1 426.5 1.0 426.5 1 426.5 1 426.5 1 423.1 1 426.5 1 426.5 1 423.1 1 426.5 1 <					1		424.8	0.9	CL	19.4	100.3	CLAY, dark brown, low plastic	C-CL
1118 1118612.00 878952.08 426.5 2.6 423.9 426.5 4.8 421.8 426.5 6.0 420.5 420.5 420.5 420.5 420.5 420.5 420.5 6.9 4119.6 420.5 6.9 419.6 420.5 6.9 419.6 420.5 0.0 422.5 1 420.5 0.0 420.5 1 420.5 0.0 420.5 1 420.5 0.0 420.5 1 420.5 1 <					1		423.9	0.8	CL	25.4	97.6	Silty CLAY, dark brown/tan, low plastic	C-CL
111 1118612.20 376352.06 426.5 4.8 421.8 426.5 6.0 420.5 6.0 420.5 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.3 420.5 0.0 426.5 426.5 10.0 426.5 10.0 426.5 10.0 422.2 10.0 422.2 10.0 422.2 10.0 422.2 10.0 422.5 10.0					1		421.8	2.2	CL-ML	20.4	07.0	Clayey SILT/Silty CLAY, light brown	B-MC
118 426.5 6.0 420.5 426.5 6.9 419.6 118 426.5 0.0 426.5 0.8 425.8 426.5 1.8 425.8 1.8 118 1118560.25 2.8 426.5 0.8 422.2 1.4 426.5 1.6 420.0 1.4 426.5 1.3 422.2 1.4	111	18612.20	878952.08		1		421.5	1.3	ML			SILT, It. brown/tan, very slightly clayer	Discard
118 426.5 6.3 420.2 426.5 0.9 419.6 426.5 118 1118560.25 679358.78 426.5 0.8 422.8 426.5 423.0 426.5 423.0 426.5 423.0 426.5 426.5 423.0 426.5 426.5 423.0 426.5 423.0 426.5 426.5 420.0 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 1.0 425.5 1.0 425.5 1.0 425.5 1.0 425.5 1.0 426.5 1.0 425.5 1.0 426.5 1.0 426.5 1.0 425.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1								
118 426.5 6.9 419.6 118 426.5 0.0 426.5 426.5 423.8 118 426.5 2.8 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 423.0 426.5 420.0 426.5 6.5 420.0 426.5 1.0 425.5 1.0 425.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0 426.5 1.0	1				1		420.2	0.3	CL			CLAY, dark brown, low plastic	C-CL Discord
118 1118560.25 879358.78 426.5 0.0 426.5 0.8 422.8 426.5 0.8 422.8 423.8 0 426.5 0.8 422.0 1 1 426.5 0.8 422.2 1 1 1 426.5 0.6 420.0 1	1				1		419.6	0.6	SM	+		SAND, light tan, fine	Discard
118 1118560.25 0.8 426.5 2.8 423.8 118 1118560.25 879358.78 426.5 2.8 423.8 426.5 3.5 423.0 426.5 4.3 422.2 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.8 419.7 426.5 6.5 420.0 426.5 7.9 418.6 426.5 0.2 426.3 426.5 0.2 426.3 426.5 1.0 425.5 426.5 1.0 425.5 1.3 425.3 426.5 426.5 1.3 425.3 426.5 4.7 421.8 426.5 6.3 420.2 426.5 4.7 421.8 426.5 6.3 420.2 426.5 4.7 421.8 426.5 6.7 419.8 426.5 4.7 421.8 426.5 6.7 419.8 427.5 3.8 423.7 1118456.36							405.0	0.0	ML			Sandy SILT, brown	Discard
118 1118560.25 879358.78 426.5 3.5 423.0 426.5 3.5 423.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 426.5 6.8 419.7 426.5 0.0 426.5 1.0 426.5 0.2 426.5 0.2 426.3 426.5 1.0 425.5 426.5 1.0 426.5 1.3 426.5	1			-			425.8	0.8	MCL			Dark Brown Sandy Silty Clay	Discard
118 1118560.25 879358.78 426.5 3.5 423.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.8 419.7 426.5 7.9 418.6 426.5 7.9 418.6 426.5 0.0 426.5 1.3 426.5 0.2 426.3 426.5 1.3 425.3 1.4 426.5 1.3 426.5 1.3 426.3 1.4 1.4 426.5 1.3 426.5 1.3 426.3 1.4 1.4 426.5 6.3 420.2 1.4 426.5 1.3 422.3 1.4 426.5 6.3 420.2 1.4 426.5 6.3 420.2 1.4 1.6 1.1	1				1		423.8	2.0	CL			Dark Brown Clay	C-CL
118 1118360.25 879338.78 426.5 4.3 422.2 426.5 6.5 420.0 426.5 6.8 419.7 426.5 6.8 419.7 426.5 0.0 426.5 1.0 426.5 426.5 0.0 426.5 0.0 426.5 1.0 426.5 426.5 1.0 426.5 1.0 426.5 1.3 426.5 426.5 1.3 426.5 1.3 426.5 1.3 426.5 426.5 1.3 426.5 1.3 426.5 1.3 426.5 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 1.0 427.5 0.0 427.5 0.0 427.5 0.0 427.5 1.4 427.5 0.0 427.5 0.0 427.5 6.4 421.1 427.5 4.4 421.1 427.5 0.0					1		423.0	0.8	СН			Dark Black/Gray Clay	C-CF
111 426.5 6.5 420.0 426.5 6.8 419.7 426.5 7.9 418.6 426.5 0.0 426.5 426.5 0.2 426.3 426.5 1.0 425.3 426.5 1.0 425.3 426.5 1.3 425.3 426.5 1.3 425.3 426.5 1.3 425.3 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 427.5 3.8 423.7 427.5 3.8 423.7 427.5 6	111	18560.25	879358.78		1		422.2	0.8	MCL			Dark Brown Silty Clay	C-MC
119 118508.30 426.5 6.8 419.7 119 1118508.30 879765.47 426.5 0.0 426.5 119 1118508.30 879765.47 426.5 1.0 425.5 426.5 1.0 425.5 426.5 1.0 425.5 426.5 1.3 426.5 1.3 426.5 3.4 426.5 6.3 420.0 426.5 6.3 420.0 426.5 6.3 420.0 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 426.5 7.3 419.2 427.5 3.0 424.5 427.5 0.0 427.5 427.5 3.8 422.1 427.5 6.4 421.1 427.5 6.8 420.7 427.0 0.4 426.6 427.0 428.5 6 427.0 0.4 426.6 427.0 428.5 6 427.0 6.3 <				426.5	4.3	422.2	420.0	2.2	ML			Lt Tan/Brown Silt	Discard
119 426.5 7.9 418.6 426.5 0.0 426.5 426.5 426.5 0.2 426.3 426.5 1.0 425.5 426.5 1.0 425.5 426.5 1.0 425.3 426.5 3.4 423.1 426.5 3.4 423.1 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.7 419.8 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 427.5 0.0 427.5 427.5 3.0 424.5 427.5 3.0 424.5 427.5 6.8 420.7 427.5 6.8 420.7 427.5 6.8 420.7 427.0 0.0 427.0 427.0 1.4 425.6 427.0 6.3 420.8 4				426.5	6.5	420.0	419.7	0.3	ML			Lt Tan/Brown Silt	Discard
119 1118508.30 879765.47 426.5 0.0 426.5 426.5 119 1118508.30 879765.47 426.5 1.3 425.3 426.5 1.3 425.3 426.5 3.4 423.3 426.5 3.4 423.3 426.5 3.4 423.3 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 426.5 6.7 419.8 426.5 7.3 419.2 427.5 0.0 427.5 3.0 424.5 1427.5 1118456.36 880172.17 427.5 3.8 423.1 427.5 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.8 420.7 427.0 1.4 425.6 427.0 0.4 426.6 427.0 4.3 428.5				426.5	6.8	419.7	418.6	1.1	MCL			Gray/Brown Silty Clay	C-MC
119 1118508.30 879765.47 426.5 1.0 425.5 119 1118508.30 879765.47 426.5 2.3 424.3 426.5 2.3 424.3 426.5 3.4 423.1 426.5 3.4 423.1 426.5 6.3 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 427.5 2.3 425.3 427.5 0.0 427.5 3.0 424.5 427.5 3.0 424.5 427.5 3.0 424.5 427.5 6.4 421.1 427.5 6.8 420.7 427.5 6.8 420.7 427.0 428.5 428.5 427.0 0.4 428.6 427.0 428.5 428.5 427.0 0.4 428.5 428.5 428.5 428.5 427.0 6.5				426.5	7.9	418.6			MCL			Dark Brown slightly clayey Silt	C-MC
119 1118508.30 879765.47 426.5 1.0 425.5 426.5 1.3 425.3 426.5 3.4 423.1 426.5 2.3 424.3 426.5 3.4 423.1 426.5 4.7 421.8 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.7 419.8 426.5 7.3 419.2 426.5 7.3 419.2 427.5 0.0 427.5 427.5 0.0 427.5 3.8 423.7 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.4 421.1 427.0 0.4 426.6 427.0 0.4 426.6 427.0 427.0 428.6 427.0 0.4 426.6 427.0 428.5 426.5 428.5 1118378.44 880782.21 427.0 6.5 420.5 428.5 426.5 426.5<				426.5	0.0	426.5	426.3	0.2	MCL			Dark Gray Silty Clay	D-MC
119 1118508.30 879765.47 426.5 1.3 425.3 1118508.30 879765.47 426.5 2.3 424.3 426.5 3.4 423.1 426.5 3.4 423.1 426.5 6.3 420.0 426.5 6.5 420.0 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 426.5 7.3 419.2 426.5 7.3 419.2 427.5 0.0 427.5 427.5 427.5 3.0 424.5 427.5 3.8 423.7 427.5 427.5 6.4 421.1 427.5 6.4 421.1 427.0 427.0 0.0 427.0 427.0 427.0 427.0 427.0 1118378.44 880782.21 427.0 0.4 426.6 427.0 427.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.				426.5	0.2	426.3	425.5	0.8	СН			Dark Black/Gray Clay	D-CH
119 1118508.30 879765.47 426.5 2.3 424.3 1118508.30 879765.47 426.5 3.4 423.1 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.7 4119.2 426.5 6.7 419.2 426.5 6.7 419.2 426.5 7.3 419.2 427.5 0.0 427.5 427.5 427.5 3.0 424.5 427.5 6.4 423.1 427.5 427.5 6.4 423.1 427.5 6.4 423.1 427.5 427.5 6.4 423.1 427.0 0.0 427.0 427.0 1118378.44 880782.21 427.0 0.4 426.6 427.0 428.8 427.0 0.4 426.5 420.5 427.0 428.8 427.0 1118378.44 880782.21 427.0 6.3 422.8 427.0 428.5 428.5				426.5	1.0	425.5	425.3	0.3	MCL			Lt Tan/Brown Silty Clay/Clayey Siilt	D-MC
119 1118508.30 879765.47 426.5 3.4 423.1 426.5 4.7 421.8 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.7 419.8 426.5 7.3 419.2 426.5 7.3 419.2 426.5 7.3 419.2 427.5 0.0 427.5 427.5 0.0 427.5 3.0 424.5 427.5 3.0 424.5 427.5 427.5 6.4 421.1 427.5 427.5 6.8 420.7 427.0 427.0 0.4 426.6 427.0 427.0 0.4 426.6 427.0 427.0 1.4 425.6 427.0 427.0 6.3 420.8 427.0 427.0 6.3 420.5 426.5 427.0 6.5 420.5 426.5 <t< td=""><td></td><td></td><td></td><td>426.5</td><td>1.3</td><td>425.3</td><td>424.3</td><td>1.0</td><td>CL</td><td></td><td></td><td>Dark Brown Clay w Trace Silt</td><td>C-CL</td></t<>				426.5	1.3	425.3	424.3	1.0	CL			Dark Brown Clay w Trace Silt	C-CL
$120 1118378.44 = 880782.21 121 1118378.44 = 880782.21 122 1118564.69 = 877706.02 123 1118356.90 = 879332.80 \frac{123 1118356.90}{123} = 879332.80 = 879332.80 123 1118356.90 = 879332.80 124 = 100 125 = 100 125 = 100 125 = 100 125 = 100 125 = 100 126 = 100 127 = 100 127 = 100 128 = 100 129 = 100 120 = 100 120 = 100 120 = 100 120 = 100 120 = 100 120 = 100 120 = 100 121 = 100 121 = 100 121 = 100 122 = 1118564.69 = 100 123 = 100 124 = 100 125 = 100 125 = 100 126 = 100 127 = 100 128 = 100 129 = 100 129 = 100 120 = 100 $				426.5	2.3	424.3	423.1	1.2	СН			Dark Brown/Gray Clay	D-CH
120 1118456.36 4.7 421.8 426.5 6.3 420.2 426.5 6.3 420.2 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.5 420.0 426.5 6.7 419.8 426.5 7.3 449.2 427.5 0.0 427.5 3.0 422.3 427.5 3.0 424.5 1 427.5 3.0 424.5 1 427.5 3.0 424.5 1 427.5 3.0 424.5 1 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.4 421.1 427.0 1.4 425.6 1 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 428.5 1.0 425.5 426.5 1.0 425.5 426.5 1.0	111	18508.30	879765.47	426.5	3.4	423.1	421.8	1.3	СН			Brown Gray Clay	D-CH
120 1118456.36 6.3 420.2 426.5 6.5 420.0 120 1118456.36 880172.17 426.5 7.3 419.2 121 1118456.36 880172.17 427.5 0.0 427.5 121 1118456.36 880172.17 427.5 3.8 423.7 121 1118456.36 880172.17 427.5 3.8 423.7 121 1118378.44 880782.21 427.0 0.0 427.0 121 1118378.44 880782.21 427.0 0.4 426.6 122 1118378.44 880782.21 427.0 0.4 426.6 122 1118378.44 880782.21 427.0 0.3 422.8 123 1118378.44 880782.21 427.0 6.3 420.5 124 1118378.44 880782.21 427.0 6.3 420.8 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.5 420.5 426.				426.5	4.7	421.8	420.2	1.7	CL			Gray Brown Clay	D-Cl
120 1118456.36 6.5 420.0 426.5 6.7 419.8 426.5 6.7 419.8 426.5 7.3 419.2 426.5 7.3 419.2 427.5 2.3 425.3 427.5 2.3 425.3 427.5 3.0 424.5 427.5 3.8 423.1 427.5 3.8 423.1 427.5 6.4 421.1 427.5 6.8 420.7 427.5 6.8 420.7 427.0 0.0 427.0 427.0 0.4 426.6 427.0 1.4 425.6 427.0 0.4 426.6 427.0 428.8 427.0 1.4 428.8 427.0 1.4 425.6 428.8 427.0 6.3 420.8 427.0 6.3 420.8 427.0 6.3 420.8 427.0 123 1118378.44 880782.21 426.5 1.0 426.5 426.5 1.0 424.8 427.0					1		420.0	0.2	CL			Brown Clay	D-Cl
120 1118456.36 6.7 419.8 426.5 7.3 419.2 120 1118456.36 880172.17 427.5 0.0 427.5 1 120 1118456.36 880172.17 427.5 3.0 424.5 1 121 1118456.36 880172.17 427.5 3.8 422.7 1 121 1118456.36 880172.17 427.5 6.4 421.1 1 427.5 6.4 422.1 427.5 6.8 420.7 1 427.5 6.8 420.7 1 427.0 1.4 425.6 427.0 0.4 426.6 427.0 1.4 425.6 427.0 1.4 425.6 1 427.0 1.4 425.6 427.0 6.3 420.8 427.0 1.4 425.6 1 122 1118378.44 880782.21 426.5 0.0 426.5 1 426.5 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td>419.8</td><td>0.2</td><td>MCL</td><td>32.5</td><td>89.1</td><td>Gray/Brown Clayey Silt</td><td>D-MC</td></td<>					1		419.8	0.2	MCL	32.5	89.1	Gray/Brown Clayey Silt	D-MC
120 426.5 7.3 419.2 120 1118456.36 427.5 0.0 427.5 121 1118456.36 880172.17 427.5 3.0 424.5 120 1118456.36 880172.17 427.5 3.8 423.7 121 1118456.36 880172.17 427.5 6.4 4221.1 121 1118378.44 427.0 6.8 420.7 121 1118378.44 880782.21 427.0 0.4 426.6 121 1118378.44 880782.21 427.0 0.4 426.6 122 1118378.44 880782.21 427.0 1.4 425.6 122 1118378.44 880782.21 427.0 3.3 422.8 122 1118378.44 880782.21 427.0 6.3 420.5 122 1118378.44 880782.21 427.0 6.3 420.5 123 1118564.69 877706.02 426.5 1.0 426.5 124 1118					1		419.2	0.2	CL	02.0	00.1	Gray/Brown Clay	D-CL
120 1118456.36 880172.17 427.5 2.3 425.3 120 1118456.36 880172.17 427.5 3.0 424.5 127.5 3.8 423.7 427.5 3.8 423.7 120 1118456.36 880172.17 427.5 3.8 423.7 127.5 6.4 421.1 427.5 6.4 423.1 120 1118378.44 880782.21 427.0 0.0 427.0 121 1118378.44 880782.21 427.0 0.4 426.6 427.0 0.4 426.6 427.0 428.8 427.0 4.3 422.8 427.0 6.5 420.5 427.0 6.5 420.5 426.5 1.0 425.5 427.0 6.5 420.5 426.5 1.0 425.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5<							410.2	0.7	MCL			Gray/Brown Clayey Silt	D-MC
120 1118456.36 880172.17 427.5 3.0 424.5 1118456.36 880172.17 427.5 3.8 423.7 427.5 3.8 423.7 427.5 3.8 423.1 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.8 420.7 427.5 6.8 420.7 0.0 427.0 6.8 420.7 427.0 0.0 427.0 0.4 426.6 427.0 427.0 427.0 6.8 420.0 427.0 427.0 6.8 420.8 427.0 427.0 6.5 420.8 427.0 6.5 420.8 427.0 6.5 420.8 427.0 6.5 420.8 427.0 6.5 420.8 427.0 6.5 420.8 427.0 6.5 420.5 6.5 420.5 6.5 420.5 426.5 6.0 420.8 426.5 6.0 421.5 426.5 6.0 420.5	-				1		425.3	2.3	CL			Dark Brown/Gray Clay	D-CL
120 1118456.36 880172.17 427.5 3.0 424.5 121 1118456.36 880172.17 427.5 3.8 423.7 427.5 3.8 423.1 427.5 6.4 421.1 427.5 6.4 421.1 427.5 6.8 420.7 427.5 6.8 420.7 427.0 0.0 422.0 427.0 0.4 426.6 427.0 0.4 426.6 427.0 0.4 426.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.5 420.5 427.0 6.5 420.5 426.5 1.0 425.5 427.0 6.5 420.5 426.5 1.0 425.5 426.5 1.0 425.5 426.5 1.0 425.5 426.5 5.0 421.5 426.5 1.0 425.5 426.5					1		424.5	0.8	CH			Dark Black Grey Clay	D-CF
120 1118456.36 880172.17 427.5 3.8 423.7 427.5 4.4 423.1 427.5 4.4 423.1 427.5 6.4 421.1 427.5 6.8 420.7 427.5 6.8 420.7 427.0 0.0 427.0 427.0 0.4 426.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 1.4 425.6 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.3 420.8 427.0 6.3 420.8 427.0 6.5 420.5 426.5 1.0 425.5 426.5 1.0 426.5 1.0 426.5 426.5 1118564.69 87706.02 426.5 5.0 421.5 426.5 5.0					1		424.5	0.8	MCL			Dark Brown/Gray Silty Clay	D-MC
$121 118378.44 = 880782.21 = \frac{427.5}{427.5} = \frac{4.4}{6.4} = \frac{423.1}{427.5} = \frac{427.5}{6.8} = \frac{420.7}{427.0} = \frac{427.0}{427.0} = \frac{427.0}{6.5} = \frac{420.8}{420.5} = \frac{427.0}{427.0} = \frac{6.5}{6.3} = \frac{420.5}{420.5} = \frac{426.5}{6.0} = \frac{422.5}{426.5} = \frac{426.5}{5.0} = \frac{421.0}{426.5} = \frac{426.5}{5.0} = \frac{426.5}{5.0} = \frac{426.5}{426.5} = \frac{426.5}{5.0} = 42$	111	18456 36	880172 17		1		423.1	0.6	MUL			Lt Tan Silt	Discard
121 1118378.44 427.5 6.4 421.1 1118378.44 427.5 6.8 420.7 427.0 1118378.44 880782.21 427.0 0.4 426.6 427.0 1.4 425.6 427.0 1118378.44 880782.21 427.0 1.4 425.6 427.0 4.3 422.8 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.5 420.5 427.0 6.5 420.5 6.5 420.5 6.5 427.0 6.5 420.5 6.5 420.5 6.5 426.5 0.0 426.5 426.5 6.0 422.5 426.5 5.0 421.0 426.5 6.0 420.5 426.5 6.0 420.5 426.5 6.0 420.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5 426.5 0.0 426.5 426.5 426.5 42		10400.00	000172.17		1		423.1	2.0	ML			Lt Tan Silt	Discard
121 1118378.44 480782.21 427.0 0.0 427.0 1118378.44 880782.21 427.0 0.4 426.5 427.0 2.3 424.8 427.0 427.0 6.5 422.8 427.0 427.0 6.5 422.8 427.0 427.0 6.5 420.5 427.0 427.0 6.5 420.5 427.0 427.0 6.5 420.5 427.0 427.0 6.5 420.5 420.5 427.0 7.3 419.7 426.5 426.5 0.0 426.5 420.5 426.5 5.0 421.5 426.5 426.5 5.0 421.5 426.5 426.5 7.0 419.5 426.5 426.5 0.0 426.5 426.5 426.5 0.0 426.5 426.5 426.5 0.0 426.5 426.5 426.5 0.0 426.5 426.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>421.1</td> <td>0.4</td> <td>ML</td> <td></td> <td></td> <td>Lt Tan Silt</td> <td>Discard</td>							421.1	0.4	ML			Lt Tan Silt	Discard
121 1118378.44 880782.21 427.0 0.0 427.0 1118378.44 880782.21 427.0 0.4 426.6 427.0 1.4 425.6 427.0 4.3 422.8 427.0 6.3 420.5 427.0 6.3 420.5 427.0 6.5 420.5 427.0 6.3 420.5 427.0 6.5 420.5 6.5 420.5 6.5 427.0 6.5 420.5 6.5 420.5 6.5 427.0 7.3 419.7 426.5 0.0 426.5 426.5 0.0 426.5 420.5 420.5 6.3 420.5 426.5 5.0 421.5 426.5 0.0 426.5 426.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5							420.7	0.4					
121 1118378.44 880782.21 427.0 4.3 422.8 427.0 4.3 422.8 427.0 6.3 422.8 427.0 6.3 420.8 427.0 6.3 420.8 427.0 6.5 420.5 427.0 6.5 420.5 427.0 6.5 420.5 427.0 6.5 420.5 427.0 6.5 420.5 426.5 0.0 426.5 0.0 426.5 1.0 425.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 7.0 419.5 426.5 0.0 426.5 7.0 419.5 426.5 7.0 419.5 426.5 0.0 426.5 9 426.5 0.0 426.5 9 426.5 0.0 426.5 9 426.5 0.0 426.5 9 426.5 1.1 426.5 5.0 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3 421.3 426.5 5.3							400.0	0.4	MCL			Gray/Brown Silty Clay/Clayey Silt	D-MC
121 1118378.44 880782.21 427.0 1.4 425.6 427.0 2.3 424.8 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.5 420.8 427.0 6.5 420.8 427.0 7.3 419.7 427.0 6.5 420.5 427.0 7.3 419.7 426.5 1.0 426.5 1.0 426.5 426.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 6.0 420.5 426.5 5.0 421.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5 0.0 426.5 426.5 426.5 426.5 426.5 5.0 421.5 426.5 426.5 426.5 426.5					1		426.6	0.4	MCL			Dark Black/Gray Silty Clay	D-MC
121 1118378.44 880782.21 427.0 2.3 424.8 427.0 4.3 422.8 427.0 4.3 422.8 427.0 6.3 420.8 427.0 6.5 420.5 427.0 6.5 420.5 427.0 7.3 419.7 426.5 0.0 426.5 1.0 425.5 426.5 1.0 425.5 426.5 1.0 425.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.5 421.0 426.5 42					1		425.6	1.0	CH			Dark Black/Gray Clay	D-CH
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						424.8	0.8	CH	+		Dark Brown Clay	D-CH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	18378.44	880782.21		1		422.8	2.0	CH			Brown/Gray Clay	D-CH
122 1118564.69 877706.02 426.5 0.0 426.5 123 1118356.90 879332.80 426.5 0.0 426.5 1118356.90 87706.02 426.5 5.0 422.5 426.5 5.0 422.5 426.5 5.0 422.5 426.5 5.0 422.5 426.5 5.5 421.0 426.5 6.0 420.5 426.5 5.5 421.0 426.5 6.0 420.5 426.5 5.0 422.5 426.5 0.0 426.5 426.5 1.0 426.5 426.5 0.0 426.5 426.5 1.0 426.5 426.5 0.0 426.5 426.5 426.5 1.0 426.5 5.0 421.5 426.5 426.5 426.5 1.0 426.5 5.0 421.5 426.5 5.0 421.5 426.5 426.5 6.3 420.2 426.5 6.3 420.2 42	1						420.8	2.0	CH			Dark Brown Clay	D-CH
122 1118564.69 877706.02 426.5 0.0 426.5 123 1118356.90 879332.80 426.5 0.0 426.5 123 1118356.90 879332.80 426.5 0.0 426.5 1118356.90 877332.80 426.5 0.0 426.5 123 1118356.90 879332.80 426.5 0.0 426.5 123 1118356.90 879332.80 426.5 0.0 426.5 426.5 5.0 421.3 426.5 0.6 422.3 426.5 5.0 421.5 426.5 1.4 424.4 426.5 5.0 421.5 426.5 1.4 424.4 426.5 5.0 421.5 426.5 5.0 421.3 426.5 426.5 6.3 420.2 426.5 6.3 420.2 427.0 0.0 427.0 424.8 426.8 426.8 426.8 426.8 426.8 426.8 426.8 426.8 426.8	1						420.5	0.3	CL			Dark Brown/Gray Clay	D-CL
122 1118564.69 877706.02 426.5 0.0 426.5 1118564.69 877706.02 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.5 421.0 426.5 6.0 420.5 426.5 6.0 420.5 426.5 0.0 426.5 426.5 0.0 420.5 426.5 0.0 420.5 426.5 0.0 420.5 426.5 0.0 422.9 426.5 0.6 422.9 426.5 0.6 422.3 426.5 5.0 421.5 426.5 426.5 1.0 422.3 1118356.90 879332.80 426.5 5.0 421.5 426.5 423.3 426.5 426.5 1.0 422.3 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5 426.5	1				1		419.7	0.8	MCL			Dark Brown Silty Clay/Clayey Silt	D-MC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			427.0	7.3	419.7			SM			Lt Tan Brown Very Fine Sandy Silt	Discard
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			426.5	0.0		425.5	1.0	SC			Brown Silty Clayey Fine Sand	Discard
122 1118564.69 877706.02 426.5 5.0 421.5 426.5 5.5 421.0 426.5 5.5 421.0 426.5 5.5 421.0 426.5 5.5 421.0 426.5 6.0 420.5 426.5 7.0 419.5 426.5 0.0 426.5 0.0 426.5 426.5 426.5 0.6 425.9 426.5 2.1 424.4 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.0 421.3 426.5 5.0 421.3 426.5 5.3 421.3 426.5 6.3 420.2 427.0 427.0 422.4 427.0 0.0 427.0 2.2 424.8	1			426.5	1.0	425.5	424.5	1.0	CL			Dark Gray Brown Clay w Silt	A-CL
$123 1118356.90 879332.80 \begin{array}{ c c c c c c c c } \hline 120. & 1$	1			426.5	2.0	424.5	421.5	3.0	СН			Dark Gray Brown Clay	A-CH
123 1118356.90 879332.80 426.5 6.0 420.5 426.5 426.5 7.0 419.5 426.5 426.5 426.5 426.5 1118356.90 879332.80 426.5 5.0 422.3 426.5 5.0 421.5 426.5 5.3 421.3 426.5 5.3 421.3 426.5 426.5 6.3 420.2 427.0 0.0 427.0 422.4 426.5 5.3 421.3 426.5 5.3 421.3 426.5 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9	111	18564.69	877706.02	426.5	5.0	421.5	421.0	0.5	MCL			Dark Gray Silty Clay	A-MC
123 1118356.90 879332.80 426.5 0.0 426.5 426.5 123 1118356.90 879332.80 426.5 2.1 424.4 123 1118356.90 879332.80 426.5 4.3 422.3 426.5 5.0 421.5 426.5 5.3 421.3 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 427.0 427.0	1			426.5	5.5	421.0	420.5	0.5	СН			Dark Gray Brown Clay	A-CH
123 1118356.90 879332.80 426.5 0.0 426.5 124 1118356.90 879332.80 426.5 2.1 424.4 125 1118356.90 879332.80 426.5 5.0 421.5 426.5 5.0 421.5 426.5 5.3 421.3 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9	1			426.5	6.0	420.5	419.5	1.0	CL			Dark Gray Brown Clay	A-CL
123 1118356.90 879332.80 426.5 0.0 426.5 1118356.90 879332.80 426.5 2.1 424.4 426.5 5.0 421.5 426.5 421.5 426.5 5.0 421.3 426.5 6.3 420.2 426.5 6.3 420.2 427.0 0.0 427.0 427.0 3.1 423.9 427.0 423.9	L				1				MCL			Dark Brown Silty Clay	A-MC
123 1118356.90 879332.80 426.5 0.6 425.9 123 1118356.90 879332.80 426.5 2.1 424.4 426.5 4.3 422.3 426.5 5.0 421.5 426.5 5.3 421.3 426.5 6.3 420.2 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 427.0 427.0	1						425.9	0.6	MCL			Dark Gray/Brown Silty Clay	C-MC
123 1118356.90 879332.80 426.5 2.1 424.4 426.5 4.3 422.3 426.5 4.3 422.3 426.5 5.0 421.5 426.5 5.3 421.3 426.5 6.3 420.2 426.5 6.3 420.2 427.0 0.0 427.0 427.0 427.0 427.0 427.0 3.1 423.9 427.0 423.9 427.0 423.9	1				1		424.4	1.5	CH			Dark Gray/Brown Clay	C-Cł
123 1118356.90 879332.80 426.5 4.3 422.3 426.5 5.0 421.5 426.5 421.3 426.5 421.3 426.5 421.3 426.5 421.5 426.5 421.5 426.5 421.5 426.5 421.7 426.5 421.7 426.5 421.7 427.0	1						422.3	2.2	CH	1		Brown Clay	C-CH
426.5 5.0 421.5 426.5 5.3 421.3 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9	111	18356.90	879332.80		1		421.5	0.8	CL	1		Brown Clay	C-CL
426.5 5.3 421.3 426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9							421.3	0.3	MCL	1		Brown/Gray Silty Clay	C-MC
426.5 6.3 420.2 427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9	1						421.3	1.1	SM	1		Lt Tan Sandy Silt - Silty Sand	Discard
427.0 0.0 427.0 427.0 2.2 424.8 427.0 3.1 423.9	1				1		-120.2	1.1	SP	1		Lt Tan Fine Sand	Discard
427.0 2.2 424.8	+						404.0	2.2					
427.0 3.1 423.9	1						424.8	2.2	CH			Dark Brown/Gray Clay	D-CH
124 1119201 06 990552 90 427.0 3.1 423.9	1				1		423.9	0.9	CH			Dark Brown Gray Clay	D-CH
124 1118201.06 880552.89	111	18201.06	880552.89				422.9	1.0	CL	+		Dark Brown Clay	D-CL
427.0 4.1 422.9	1				1		420.9	2.0	CL			Gray/Brown Clay	D-CL
427.0 6.1 420.9	1				1		419.9	1.0	MCL			Gary/Brown Silty Clay/Clayey Silt	D-MC
427.0 7.1 419.9 426.5 0.0 426.5				427.0	7.1			0.2	SP MCL	ļ		Lt Tan/Brown Silt w Very Fine Sand	Discard E-MC

			Approx.	Starting	<u>Sur</u>	nmary of Sa	mples from F	hase 2 Test	Holes			Composite
Test Hole Number	Northing	Easting	Surface Elevation	Depth (feet)	Starting Elevation	Ending Elevation	Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Sample Sector/Class
		J	426.5	0.2	426.3	425.5	0.8	СН			Dark Black/Gray Clay	E-CH
125	1110007 17	001266 20	426.5	1.0	425.5	424.2	1.3	СН			Brown Clay	E-CH
125	1118097.17	881366.28	426.5	2.3	424.2	421.8	2.3	СН			Brown Clay	E-CH
			426.5	4.7	421.8	420.1	1.8	СН			Dark Brown Clay	E-CH
			426.5	6.4	420.1			CL			Dark Brown Clay	E-CL
			427.0	0.0	427.0	426.2	0.8	MCL			Dark Gray Brown Sand/Silt/Clay	Discarded
			427.0	0.8	426.2	425.8	0.3	MCL			Dark Brown Silty Clay	A-MCL
			427.0	1.2	425.8	425.5	0.3	SP			Lt Tan Fine Sand	Discarded
			427.0	1.5	425.5	424.5	1.0	MCL			Dark Brown Gray Clay w Silt	A-MCL
126	1118387.31	8//4/6./0	427.0	2.5	424.5	423.8	0.7	CH			Dark Brown Gray Clay	A-CH
			427.0	3.2	423.8	422.3	1.6	MCL			Dark Brown Gray Clay w Silt	A-MCL
			427.0	4.8	422.3	420.8	1.5	CH	31.9	89.4	Dark Brown Gray Clay	A-CH
			427.0 427.0	6.3 7.3	420.8	419.7	1.1	CH SP			Dark Brown Clay	A-CH Discorded
			427.0	0.0	419.7 427.0	426.3	0.8	MCL			Brown/Gray Very Fine Sand Dark Brown Sandy Silty Clay	Discarded B-MCL
			427.0	0.0	427.0	420.3	1.5	CH			Dark Gray/Brown Clay	B-MCL B-CH
			427.0	2.3	420.3	424.0	2.4	СН			Dark Gray/Brown Clay	B-CH
127	1118335.37	877883.39	427.0	4.7	422.4	420.3	2.4	MCL			Lt Tan Silt w Dark Brown Clay	B-MCL
			427.0	6.8	420.3	419.4	0.9	CL			Brown Clay	B-CL
			427.0	7.7	419.4			SM			Brown/Tan Silt w Very Fine Sand	Discarded
			427.0	0.0	427.0	426.2	0.8	MCL			Dark Gray/Brown Silty Clay	B-MCL
			427.0	0.8	426.2	425.0	1.2	СН			Dark Gray Brown Clay	B-CH
			427.0	2.0	425.0	423.3	1.8	СН			Brown Clay	B-CH
128	1118283.42	878290.09	427.0	3.8	423.3	423.0	0.3	ML			Brown/Tan Silt w Clay	Discarded
			427.0	4.0	423.0	421.0	2.0	ML			Brown Tan Silt to Silty Clay	Discarded
			427.0	6.0	421.0	420.8	0.2	CL			Mottled Gray/Brown Clay	B-CL
			427.0	6.2	420.8			SM			Tan Slightly Silty Sand	Discarded
			427.0	0.0	427.0	426.3	0.7	MCL	16.5	96.8	Dark Brown Sandy Silty Clay	Discarded
			427.0	0.7	426.3	424.8	1.5	CL			Dark Brown Clay	C-CL
			427.0	2.2	424.8	424.2	0.7	CH			Dark Black/Grey Clay	C-CH
100	4440004 47	070000 70	427.0	2.8	424.2	422.3	1.8	CH			Brown Clay	C-CH
129	1118231.47	878696.79	427.0	4.7	422.3	421.5	0.8	CL	30.1	82.6	Brown Clay	C-CH
			427.0 427.0	5.5	421.5 420.7	420.7 420.3	0.8	MCL ML			Brown Silty Clay	C-MCL
			427.0	6.3 6.8	420.7	420.3	0.4	ML			Lt Tan Silt Lt Brown Clayey Silt	Discarded Discarded
			427.0	7.4	419.6	413.0	0.7	SM			Lt Tan Silt w Fine Sand	Discarded
			428.0	0.0	428.0	427.3	0.8	MCL			Dark Brown Sandy Silty Clay	Discarded
			428.0	0.8	427.3	425.8	1.5	MCL			Dark Brown Lt Brown Silty Clay	C-MCL
			428.0	2.3	425.8	425.3	0.5	CH			Dark Black Grey Clay	C-CH
			428.0	2.8	425.3	424.5	0.8	CL			Dark Brown Clay w Silt Seams	C-CL
130	1118179.53	879103.48	428.0	3.5	424.5	423.7	0.8	MCL			Dark Brown Clay w Tan Silt	C-MCL
			428.0	4.3	423.7	423.2	0.5	CL	7.2	82.1	Dark Brown Clay	C-CL
			428.0	4.8	423.2	421.6	1.6	SM			Lt Tan Silt w Very Fine Sand	Discarded
			428.0	6.4	421.6	420.0	1.6	ML			Lt Tan/Brown Silt w Clay & Fine Sand	Discarded
			428.0	8.0	420.0			MCL			Dark Brown Silty Clay	C-MCL
			427.5	0.0	427.5	426.8	0.7	MCL			Dark Brown Silty Clay w Sand	Discarded
			427.5	0.7	426.8	425.2	1.7	СН			Dark Gray Brown Clay	C-CH
			427.5	2.3	425.2	423.8	1.3	СН			Dark Brown Clay	C-CH
			427.5	3.7	423.8	422.8	1.0	MCL			Lt Tan Silt w Brown Clay	C-MCL
131	1118127.58	879510.18	427.5	4.7	422.8	421.0	1.8	CH			Brown Clay	C-CH
			427.5	6.5	421.0	420.4	0.6	CL	-		Brown Clay	C-CL
			427.5	7.1	420.4	420.1	0.3	SM			Brown Silt w Fine Sand	Discarded
			427.5	7.4	420.1	419.8	0.3	CL			Brown Clay Brown Silt w Fine Send	C-CL Discorded
			427.5	7.8	419.8	400 F	1.0	SM			Brown Silt w Fine Sand Dark Brown Silty Clay	Discarded
			427.5	0.0	427.5	426.5	1.0	MCL				D-MCL
			427.5 427.5	1.0 3.5	426.5 424.0	424.0 422.9	2.5 1.1	CH CH	-		Dark Brown/Gray Clay Gray/Brown Clay	D-CH D-CH
			427.5	3.5 4.6	424.0	422.9	0.7	СН			Gray/Brown Clay	D-CH D-CH
			427.5	5.3	422.9	422.0	0.7	CL			Dark Gray Clay w Silt Seams	D-CH D-CL
132	1118075.64	879916.87	427.5	5.5	422.0	421.1	0.9	SM			Lt Tan Silty Sand w Sandy Silt	Discarded
			127.5	6.0	/21.1	421.0	0.0	СН	1		Dark Brown Gray Clay	D-CH

1118023.69

1117971.74

880323.57

880730.27

427.5

427.5

427.5

427.5

427.0

427.0

427.0

427.0

427.0

427.0

427.0

427.0

427.0

427.0

427.0

427.0

426.0

6.4

6.5

6.8

7.9

0.0

1.0

4.7

6.5

7.3

0.0

0.8

2.2

4.5

4.8

5.1

6.5

0.0

421.1

421.0

420.8

419.6

427.0

426.0

422.3

420.5

419.7

427.0

426.2

424.8

422.5

422.3

421.9

420.5

426.0

421.0

420.8

419.6

426.0

422.3

420.5

419.7

426.2

424.8

422.5

422.3

421.9

420.5

425.7

0.1

0.3

1.2

1.0

3.7

1.8

0.8

0.8

1.4

2.3

0.3

0.3

1.4

0.3

СН

SM

MCL

SM

CL

СН

СН

CH

MCL

MCL

СН

CL

CL

ML

CL

CL

MCL

30.5

88.89

Dark Brown Gray Clay

Gray Brown Sitly Clay

Brown Very Fine Sand

Dark Brown Gray Clay

Dark Gray Brown Clay

Dark Gray Brown Clay

Gary Brown Mottled Clay

Dark Brown Gray Silty Clay

Brown Gray Clayey Silt

Dark Black/Gray Clay

Dark Brown Gray Clay

Lt Tan Silt w Clay Seam

Dark Black/Gray Slightly Silty Clay

Brown Gray Clay

Brown Gray Clay

Gray Brown Clay

Lt Tan Silty Sand

133

134

D-CH

Discarded

D-MCL

Discarded

D-CL

D-CH

D-CH

D-CH

D-MCL

D-MCL

D-CH

D-CL

D-CL

Discarded

D-CL

D-CL

E-MCL

Test Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from P Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composit Sample Sector/Clas
			426.0	0.3	425.7	423.5	2.2	СН			Dark Black/Gray Clay	E-CH
135	1117919.80	881136.96	426.0	2.5	423.5	422.6	0.9	СН			Dark Black/Gray Clay	E-CH
			426.0	3.4	422.6	421.5	1.1	СН			Dark Gray/Brown Clay	E-CH
			426.0	4.5	421.5			СН			Dark Gray/Brown Clay	E-CH
			427.0	0.0	427.0	426.3	0.8	MCL			Dark Black/Gray Slightly Silty Clay	E-MCL
			427.0	0.8	426.3	425.6	0.7	CL			Dark Black/Gray Clay	E-CL
			427.0	1.4	425.6	424.7	0.9	CH			Dark Gray/Black Clay	E-CH
			427.0	2.3	424.7	424.2	0.5	СН			Dark Brown/Gray Clay	E-CH
136	1117867.85	881543.66	427.0	2.8	424.2	422.5	1.7	СН			Dark Brown Clay	E-CH
			427.0	4.5	422.5	421.8	0.7	СН			Dark Gray Brown Clay	E-CH
			427.0	5.2	421.8	421.5	0.3	MCL			Dark Brown Silty Clay	E-MCL
			427.0	5.5	421.5	420.5	1.0	SP			Tan Very Fine Silty Sand	Discarde
			427.0	6.5	420.5	12010		SM			Tan Slightly Silty Fine Sand	Discarde
			427.5	0.0	427.5	426.9	0.6	MCL			Dark Black/Gray Slightly Silty Clay	E-MCL
			427.5	0.6	426.9	425.5	1.4	CL			Dark Brown Gray Clay	E-CL
			427.5	2.0	425.5	422.9	2.6	CH			Dark Brown Clay	E-CH
			427.5	4.6	422.9	422.3	0.6	CL			Dark Brown Clay	E-CL
137	1117815.90	881950.35			422.3							
			427.5	5.2		421.8	0.5	MCL			Dark Brown Silty Clay	E-MCL
			427.5	5.7	421.8	421.2	0.7	MCL			Lt Brown Clayey Silt w Trace Sand	E-MCL
			427.5	6.3	421.2	420.8	0.4	SP			Tan Fine Sand	Discarde
			427.5	6.8	420.8	405.5	0	SM			Brown Sand Silt	Discarde
			426.0	0.0	426.0	425.5	0.5	MCL	<u> </u>		Dark Gray/Black Silty Clay	A-MCL
105		0774	426.0	0.5	425.5	423.6	1.9	CH	L		Dark Gray/Black Clay	A-CH
138	1118183.96	877450.73	426.0	2.4	423.6	421.2	2.4	CH			Dark Brown/Gray Clay	A-CH
			426.0	4.8	421.2	421.0	0.2	CH	ļ		Dark Brown/Gray Clay	A-CH
			426.0	5.0	421.0			CL	L		Dark Brown Clay	A-CL
			427.5	0.0	427.5	427.3	0.2	CL	ļ		Dark Black Grey Clay	E-CL
			427.5	0.2	427.3	426.9	0.4	CL			Dark Black Grey Clay	E-CL
			427.5	0.6	426.9	425.4	1.5	CL			Dark Black Grey Clay	E-CL
139	1117586.58	992127 72	427.5	2.1	425.4	424.4	1.0	СН			Dark Gray Brown Clay	E-CH
139	1117300.30	002127.75	427.5	3.1	424.4	423.2	1.3	СН			Dark Brown Clay	E-CH
			427.5	4.3	423.2	422.3	0.8	CH			Brown Clay	E-CH
			427.5	5.2	422.3	421.3	1.1	SM			Lt Tan Slightly Silty Sand w Silt	Discarde
			427.5	6.3	421.3			SP			Tan Fine Sand	Discarde
			427.0	0.0	427.0	426.7	0.3	MCL			Dark Gray/Brown Silty Clay	A-MCL
			427.0	0.3	426.7	426.3	0.4	MCL			Dark Brown Silty Clay	A-MCL
			427.0	0.8	426.3	426.0	0.3	CL			Dark Brown Clay	A-CL
			427.0	1.1	426.0	424.8	1.2	CH			Dark Gray/Brown Clay	A-CH
			427.0	2.3	424.8	424.2	0.6	CH	15.3	87	Dark Brown Clay	A-CH
140	1117980.62	877424 75	427.0	2.8	424.2	423.3	0.9	MCL	10.0	07	Lt Tan Silt w Dark Brown Clay	A-MCL
		011121110	427.0	3.8	424.2	423.5	0.9	ML			Lt Tan Silt	Discarde
			427.0	4.5	422.5	422.0	0.5	MCL	12.2	88	Lt Tan w Brown Clayey Silt	A-MCL
			427.0	5.0	422.0	422.0	1.0	ML	12.2	00	Lt Tan Silt	Discarde
			427.0		422.0		0.5	MCL			Lt Tannish Brown Silty Clay	A-MCL
			427.0	6.0		420.5	0.5					
				6.5	420.5	407.4	0.4	ML			Lt Tan Silt	Discarde
			427.5	0.0	427.5	427.1	0.4	MCL			Dark Gray/Brown Clayey Silt	B-MCL
			427.5	0.4	427.1	426.6	0.5	CL			Brown Clay	B-CL
			427.5	0.9	426.6	425.5	1.1	CH	24.5	99.7	Brown/Gray Clay	B-CH
			427.5	2.0	425.5	425.0	0.5	CH			Brown Clay	B-CH
			427.5	2.5	425.0	423.5	1.5	ML	ļ		Tan Silt	Discarde
			427.5	4.0	423.5	423.0	0.5	ML			Tan Silt	Discarde
			427.5	4.5	423.0	422.9	0.1	MCL			Brown Clay Silty	B-MCL
141	1117928.67	877831.45	427.5	4.6	422.9	422.1	0.8	ML	ļ		Tan Silt	Discarde
			427.5	5.4	422.1	421.8	0.3	СН	L		Brown Clay	B-CH
			427.5	5.8	421.8	421.5	0.3	SM	ļ		Brown/Gray Fine Sandy Silt	Discarde
			427.5	6.0	421.5	421.0	0.5	MCL			Tan Clayey Silt	B-MCL
			427.5	6.5	421.0	420.9	0.1	MCL			Brown Clayey silt	B-MCL
			427.5	6.6	420.9	420.8	0.2	SP			Tan Fine Sand	Discarde
			427.5	6.8	420.8	420.3	0.4	MCL			Brown Silty Clay	B-MCL
			427.5	7.2	420.3			SM			Tan Silty Fine Sand	Discarde
			428.0	0.0	428.0	427.4	0.6	MCL			Dark Gray/Brown Clayey Silt	B-MCL
			428.0	0.6	427.4	427.2	0.3	MCL			Dark Gray/Brown Clayey Silt	B-MCL
			428.0	0.8	427.2	426.0	1.2	CH			Brown Clay	B-CH
			428.0	2.0	426.0	425.3	0.8	SM	1		Tan Very Fine Silty Sand	Discarde
			428.0	2.8	425.3	424.0	1.3	SP			Tan Very Fine Sand	Discarde
142	1117876.72	878238.14	428.0	4.0	424.0	422.6	1.4	MCL			Brown/Gray clayey silt	B-MCL
			428.0	5.4	422.6	422.0	0.6	SM	1		Tan Slightly Silty Sand	Discarde
			428.0	6.0	422.0	422.0	0.8	MCL	1		Gray Brown Clayey Silty w Fine Sand	Discarde
							0.8	SP				
			428.0	6.8	421.2	420.5	0.7				Tan Fine Sand	Discarde
			428.0	7.5	420.5	(07 -		MCL			Gray/Brown Clayey Silt to silty Clay	B-MCL
			428.5	0.0	428.5	427.9	0.6	MCL			Dark Brown/Brown Silty Clay	C-MCL
			428.5	0.6	427.9	426.9	1.0	CH	ļ		Dark Black/Gray Clay	C-CH
			428.5	1.6	426.9	426.2	0.8	ML			Lt Tan Silt	Discarde
143	1117824.78	878644.84	428.5	2.3	426.2	425.3	0.9	MCL			Dark Brown/Brown Silty Clay	C-MCL
-			428.5	3.3	425.3	424.1	1.2	SP	L		Lt Tan Fine Sand	Discarde
			428.5	4.4	424.1	422.2	1.9	SM			Lt Tan Silty Sand	Discarde
	1		428.5	6.3	422.2	421.7	0.5	MCL	1		Brown/Tan Clayey Silt/Silty Clay	C-MCI

Fest Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from P Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Clas
			428.5	6.8	421.7			SP			Lt Tan Fine Sand	Discardeo
			428.5	0.0	428.5	428.3	0.3	MCL			Dark Brown Siilty Clay	C-MCL
			428.5	0.3	428.3	427.0	1.3	CL			Dark Gray Brown/Black Clay	C-CL
			428.5	1.5	427.0	426.8	0.2	MCL			Dark Brown w Tan Silty Clay	C-MCL
			428.5	1.7	426.8	426.1	0.8	ML			Lt Tan Silt	Discarde
			428.5	2.4	426.1	425.5	0.6	MCL			Dark Brown Silty Clay/Clayey Silt	C-MCL
144	1117772.83	879051.54	428.5	3.0	425.5	425.1	0.4	SM			Lt Tan Very Fine Sandy Silt	Discarde
			428.5	3.4	425.1	424.7	0.4	CL			Dark Brown/Gray Clay	C-CL
			428.5	3.8	424.7	423.9	0.8	SP			Lt Tan Very Fine Sand	Discarde
			428.5	4.6	423.9	422.6	1.3	ML			Lt Tan Silt	Discarde
			428.5	5.9	422.6	421.8	0.8	MCL			Brown Clayey Silt	C-MCL
			428.5	6.7	421.8			ML			Lt Tan w Brown Silt w Clay w Sand	Discarde
			429.0	0.0	429.0	428.2	0.8	MCL			Dark Brown Silty Clay	C-MCL
			429.0	0.8	428.2	427.4	0.8	CL			Dark Brown Clay	C-CL
			429.0	1.6	427.4	426.4	1.0	MCL			Dark Brown Lt Tan Silty Clay	C-MCL
145	1117720.89	879458.23	429.0	2.6	426.4	424.3	2.1	MCL			Lt Brown Clayey Silt w Silty Clay	C-MCL
			429.0	4.7	424.3	423.0	1.3	MCL			Lt Tan Brown Clayey Silt	C-MCL
			429.0	6.0	423.0	422.7	0.3	CL			Dark Brown Clay	C-CL
			429.0	6.3	422.7	422.1	0.6	SP			Lt Tan Fine Sand	Discarde
			429.0	6.9	422.1	/00 -		SM	-	-	Brown Sandy Silt	Discarde
			428.5	0.0	428.5	426.3	2.3	CL	-		Dark Brown Slightly Silty Clay	D-CL
			428.5	2.3	426.3	426.0	0.3	CL	-		Dark Brown Slightly Silty Clay	D-CI
			428.5	2.5	426.0	425.3	0.7	MCL			Lt Tan Clayey Silt	D-MCL
			428.5	3.2	425.3	424.8	0.6	CL			Dark Brown Gray Clay	D-CL
			428.5	3.8	424.8	423.6	1.2	CL	-		Dark Brown Gray Clay	D-CL
			428.5	4.9	423.6	423.4	0.2	CL			Dark Brown Gray Clay	D-CL
146	1117668.94	970964 00	428.5	5.1	423.4	423.0	0.4	MCL			Lt Tan Slightly Clayey Silt	D-MCL
146	1117008.94	879864.93	428.5	5.5	423.0	422.2	0.8	SM			Lt Tan Very Fine Sand Silt/Silty Sand	Discarde
			428.5	6.3	422.2	421.8	0.3	SM			Lt Brown Very Fine Sandy Silt	Discarde
			428.5	6.7	421.8	421.4	0.4	SM			Lt Tan Very Slightly Silty Sand	Discarde
			428.5	7.1	421.4	420.8	0.7	SM			Lt Tan Very Fine Sandy Silt	Discarde
			428.5	7.8	420.8	419.9	0.8	MCL			Dark Brown Clayey Silt	D-MCL
			428.5	8.6	419.9	419.3	0.6	SM			Lt Tan Very Fine Silty Sand	Discarde
			428.5	9.2	419.3	419.1	0.3	MCL			Brown Slightly Clayey Silt	D-MCL
			428.5	9.4	419.1			SM			Lt Tan Very Fine Sandy Silt/Silty Sand	Discarde
			429.0	0.0	429.0	427.0	2.0	MCL			Dark Brown/Gray Silty Sandy Clay	D-MCL
			429.0	2.0	427.0	425.8	1.2	MCL			Brown Silty Clay/Clayey Silt	D-MCL
			429.0	3.2	425.8	424.8	1.0	MCL	7.3	87.93	Lt Tan Very Sllightly Clayey Silt w Ver	D-MCL
			429.0	4.2	424.8	424.7	0.2	MCL			Lt Tan Clayey Silt/ Silty Clay	D-MCL
147	1117616.99	880271.62	429.0	4.3	424.7	424.2	0.5	SM		07.00	Lt Tan Silt w Very Fine Sand	Discarde
			429.0	4.8	424.2	422.3	1.8	CH	26.4	87.32	Brown/Gray Clay	D-CH
			429.0	6.7	422.3	420.3	2.1	SM			Lt Tan Very Fine Sandy Silt	Discarde
			429.0	8.8	420.3	420.0	0.3	SM			Lt Brown Very Fine Sandy Silt	Discarde
			429.0	9.0	420.0	419.7	0.3	MCL			Gray/Brown Silty Clay/Clayey Silt	D-MCL
			429.0	9.3	419.7	400.0	0.0	SM			Lt Brown Very Fine Sandy Silt	Discarde
			430.0	0.0	430.0	429.8	0.2	MCL			Dary Gray/Brown Silty Clay	D-MCL
			430.0	0.2	429.8	428.6	1.3	CH			Dark Brown/Gray Clay	D-CH
			430.0	1.4	428.6	427.5	1.1	CL			Dark Brown Gray Clay	D-CL
148	1117565.05	990679 22	430.0 430.0	2.5 4.5	427.5 425.5	425.5	2.0 0.5	ML ML			Lt Tan Silt Lt Tan Silt	Discarde Discarde
140	1117303.03	000070.52	430.0			425.0		MCL				
				5.0	425.0	424.5	0.5				Gray/Brown Clayey Silt	D-MCL
			430.0 430.0	5.5 6.5	424.5 423.5	423.5 421.6	1.0 1.9	CL CH	37	86.1	Brown Gray Clay	D-CL D-CH
			430.0	6.5 8.4	423.5	721.0	1.3	СН	37 34.6	86.1	Gray/Brown Clay Gray/Brown Clay	D-CH
			430.0	8.4 0.0	421.6	428.8	0.2	MCL	34.0	04.4	Dark Brown/Gray Silty Clay	E-MCL
			429.0	0.0	429.0	428.8	1.3	CH			Dark Brown/Gray Silty Clay	E-CH
			429.0	1.5	428.8	427.5	1.3	CH			Dark Brown Clay	E-CH
			429.0	2.5	427.5	426.5	0.8	CH			Dark Black Grey Clay	E-CL
			429.0	3.3	426.5	425.8	0.8	MCL			Lt Tan Clayey Silt	E-MCL
			429.0	3.3	425.8	425.2	1.1	MCL	14.9	96.1	Lt Tan Clayey Silt Lt Tan Silt & Dark Brown Clay	E-MCL
149	1117513.10	881085.02	429.0	3.8 4.9	425.2	424.1	1.1	CL	14.3	30.1	Brown w Trace Tan Clay	E-IVICL E-CL
			429.0	6.3	424.1	422.0	0.8	CL	31.5	89.6	Brown Clay	E-CL
			429.0	7.0	422.0	422.0	1.4	MCL	01.0	00.0	Brown w Grey Silty Clay	E-MCL
			429.0	8.4	420.6	420.3	0.3	CL			Dark Brown Clay	E-CL
			429.0	8.8	420.3	419.8	0.4	MCL			Dark Brown/Gray Clayey Silt/Silty Clay	E-MCL
			429.0	9.2	419.8	710.0	0.7	SP			Lt Tan Sand	Discarde
			428.0	0.0	428.0	427.0	1.0	MCL			Dark Black Silty Loose Clay	E-MCL
			428.0	1.0	427.0	424.1	2.9	CH			Dark Brown/Gray Clay	E-CH
			428.0	3.9	427.0	424.1	0.7	MCL			Dark Gray/Brown Silty Clay	E-MCL
150	1117461.15	881491.71	428.0	4.6	424.1	423.4	0.6	CH			Brown Clay	E-CH
		501.01.01	428.0	5.2	423.4	422.8	1.1	MCL			Brown Silty Clay	E-MCL
			428.0	5.2 6.3	422.8	421.8	0.5	CL			Dark Brown Clay w Silt Seams	E-NICL
			428.0	6.8	421.8	-121.0	0.0	MCL			Dark Brown Silty Clay	E-MCL
			428.0	0.0	421.3	427.2	0.3	MCL			Dark Black/Gray Silty Clay	E-MCL
			427.5	0.0	427.5	427.2	2.0	CH			Dark Black/Gray Slity Clay Dark Brown Clay	E-MCL
	1		U. 12F				2.0	СН			· · · · · · · · · · · · · · · · · · ·	E-CH
			427.5	2.3	425.2	422.6					Dark Gray/Brown Clay	

Test Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Clas
			427.5	5.8	421.7	421.3	0.4	MCL			Lt Grey/Tan Clayey Silt	E-MCL
			427.5	6.3	421.3			CL			Brown Clay w Silt Seams	E-CL
			428.0	0.0	428.0	426.7	1.3	MCL			Dark Gary/Brown Silty Clay	A-MCL
			428.0	1.3	426.7	426.3	0.4	CL			Dark Brown Clay	A-CL
			428.0	1.8	426.3	425.5	0.8	CH			Dark Gray/Brown Clay	A-CH
			428.0	2.5	425.5	424.8	0.8	СН			Dark Gray/Brown Clay	A-CH
			428.0	3.3	424.8	424.2	0.6	CH			Dark Brown Clay	A-CH
152	1117803.24	877195.43	428.0	3.8	424.2	423.7	0.5	MCL			Lt Tan/Dark Brown Silt & Clay	A-MCL
				4.3		423.7		MCL				
			428.0 428.0	4.3	423.7 423.2	423.2	0.5	ML			Dark Brown Clay & Lt Tan Silt	A-MCL Discarde
									-		Lt. Tan Silt	
			428.0	6.3	421.8	420.8	0.9	ML			Lt. Tan Silt	Discarde
			428.0	7.2	420.8			SM			Lt. Tan Silt w Very Fine Sand	Discarde
			428.0	0.0	428.0	427.3	0.8	CL			Dark Black/Gray Clay	E-CL
			428.0	0.8	427.3	425.8	1.4	CL			Dark Gray/Brown Clay	E-CL
			428.0	2.2	425.8	425.0	0.8	CH			Dark Brown/Gray Clay	E-CH
153	1117179.89	882075.78	428.0	3.0	425.0	424.3	0.8	MCL			Lt Brown/Dark Brown Silty Clay/Claye	E-MCL
100	1111110.00	002070.70	428.0	3.8	424.3	423.8	0.5	CL			Dark Black Grey Clay	E-CL
			428.0	4.3	423.8	422.8	1.0	СН			Brown Clay	E-CH
			428.0	5.3	422.8	421.7	1.1	CL			Brown Clay	E-CL
			428.0	6.3	421.7			MCL			Brown Silty Clay	E-MCL
			429.0	0.0	429.0	427.8	1.3	MCL			Dark Black/Gray Silty Clay w Sand	Discarde
			429.0	1.3	427.8	426.5	1.3	MCL			Lt Brown Silty Clay	E-MCL
			429.0	2.5	426.5	426.2	0.3	MCL			Dark Gray/Brown Silty Clay	E-MCL
			429.0	2.5				CH			Dark Gray/Brown Silty Clay Dark Gray/Brown Clay	
					426.2	425.5	0.7					A-CH
154	1117573.92	877372.81	429.0	3.5	425.5	424.0	1.5	CH			Dark Brown Clay	A-CH
			429.0	5.0	424.0	423.8	0.2	MCL			Dark Black/Gray Silty Clay	A-MCL
			429.0	5.2	423.8	423.5	0.3	MCL			Lt. Brown Clayey Silt	A-MCL
			429.0	5.5	423.5	422.5	1.0	ML			Lt. Tan Silt	Discarde
			429.0	6.5	422.5	420.3	2.3	MCL			Lt. Tan Silty Clayey Silt w Very Fine S	Discarde
			429.0	8.8	420.3			MCL			Lt. Tan/Brown Silty Clay Clayey Silt	A-MCL
			428.5	0.0	428.5	427.9	0.6	SM			Dark Brown/Gray Sandy Silty Clay	Discarde
			428.5	0.6	427.9	427.1	0.8	CH			Dark Gray/Brown Clay	B-CH
			428.5	1.4	427.1	426.1	1.0	MCL			Tan Slightly Clayey Silt	B-MCL
			428.5	2.4	426.1	425.4	0.7	MCL			Tan Slightly Clayey Silt	B-MCL
			428.5	3.1	425.4	424.3	1.2	CH			Dark Brown Clay	B-CH
			428.5	4.3	424.3	423.3	0.9	CH			Dark Gray/Brown Clay	B-CH
			428.5	5.2	424.3	423.2	0.9	CL				B-CL
155	1117521.97	877779.50						SM			Brown/Tan Slightly Silty Clay	
			428.5	5.3	423.2	422.2	1.0				Lt Tan Sandy Silt	Discarde
			428.5	6.3	422.2	421.5	0.7	MCL			Brown Silty Clay w Clayey Silt	B-MCL
			428.5	7.0	421.5	420.9	0.6	CL			Brown Slightly Silty Clay	B-CL
			428.5	7.6	420.9	420.5	0.4	MCL			Brown Silty Clay/Clayey Silt	B-MCL
			428.5	8.0	420.5	420.0	0.5	SM			Lt Tan Slightly Silty Sand	Discarde
			428.5	8.5	420.0	419.6	0.4	MCL			Brown Silty Clay/Clayey Silt	B-MCL
			428.5	8.9	419.6			SM			Lt Brown Slightly Silty Sand	Discarde
			430.0	0.0	430.0	428.8	1.2	CL			Dark Brown Slightly Silty Clay	B-CL
			430.0	1.2	428.8	428.5	0.3	ML			Brown Clayey silt w silty clay	Discarde
			430.0	1.5	428.5	428.1	0.4	CL	10.2	103.29	Tan Silt	B-CL
			430.0	1.9	428.1	427.8	0.3	MCL			Dark Brown Silty Clay	B-MCL
			430.0	2.3	427.8	427.0	0.8	MCL			Brown Silty Clay	B-MCL
156	1117470.03	878186.20	430.0	3.0	427.0	426.6	0.4	ML			Lt Tan Silt	Discarde
			430.0	3.4	426.6	425.7	0.9	CL			Brown Clay	B-CL
			430.0	4.3	425.7	425.4	0.3	MCL			Lt Tan Slighly Clayey Silt	B-MCL
			430.0	4.6	425.4	424.3	1.2	CH	36.7	86.18	Brown Clay	B-CH
			430.0	5.8	424.3	423.6	0.7	SP	50.7		Brown Sand	Discarde
			430.0	6.4	424.5	.20.0	0.7	SP			Lt Brown Sand	Discarde
						105 0	0.0					
			426.0	0.0	426.0	425.3	0.8	SM	20.4		Dark Gray Sandy Silty Clay	Discarde
			426.0	0.8	425.3	423.7	1.6	CH	32.1		Dark Gray/Brown Clay	F-CH
			426.0	2.3	423.7	423.5	0.2	CH			Dark Gray Clay	F-CH
157	1117418.08	878592.89	426.0	2.5	423.5	423.4	0.1	ML	ļ		Lt Tan Silt Seam	Discarde
			426.0	2.6	423.4	422.5	0.9	CH			Dark Gray Clay	F-CH
			426.0	3.5	422.5	421.8	0.7	ML			Tan Brown/Gray Silt	Discarde
			426.0	4.2	421.8	421.5	0.3	CL			Dark Brown Clay	F-CL
			426.0	4.5	421.5			SP			Lt Tan Silt w Very Fine Sand	Discarde
			426.0	0.0	426.0	425.7	0.3	SM			Dark Brown/Gray Sandy Silty Clay	Discarde
			426.0	0.3	425.7	425.1	0.6	CL			Dark Brown Gary Clay	F-CL
			426.0	0.9	425.1	423.8	1.3	CH			Dark Gray Brown Clay	F-CH
			426.0	2.3	423.8	423.2	0.6	CH			Dark Gray Brown Clay	F-CH
158	1117366.08	879000.00	426.0	2.8	423.2	422.3	0.9	MCL			Lt Tan/Gray Silty Clay, Clayey Silt	F-MCL Discords
			426.0	3.8	422.3	421.4	0.9	SP			Lt Tan Silt w Very Fine Sand	Discarde
			426.0	4.6	421.4	421.2	0.2	CH			Dark Brown/Gray Clay	F-CH
			426.0	4.8	421.2	420.9	0.3	CL			Brown Clay	F-CL
			426.0	5.1	420.9	420.1	0.8	SM			Lt Tan Slightly Sandy Silt	Discarde
			426.0	5.9	420.1			MCL			Brown Clayey Silt/Silty Clay	F-MCL
			426.5	0.0	426.5	425.5	1.0	CL			Dark Brown/Gray Slightly Silty Clay	F-CL
			426.5	1.0	425.5	423.5	2.0	CH			Dark Gray Clay	F-CH
			426.5	3.0	423.5	423.3	0.2	CL			Dark Gray Silty Clay	F-CL
		879406.29	426.5	3.2	423.3	421.8	1.6	SM	1		Lt Tan Slightly Sandy Silt	Discarde

			Anner	Starting	<u>Sur</u>	nmary of Sa	mples from P	hase 2 Test	<u>Holes</u>		I	Composite
Test Hole Number	Northing	Easting	Approx. Surface Elevation	Depth (feet)	Starting Elevation	Ending Elevation	Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Class
			426.5	4.8	421.8	419.9	1.8	SM			Lt Tan Very Fine Sandy Silt/Silty Sand	Discarded
			426.5	6.6	419.9	419.1	0.8	SM			Lt Tan Very Fine Silty Sane/Sandy Sil	Discarded
			426.5	7.4	419.1	405.0	0.0	SM			Brown/Gray Silty Clay/Clayey Silt	Discarded
			426.0 426.0	0.0	426.0 425.8	425.8 425.3	0.3	MCL CL			Dark Gray Sandy Silty Clay	G-MCL G-CL
			426.0	0.3	425.8	425.3	1.5	CH			Dark Brown/Gray Silty Sandy Clay Dark Brown/Gray Clay	G-CL G-CH
160	1117262.24	879812.98	426.0	2.2	423.8	423.8	2.2	СН			Dark Gray/Brown Clay	G-CH
			426.0	4.3	421.7	421.3	0.3	CH			Dark Gray Clay	G-CH
			426.0	4.7	421.3			MCL			Lt Brown Silty Clay Clayey Silt	G-MCL
			426.0	0.0	426.0	424.5	1.5	СН			Dark Gray Clay	G-CH
			426.0	1.5	424.5	421.4	3.1	СН			Dark Brown/Gray Clay	G-CH
161	1117210.30	880219.68	426.0	4.6	421.4	421.0	0.4	CH			Dark Brown/Gray Clay	G-CH
			426.0	5.0	421.0	420.5	0.5	MCL			Lt Brown Silty Clay Clayey Silt	G-MCL
			426.0	5.5	420.5			ML			Lt Tan Brown Silt	Discarded
			427.5	0.0	427.5	426.9	0.6	CH	04.0	00.4	Dark Black/Gray Clay	G-CH
			427.5 427.5	0.6	426.9	425.3 424.5	1.6	CH CH	31.6	89.4	Dark Black/Gray Clay	G-CH
			427.5	3.0	425.3 424.5	424.5	0.8	MCL			Dark Gray Clay Black/Gray Clay w Clayey Silt	G-CH G-MCL
162	1117158.35	880626.37	427.5	3.5	424.0	424.0	1.0	ML			Lt Tan Silt	Discarded
-			427.5	4.5	423.0	422.3	0.7	MCL			Lt Brown Silty Clay/Clayey Silt	G-MCL
			427.5	5.2	422.3	421.1	1.3	ML	Ì		Lt Tan Silt	Discarded
			427.5	6.4	421.1	420.2	0.9	SM	28.9	89.6	Lt Brown Silt w Very Fine Sand	Discarded
			427.5	7.3	420.2			MCL			Lt Brown/Gray Silty Clay/Clayey Silt	G-MCL
			427.5	0.0	427.5	425.5	2.0	CL			Dark Gray Clay w Fine Sand	H-CL
			427.5	2.0	425.5	424.8	0.8	CH			Dark Gray Clay	H-CH
100	4447400 40	004000.07	427.5	2.8	424.8	424.3	0.5	MCL			Dark Gray Sandy Silty Clay	H-MCL
163	1117106.40	881033.07	427.5	3.3	424.3	423.3	1.0	SM	40.0	01.0	Lt Tan Silt w Fine Sand	Discarded
			427.5 427.5	4.3 6.3	423.3 421.3	421.3 420.5	2.0 0.8	SM CL	18.2	81.3	Lt Tan Silt w Fine Sand Brown/Gray Clay	Discarded H-CL
			427.5	7.0	421.3	420.5	0.0	ML			Lt Tan Silt	Discarded
			426.0	0.0	426.0	425.7	0.3	MCL			Dark Brown Silty Clayey Sand	H-MCL
			426.0	0.3	425.7	425.4	0.3	SP			Lt Tan Sand	Discarded
164	1117054.46	881439.77	426.0	0.6	425.4	423.7	1.8	СН			Dark Black/Gray Clay	H-CH
164	1117034.40	001439.77	426.0	2.3	423.7	421.3	2.4	СН			Dark Brown/Gray Clay	H-CH
			426.0	4.8	421.3	420.3	0.9	СН			Dark Brown/Gray Clay	H-CH
			426.0	5.7	420.3			SM			Lt Tan Silt w Very Fine Sand	Discarded
			426.5	0.0	426.5	424.7	1.8	CH			Dark Gray Clay	H-CH
			426.5	1.8	424.7	422.3	2.3	CH	33.5	83.5	Dark Brown/Gray Clay	H-CH
			426.5	4.2	422.3	421.7	0.6	CH			Dark Brown/Gray Clay	H-CH Discourded
165	1117002.51	881846 46	426.5 426.5	4.8 5.0	421.7 421.5	421.5 421.0	0.2	ML CL			Lt Tan Silt Dark Gray/Brown Clay	Discarded H-CL
100	1111002.01	001040.40	426.5	5.5	421.0	421.0	0.9	ML			Lt Tan Silt	Discarded
			426.5	6.4	420.1	418.9	1.2	CL			Dark Gray/Brown Clay	H-CL
			426.5	7.6	418.9	418.5	0.4	SM			Dark Brown/Gray Slightly Sandy Silt	Discarded
			426.5	8.0	418.5			MCL			Dark Gray/Brown Silty Clay	H-MCL
			429.0	0.0	429.0	427.8	1.3	MCL			Dark Brown Gray Silty Clay	H-MCL
			429.0	1.3	427.8	426.7	1.1	CL			Dark Brown Clay	A-CL
			429.0	2.3	426.7	426.2	0.5	CL	30.9	89.8	Dark Gary/Brown Clay	A-CL
			429.0	2.8	426.2	424.5	1.7	CL			Brown Clay	A-CL
166	1117396.55	877143.48	429.0	4.6	424.5	424.3	0.2	CL			Dark Brown/Gray Clay	A-CL
			429.0	4.8	424.3	422.5	1.8	SM			Lt. Tan Sandy Silt	Discarded
			429.0 429.0	6.5 7.3	422.5 421.7	421.7 420.3	0.8	MCL SM			Brown Silty Clay Lt. Tan Silt w Very Fine Sand	A-MCL Discarded
			429.0	8.8	421.7	420.3	1.4	SM	1		Lt Tan Very Fine Sandy Silt w Clay Se	Discarded
			429.0	9.8	419.3			SM	1		Lt Tan Very Fine Silty Sand	Discarded
			425.0	0.0	425.0	424.3	0.7	CH	Ì		Black/Gray Clay	H-CH
			425.0	0.7	424.3	422.9	1.4	CH	32.4	89.4	Brown/Gray Clay	H-CH
167	1116773.19	882023.84	425.0	2.1	422.9	420.7	2.3	ML	8.8	78.9	Lt Tan Silt	Discarded
107	1110770.10	002020.04	425.0	4.3	420.7	418.7	2.0	SM			Lt Tan Fine Silt w Fine Sand	Discarded
			425.0	6.3	418.7	417.5	1.2	MCL	30.1	86.2	Brown Silty Clay/Clayey Silt	H-MCL
			425.0	7.5	417.5			ML	+		Lt Tan Silt	Discarded
			429.0	0.0	429.0	428.3	0.8	CL	-		Dark Gray/Brown Clayey Silt	F-CL
			429.0	0.8 2.3	428.3	426.8	1.5	CH	1		Dark Brown/Gray Clay	F-CH
			429.0 429.0	2.3 4.7	426.8 424.3	424.3 424.3	2.4 0.1	CH CL			Dark Black/Gray Clay Dark Black/Gray Clay	F-CH F-CL
			429.0	4.7	424.3	424.3	1.8	SP	1		Lt Tan Silt Very Fine Sand	Discarded
168	1117065.14	878134.48	429.0	6.6	424.3	422.4	1.0	CL	1		Lt Tan Very Sandy Silt	F-CL
			429.0	7.6	421.4	421.1	0.3	CL	1	1	Dark Brown Clay	F-CL
			429.0	7.9	421.1	420.5	0.6	ML			Lt Tan Silt	Discarded
			429.0	8.5	420.5	419.8	0.8	CL	33.3	87.11	Tan Silt w Trace Clay	F-CL
			429.0	9.3	419.8	419.1	0.7	MCL			Tan Slightly Silty Clay	F-MCL
			429.0	9.9	419.1			MCL			Tannish Brown Very Slightly Clayey S	F-MCL
			427.0	0.0	427.0	425.6	1.4	MCL	13.6	101.7	Dark Gray/Brown Sandy Clay	F-MCL
			427.0	1.4	425.6	424.8	0.8	MCL			Brown Silty Clay	F-MCL
			427.0	2.2	424.8	424.2	0.7	SM	+		Lt Tan Firm Silt w Trace Fine Sand	Discarded
			427.0	2.8	424.2	422.3	1.9	CH	1	I	Dark Brown/Gray Clay	F-CH

169 1117011.39 878540.95

427.0

427.0

2.8

4.8

424.2

422.3

422.3

421.8

1.9

0.4

СН

CL

F-CL

Dark Brown/Gray Clay Dark Gray/Brown Silty Clay

Test Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from F Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Class
Tumber	Northing	Lasting	427.0	5.2	421.8	420.5	1.3	CH	Content, 76	per	Dark Brown/Gray Clay	F-CH
			427.0	6.5	420.5	420.3	0.3	MCL			Lt Gray/Brown Clayey Silt	F-MCL
			427.0	6.8	420.3	420.0	0.3	ML			Lt Tan Silt	Discarded
			427.0	7.0	420.0			MCL			Lt Gray/Brown Clayey Silt	F-MCL
			429.5	0.0	429.5	429.3	0.2	CL			Dark Brown/Gray Loose Clay	F-CL
			429.5	0.2	429.3	428.4	0.9	CL	20.5	100.6	Dark Brown/Gray Clay	F-CL
			429.5	1.1	428.4	427.0	1.4	MCL	20.5	100.0	Lt Brown/Gray Silty Clay	F-MCL
			429.5	2.5	427.0	424.6	2.4	SM			Lt Tan Very Fine Sandy Silt	Discarded
			429.5	4.9	424.6	424.0	1.8	SM			Lt Tan Silt w Very Fine Sand	Discarded
170	1116959.44	878947.64	429.5	6.8	424.0	422.0	1.0	SM			Lt Tan w Trace Fine Sandy Silt	Discarded
110	1110000.44	010041.04	429.5	8.4	422.0	420.7	0.4	SM			Lt Tan Silt w Very Fine Sand	Discarded
					421.1		0.4	MCL				
			429.5 429.5	8.8 9.3	420.7	420.2 419.8	0.5	SM			Dark Brown Silty Clay	F-MCL Discordo
			429.5	9.3 9.8	420.2	419.8	0.4	MCL			Lt Tan Silt w Very Fine Sand	Discarde F-MCL
						419.5	0.3				Dark Brown Silty Clay	
			429.5	10.0	419.5	400.0	0.4	SM			Lt Tan Very Fine Sandy Silt	Discarde
			430.0	0.0	430.0	429.9	0.1	MCL			Dark Gray Sandy Silty Clay	F-MCL
			430.0	0.1	429.9	429.5	0.4	CH			Dary Gray Clay	F-CH
			430.0	0.5	429.5	429.2	0.3	MCL			Gray Brown Clayey Sand	F-MCL
			430.0	0.8	429.2	428.7	0.5	CL			Gray/Brown Slightly Sandy Silty Clay	F-CL
			430.0	1.3	428.7	428.4	0.3	CH			Dark Gray/Brown Clay	F-CH
			430.0	1.6	428.4	427.5	0.9	MCL			Brown Silty Clay	F-MCL
			430.0	2.5	427.5	427.1	0.4	CL			Dark Gray/Brown Slightly Silty Clay	F-CL
171	1116907.49	879354.34	430.0	2.9	427.1	426.6	0.5	ML			Lt Brown Silt	Discarde
			430.0	3.4	426.6	425.6	1.0	SM			Lt Tan Very Fine Sandy Silt	Discarde
			430.0	4.4	425.6	424.4	1.2	SM	L		Lt Tan Silt Very Fine Sand	Discarde
			430.0	5.6	424.4	423.3	1.2	MCL			Brown Silty Clay	F-MCL
			430.0	6.8	423.3	422.5	0.8	SP			Lt Tan Silt w Very Fine Sand	Discarde
			430.0	7.5	422.5	421.5	1.0	MCL			Dark Brown Silty Clay	F-MCL
			430.0	8.5	421.5	421.0	0.5	SM			Lt Brown/Tan Silt w Fine Sand	Discarde
			430.0	9.0	421.0	420.7	0.3	MCL			Tan/Gray Silty Clay/Clayey Silt	F-MCL
			430.0	9.3	420.7			SM			Tan/Gray Very Fine Sandy Silt	Discarde
			430.0	0.0	430.0	429.8	0.3	CL			Dark Gray Clay	G-CL
			430.0	0.3	429.8	429.0	0.8	CL			Dark Gray Slightly Silty Clay	G-CL
			430.0	1.0	429.0	428.5	0.5	СН			Dark Brown/Gray Clay	G-CH
			430.0	1.5	428.5	428.0	0.5	CL	26	94.5	Brown Slightly Silty Clay	G-CL
			430.0	2.0	428.0	427.8	0.3	СН			Dark Gray Clay	G-CH
			430.0	2.3	427.8	425.3	2.4	ML			Lt Tan Silt	Discarde
172	1116855.55	879761.04	430.0	4.7	425.3	424.8	0.6	MCL			Lt Tan Silty Clay/Clayey Silt	G-MCL
			430.0	5.3	424.8	423.9	0.8	CH			Lt Gray/Brown Clay	G-CH
			430.0	6.1	423.9	423.5	0.4	ML			Lt Tan Silt	Discarde
			430.0	6.5	423.5	421.3	2.2	SM			Lt Tan Silt w Very Fine Sand	Discarde
			430.0	8.7	421.3	420.3	1.1	SM			Lt Tan Very Fine Sandy Siilt	Discarde
			430.0		421.3	420.3	1.1	MCL				G-MCL
			430.0	9.8 0.0	420.3	429.8	0.2	MCL			Lt Tan Silty Clay/Clayey Silt Dark Gray Sandy Silty Clay	
							0.2					G-MCL
			430.0	0.2	429.8	429.4	-	CH			Dark Gray Clay	G-CH
			430.0	0.6	429.4	429.0	0.4	CH	40.0	00.0	Dark Gray/Brown Clay	G-CH
			430.0	1.0	429.0	427.8	1.2	CL	19.9		Brown Silty Clay	G-CL
173	1116803.60	880167.73	430.0	2.2	427.8	425.4	2.4	SM	9.8	80.8	Lt Tan Silt w Very Fine Sand	Discarde
			430.0	4.6	425.4	424.7	0.8	ML			Lt Tan Silt	Discarde
			430.0	5.3	424.7	424.5	0.2	CL			Dark Gray/Brown Slightly Silty Clay	G-CL
			430.0	5.5	424.5	423.3	1.2	SM			Lt Tan Silt w Very Fine Sand	Discarde
			430.0	6.7	423.3	421.6	1.7	SM			Lt Tan Silt w Very Fine Sand	Discarde
			430.0	8.4	421.6			ML			Lt Tan/Brown/Gray Slightly Clayey Silt	Discarde
			430.0	0.0	430.0	429.0	1.0	CL	L		Dark Brown/Gray Silty Clay	G-CL
			430.0	1.0	429.0	428.5	0.5	СН	24.8	97.2	Dark Gray Clay	G-CH
			430.0	1.5	428.5	427.7	0.8	ML			Lt Tan Silt	Discarde
			430.0	2.3	427.7	427.0	0.7	ML	8.3	86	Lt Tan Silt	Discarde
			430.0	3.0	427.0	425.5	1.5	CL			Black/Gray Clay Brick	Discarde
174	1116751.65	880574.43	430.0	4.5	425.5	425.2	0.3				Brick & Debris	Discarde
			430.0	4.8	425.2	424.6	0.6	CL			Lt Brown Slightly Silty Clay	G-CL
			430.0	5.4	424.6	423.5	1.1	ML			Lt Tan Silt	Discarde
			430.0	6.5	423.5	421.3	2.2	ML			Lt Tan Silt	Discarde
			430.0	8.7	421.3	420.5	0.8		ſ		Misc Silt Clay Brick etc	Discarde
			430.0	9.5	420.5			MCL			Lt Tan Silt/Silty Clay w Clay	G-MCL
			430.0	0.0	430.0	429.8	0.2	SM	ſ		Dark Brown Slightly Sandy Silt	Discarde
			430.0	0.2	429.8	428.0	1.8	CL			Dark Brown/Gray Clay	H-CL
			430.0	2.0	428.0	427.6	0.4	CL	1		Dark Brown/Gray Clay	H-CL
			430.0	2.0	427.6	426.9	0.4	CL-CH	1		Dark Brown/Gray Clay	H-CL-CI
			430.0	3.1	427.0	426.9	0.7	ML	t		Lt Brown Silt	Discarde
			430.0	3.6	426.9	426.4	0.3	SM			Lt Brown Fine Silt w Very Fine Sand	Discarde
			430.0	3.6 4.0	426.4	426.0	0.4	MCL			Brown Silty Clay	H-MCL
							1					
175	1116600 74	880094 40	430.0	4.6	425.4	425.0	0.4	CL	+		Lt Gray/Brown Clay	H-CL Discords
175	1116699.71	880981.12	430.0	5.0	425.0	423.5	1.5	ML			Lt Brown Silt	Discarde
			430.0	6.5	423.5	422.9	0.6	MCL			Lt Brown Silty Clay/Clayey Silt	H-MCL
			430.0	7.1	422.9	422.5	0.4	SM			Lt Brown Silt w Very Fine Sand	Discarde
			430.0	7.5	422.5	422.0	0.5	SM			Dark Brown slightly clayey Silt	Discarde
	1	1	430.0	8.0	422.0	421.3	0.7	SM			Brown Silt w Fine Sand	Discar

Test Hole			Approx. Surface	Starting Depth	Starting	Ending	mples from F	Visually	Moisture	Density,		Composit Sample
Number	Northing	Easting	Elevation	(feet)	Elevation	Elevation	(feet)	Classified	Content, %	pcf	Description	Sector/Cla
			430.0	8.7	421.3	421.1	0.2	CL			Dark Brown Clay	H-CL
			430.0	8.9	421.1	420.8	0.3	SP			Lt Tan Fine Sand	Discarde
			430.0	9.2	420.8	420.1	0.8	SM			Brown Silt w Fine Sand	Discarde
			430.0	9.9	420.1	400.0	0.0	SM			Gray/Brown Fine Sandy Silt	Discarde
			428.5 428.5	0.0	428.5 428.3	428.3 427.5	0.3	SM SM			Brown Slightly Sandy Silt	Discarde Discarde
			428.5	1.0	420.5	427.0	0.5	SM			Brown Slightly Sandy Silt Lt Tan Very Fine Slightly Sandy Silt	Discarde
			428.5	1.5	427.0	426.5	0.5	SM			Lt Tan Very Fine Silty Sand	Discarde
			428.5	2.0	426.5	426.3	0.2	SM			Brown Very Fine Sandy Silt	Discarde
			428.5	2.2	426.3	424.8	1.6	SM			Lt Tan Silt w Fine Sand	Discarde
			428.5	3.8	424.8	424.5	0.3	CL-CH			Dark Brown/Gray Clay	H-CL-CI
176	1116647.76	881387.82	428.5	4.0	424.5	424.3	0.3	ML			Lt Brown Silt	Discarde
			428.5	4.3	424.3	423.7	0.6	CL			Dark Brown Clay w Very Fine Sand	H-CL
			428.5	4.8	423.7	423.2	0.5	SM SM			Lt Very Fine Sandy Silt	Discarde Discarde
			428.5 428.5	5.3 6.0	423.2 422.5	422.5 422.3	0.7	SM			Lt Tan Very Fine Slightly Silty Sand Tan Silty Fine Sand	Discarde
			428.5	6.2	422.3	421.8	0.5	CL			Dark Brown Clay w Slightly Clayey Silt	H-CL
			428.5	6.7	421.8	421.3	0.5	SM			Lt Tan Very Fine Sandy Silt	Discarde
			428.5	7.2	421.3	420.7	0.6	CL			Dark Gray Clay	H-CL
			428.5	7.8	420.7			SM			Lt Tan Very Slightly Silty Sand	Discarde
			427.0	0.0	427.0	425.0	2.0	СН			Dark Gray/Brown Clay	H-CH
			427.0	2.0	425.0	424.0	1.0	CH			Dark Brown/Gray Clay	H-CH
177	1116595.82	881794.52	427.0	3.0	424.0	423.4	0.6	MCL	0.4	70.0	Brown/Gray Silty Clay	H-MCL Diagord
177	1110095.82	001/94.52	427.0 427.0	3.6 4.0	423.4 423.0	423.0 422.8	0.4	ML CH	9.4	78.9	Lt Tan Silt Dark Black/Gray Clay	Discarde H-CH
			427.0	4.3	422.8	420.3	2.5	SM			Lt Tan Silt w Very Fine Sand	Discarde
			427.0	6.8	420.3	12010	2.0	SM			Lt Tan Silt w Very Fine Sand	Discarde
			430.0	0.0	430.0	429.3	0.7	CL	17.3	93.8	Dark Brown/Gray Slightly Silty Clay	F-CL
			430.0	0.7	429.3	428.8	0.5	CL/CH	22.8	102.2	Dark Brown/Gray Clay	F-CL/C
			430.0	1.2	428.8	428.3	0.5	MCL			Brown Clayey Silt/Silty Clay	F-MCL
			430.0	1.7	428.3	427.4	0.9	ML			Lt Brown Silt	Discard
470	4440700 40	070405.00	430.0	2.6	427.4	425.6	1.8	ML			Lt Tan w some Brown Silt	Discard
178	1116730.12	879125.02	430.0	4.4	425.6	423.4	2.2	ML			Lt Tan Silt	Discard
			430.0 430.0	6.6 7.2	423.4 422.8	422.8 422.4	0.6	ML ML			Lt Brown Clayey Silt Lt Brown Clayey Silt	Discard Discard
			430.0	7.6	422.0	422.4	1.4	CL			Brown/Gray Clay	F-CL
			430.0	9.0	421.0	420.3	0.7	SM			Lt Tan Very Fine Sandy Silt	Discarde
			430.0	9.7	420.3			SM			Lt Tan Very Fine Silty Sand	Discarde
179	1116574.28	880345.11	427.0		427.0	430.0	-3.0					G-
			430.0	0.0	430.0	429.9	0.1	ML			Brown Silt	Discarde
			430.0	0.1	429.9	428.9	1.0	CH			Dark Gray Clay	H-CH
			430.0	1.1	428.9	427.8	1.2	MCL			Dark Gray/Brown Silty Clay	G-MCI
			430.0 430.0	2.3 4.6	427.8 425.4	425.4 425.2	2.3 0.2	SM SP			Lt Brown Silt w Fine Sand	Discarde
180	1116366.50	881971.89	430.0	4.8	425.2	425.2	0.2	MCL			Lt Tan Sand Dark Brown Silty Clay	Discarde G-MCL
			430.0	5.3	424.8	423.6	1.2	SM			Gray/Brown Silt w Very Fine Sand	Discarde
			430.0	6.4	423.6	421.4	2.2	CL	30.8	89.5	Tan Grey Clay w Silt Seams	H-CL
			430.0	8.6	421.4	420.9	0.5	CL			Dark Brown Clay	H-CL
			430.0	9.1	420.9			ML			Lt Brown Silt	Discard
			429.5	0.0	429.5	429.0	0.5	MCL			Dark Brown Silty Clay	I-MCL
			429.5	0.5	429.0	428.5	0.5	CL			Dark Brown Clay	I-CL
			429.5	1.0	428.5	427.1	1.4	MCL			Brown Silty Clay	I-MCL
			429.5	2.4	427.1 424.9	424.9	2.2 0.2	SM CL			Lt Tan Silt w Fine Sand	Discard I-CL
181	1116224.69	878629.75	429.5 429.5	4.6 4.8	424.9	424.8 423.0	1.8	SM			Dark Brown Clay Seam Lt Tan Very Fine Silty Sand/Sandy Silt	Discard
			429.5	6.5	424.0	423.0	0.5	ML			Lt Tan Very Slightly Clayey Silt	Discard
			429.5	7.0	422.5	421.6	0.9	MCL	31.5	89.7	Lt Gray Tan Silty Clay	I-MCL
			429.5	7.9	421.6	420.8	0.8	СН	28.6	89.4	Lt Gray Tan Clay	I-CH
			429.5	8.8	420.8			CL			Brown Clay	I-CL
			429.0	0.0	429.0	428.3	0.8	MCL			Dark Brown/Gray Silty Clay	I-MCL
			429.0	0.8	428.3	427.8	0.5	CL	<u> </u>		Dark Brown Clay	I-CL
			429.0	1.3	427.8	426.5	1.3	CH			Dark Brown Clay	I-CH
182	1116173.11	878925 40	429.0 429.0	2.5 3.3	426.5 425.8	425.8 424.4	0.8	MCL ML			Dark Brown/Tan Silty Clay Lt Tan Silt	I-MCL Discard
		5. 5525.43	429.0	3.3 4.6	425.8	424.4	2.0	ML			Lt Tan Silt w Clay Seam	Discard
			429.0	6.6	422.4	421.9	0.5	MCL			Tan/Dark Brown Silty Clay/Clayey Silt	I-MCL
			429.0	7.1	421.9	420.7	1.3	CL	38.1	83.5	Brown Clay	I-CL
			429.0	8.3	420.7			CL			Brown Clay	I-CL
			429.0	0.0	429.0	428.7	0.3	MCL			Dark Gray/Brown Silty Clay	I-MCL
			429.0	0.3	428.7	428.3	0.4	CL			Dark Gray/Brown Clay	I-CL
			429.0	0.8	428.3	427.6	0.7	СН			Dark Brown Clay	I-CH
			429.0	1.4	427.6	426.7	0.9	MCL			Brown Silty Clay	I-MCL
			429.0	2.3	426.7	425.9	0.8	ML			Dark Brown Clayey Silt	Discard
			429.0	3.1	425.9	424.5	1.4	SM			Lt Tan Silt w Fine Sand	Discarde
183	1116128.04	879222.11	429.0 429.0	4.5 4.9	424.5 424.1	424.1 423.8	0.4	SM MCL			Lt Tan Silt w Fine Sand Dark Brown Silty Clay/Clayey Silt	Discarde I-MCL
			429.0	4.9	424.1	423.0	0.0	IVICL			Dark Drown Silly Oldy/Oldyby Sill	

Test Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from F Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Class
			429.0	6.3	422.8	421.8	1.0	MCL			Brown/Tan Silty Clay/Clayey Silt w Sa	I-MCL
			429.0	7.3	421.8	420.2	1.6	SM			Lt Tan Fine Sandy Silt	Discarded
			429.0	8.8	420.2	419.9	0.3	MCL			Dark Brown Silty Clay	I-MCL
			429.0	9.1	419.9	419.3	0.6	SM			Brown Silt w Fine Sand	Discarded
			429.0 429.0	9.7 0.0	419.3 429.0	428.7	0.3	MCL MCL			Brown Silty Clay/Clayey Silt Dark Brown/Gray Silty Clay	I-MCL
			429.0	0.3	428.7	428.3	0.3	MCL			Dary Gray/Brown Silty Clay	I-MCL
			429.0	0.7	428.3	427.9	0.4	CL			Dark Black/Gray Clay	I-CL
			429.0	1.1	427.9	426.5	1.4	СН	32.3	90.8	Dark Black/Gray Clay	I-CH
			429.0	2.5	426.5	425.2	1.3	MCL			Dark Brown Silty Clay	I-MCL
			429.0	3.8	425.2	424.3	0.9	SM			Lt Tan Fine Sandy Silt	Discardeo
184	1116077.44	879517.98	429.0	4.8	424.3	424.0	0.3	MCL			Dark Brown Silty Clay	I-MCL
			429.0	5.0	424.0	422.3	1.7	SM			Lt Tan Fine Sandy Silt	Discarded
			429.0 429.0	6.7	422.3 421.5	421.5 420.4	0.8	CL SM			Dark Brown Clay Dark Brown Fine Sandy Silt	I-CL Discordor
			429.0	7.5 8.6	421.3	420.4	0.4	SM			Lt Brown Silt w Fine Sand	Discarde Discarde
			429.0	9.0	420.0	419.3	0.4	MCL			Dark Brown Silty Clay	I-MCL
			429.0	9.8	419.3			MCL			Dark Brown Clayey Silt	I-MCL
			429.0	0.0	429.0	428.6	0.4	MCL			Dark Brown/Gray Silty Clay	I-MCL
			429.0	0.4	428.6	428.3	0.3	CL			Dark Brown Clay	I-CL
			429.0	0.8	428.3	426.4	1.8	СН			Dark Brown/Gray Clay	I-CH
			429.0	2.6	426.4	425.7	0.8	MCL			Dark Brown Silty Clay	I-MCL
185	1116033.48	879814.76	429.0	3.3	425.7	424.3	1.4	SM			Lt Tan Silt w Fine Sand	Discarde
			429.0 429.0	4.8 5.0	424.3 424.0	424.0 422.4	0.3	ML SM			Lt Tan Silt Lt Tan Silty Sand/Sandy Silt	Discarde Discarde
			429.0	6.6	424.0	422.4	1.0	SM	ł		Lt Tan Silty Fine Sand	Discarded
			429.0	8.5	420.5	419.6	0.9	MCL			Dark Brown Silty Clay	I-MCL
			429.0	9.4	419.6			SM			Lt Tan Slightly Silty Fine Sand	Discarded
			429.0	0.0	429.0	428.0	1.0	MCL			Dark Brown Silty Clay	J-MCL
			429.0	1.0	428.0	426.6	1.4	СН			Dark Brown Clay	J-CH
			429.0	2.4	426.6	424.4	2.2	CH			Dark Brown Clay	J-CH
			429.0	4.6	424.4	424.0	0.4	CH			Dark Brown Clay	J-CH
186	1115992.84	880112.00	429.0	5.0	424.0	423.5 422.3	0.5	MCL SM			Dark Brown/Tan Silty Clay	J-MCL Discordor
100	1110002.04	000112.00	429.0 429.0	5.5 6.7	423.5 422.3	422.3	0.7	SM			Lt Tan Fine Sandy Silt Lt Tan Slightly Silty Fine Sand	Discardeo
			429.0	7.4	421.6	420.5	1.1	SM			Lt Tan Silt w Fine Sand	Discarded
			429.0	8.5	420.5	420.3	0.3	SM			Lt Brown Silty Sand/Sandy Silt	Discarded
			429.0	8.8	420.3	419.3	0.9	MCL			Brown/Gray Silty Clay	J-MCL
			429.0	9.7	419.3			SM			Lt Tan Slightly Silty Fine Sand	Discardeo
			428.5	0.0	428.5	428.0	0.5	MCL			Dark Black/Gray Slightly Silty Clay	J-MCL
			428.5	0.5	428.0	426.9	1.1	CL			Dark Gray/Brown Clay	J-CL
187	1115947.77	880408.62	428.5	1.6	426.9	426.0	0.9	CH			Dark Brown Clay	J-CH
107	1113947.77	000400.02	428.5 428.5	2.5 4.7	426.0 423.8	423.8 421.9	2.2	CL CH			Dark Brown Clay w Silt Seams Dark Brown Clay	J-CL J-CH
			428.5	6.6	423.8	419.8	2.1	MCL			Brown/Tan Silty Clay	J-MCL
			428.5	8.7	419.8	410.0	2.1	MCL			Dark Brown Silty Clay	J-MCL
			428.5	0.0	428.5	428.3	0.2	MCL			Dark Brown Slightly Silty Clay	J-MCL
			428.5	0.2	428.3	427.9	0.4	CL			Dark Brown Clay	J-CL
			428.5	0.6	427.9	427.4	0.5	СН			Dark Brown Clay	J-CH
			428.5	1.1	427.4	426.2	1.3	MCL			Brown Silty Clay/Clayey Silt	J-MCL
			428.5	2.3	426.2	425.5	0.7	SM			Lt Tan Clayey Silt w Fine Sand	Discardeo
188	1115902.70	880705.25	428.5	3.0	425.5	425.0	0.5	SM			Lt Tan Silt w Fine Sand	Discarded
.00	1110002.10	5551 05.25	428.5 428.5	3.5 4.5	425.0 424.0	424.0 423.6	1.0 0.4	SM ML			Lt Tan Silty Fine Sand Lt Brown Silt	Discarded Discarded
			428.5	4.5	424.0	423.0	1.7	SM	1		Lt Tan Silt w Fine Sand	Discarded
			428.5	6.6	421.9	421.5	0.4	SM	1	1	Lt Tan Silt w Fine Sand	Discarded
			428.5	7.0	421.5	420.0	1.5	MCL			Lt Brown/Tan Silty Clay/Clayey Silt	J-MCL
			428.5	8.5	420.0	418.5	1.5	MCL			Brown/Tan Silty Clay/Clayey Silt	J-MCL
			428.5	10.0	418.5			MCL			Lt Brown/Tan Slightly Clayey Silt w Fir	J-MCL
			427.5	0.0	427.5	427.1	0.4	SM			Dark Gray/Brown Silty Slightly Sandy	Discarded
			427.5	0.4	427.1	426.7	0.4	CL			Dark Black/Gray Clay	K-CL
			427.5 427.5	0.8 2.4	426.7 425.1	425.1 423.0	1.6 2.1	CH CH			Dark Black/Gray Clay	K-CH K-CH
189	1115857.92	881000.00	427.5	4.5	423.1	423.0	0.8	СН			Dark Brown/Gray Clay Dark Brown/Black Clay	K-CH
			427.5	5.3	422.3	422.3	0.9	MCL	1		Lt Tan/Gray Silty Clay, Clayey Silt	K-MCL
			427.5	6.2	421.3	420.5	0.8	SM			Lt Tan Silty Sand/Sandy Silt	Discarde
			427.5	7.0	420.5	419.7	0.8	MCL			Brown Silty Clay	K-MCL
			427.5	7.8	419.7			SP			Lt Tan Very Fine Sand	Discarde
			428.0	0.0	428.0	427.7	0.3	MCL			Dark Gray/Brown Sandy Silty Clay	K-MCL
			428.0	0.3	427.7	427.3	0.3	CL			Dark Brown/Gray Clay	K-CL
			428.0	0.7	427.3	425.7	1.7	CH	<u> </u>		Dark Gray/Brown Clay	K-CH
			428.0	2.3	425.7	425.0	0.7	CH	10.0	00.0	Dark Brown/Gray Clay	K-CH
190	1115812.57	881298.50	428.0	3.0	425.0	424.5	0.5	MCL	10.6	88.8	Lt Tan Silty Clay	K-MCL
			428.0 428.0	3.5 4.5	424.5 423.5	423.5 423.3	1.0 0.3	ML			Lt Tan Silt w Clay Seam Lt Tan/Brown Silt	Discarded Discarded
									1			
			428.0	4.8	423.3	423.0	0.3	CL			Dark Brown/Gray Clay	K-CL

Fest Hole Number	Northing	Easting	Approx. Surface Elevation	Starting Depth (feet)	Starting Elevation	Ending Elevation	mples from F Thickness (feet)	Visually Classified	Moisture Content, %	Density, pcf	Description	Composite Sample Sector/Class
	literang	Luoting	428.0	6.5	421.5	Lioration	(1001)	ML	contoni, /c	p0.	Lt Tan/Brown Silt	Discarded
	1		428.0	0.0	428.0	427.5	0.5	MCL			Dark Gray/Brown Silty Clay	I-MCL
			428.0	0.5	427.5	425.8	1.7	СН			Dark Gray/Brown Clay	I-CH
			428.0	2.2	425.8	425.5	0.3	CH			Dark Gray/Brown Clay	I-CH
			428.0	2.5	425.5	425.3	0.3	ML			Lt Brown Clayey Silt	Discarded
			428.0	2.8	425.3	423.3	1.9	ML			Lt Tan Silt	Discarded
191	1115963.24	879198.81	428.0	4.7	423.3	422.5	0.8	ML			Lt Tan/Brown Slightly Clayey Silt	Discarded
			428.0	5.5	423.5	422.3	0.8	ML			Brown Clayey Silt	Discarded
					422.3	422.3	0.2	CL				I-CL
			428.0 428.0	5.7 5.9	422.3	422.1	1.0	MCL			Dark Brown Clay Brown Silty Clay	I-OL
						421.1	1.0					
		-	428.0	6.9	421.1	400.0		MCL			Brown Silty Clay	I-MCL
			428.5	0.0	428.5	428.2	0.3	MCL			Dark Brown Silty Clay	I-MCL
			428.5	0.3	428.2	427.8	0.4	CL			Dark Gray/Brown Clay	I-CL
100	4445705 70	070477.07	428.5	0.8	427.8	426.1	1.7	MCL			Dark Gray/Brown Silty Clay	I-MCL
192	1115785.72	8/94/7.9/	428.5	2.4	426.1	426.0	0.1	CH			Dark Brown/Gray Clay	I-CH
			428.5	2.5	426.0	423.6	2.4	ML			Lt Tan Silt	Discarde
			428.5	4.9	423.6	421.8	1.8	SM			Lt Tan Fine Sandy Silt	Discarde
			428.5	6.7	421.8			SM			Lt Tan Silt w Fine Sand	Discarde
			427.5	0.0	427.5	427.2	0.3	MCL			Dark Brown Silty Clay	I-MCL
			427.5	0.3	427.2	425.1	2.1	CL	30.9	92.3	Dark Brown Gray Clay	I-CL
			427.5	2.4	425.1	423.5	1.6	MCL			Dark Brown/Tan Silty Clay	I-MCL
102	1115740.66	870774 60	427.5	4.0	423.5	423.0	0.5	ML			Lt Tan Silt	Discarde
193	1113/40.66	019114.60	427.5	4.5	423.0	422.5	0.5	MCL	ſ		Lt Tan Clayey Silt/ Silty Clay	I-MCL
			427.5	5.0	422.5	421.2	1.3	CL			Dark Brown Clay	I-CL
			427.5	6.3	421.2	420.8	0.4	MCL			Brown Silty Clay/Clayey Silt	I-MCL
			427.5	6.8	420.8	0.0	0.7	ML	1		Lt Tan Silt	Discarde
	1	-	427.5	0.0	420.8	427.1	0.4	MCL	t	-	Dark Black/Gray Slightly Silty Clay	J-MCL
ļ			427.5	0.4	427.1	426.8	0.4	CL			Dark Black/Gray Clay	J-CL
											, ,	
104	1115005 50	000074 00	427.5	0.7	426.8	425.2	1.7	CH			Dark Brown Clay	J-CH
194	1115695.59	880071.22	427.5	2.3	425.2	423.2	2.0	MCL			Dark Brown/Tan Silty Clay	J-MCL
ļ			427.5	4.3	423.2	422.5	0.7	MCL			Dark Brown w Trace Tan Silty Clay	J-MCL
			427.5	5.0	422.5	421.2	1.3	SM			Lt Tan Fine Sandy Silt	Discarde
			427.5	6.3	421.2			MCL			Dark Brown/Tan Silty Clay	J-MCL
ļ			429.0	0.0	429.0	428.8	0.3	MCL			Dark Black/Gray Silty Clay	J-MCL
ļ			429.0	0.3	428.8	428.3	0.5	CL			Dark Black/Gray Clay	J-CL
			429.0	0.8	428.3	426.8	1.4	СН			Dark Brown Clay	J-CH
ļ			429.0	2.2	426.8	426.0	0.8	CL			Dark Gray/Brown Clay w Silt Seam	J-CL
ļ			429.0	3.0	426.0	424.6	1.4	MCL			Brown Clayey Silt	J-MCL
195	1115650.52	880367.85	429.0	4.4	424.6	424.2	0.4	MCL			Dark Brown Silty Clay	J-MCL
			429.0	4.8	424.2	422.4	1.8	SM			Lt Tan Silt w Fine Sand	Discarde
			429.0	6.6	422.4	420.5	1.9	MCL	26.2	82.1	Lt Tan/Brown Clayey Silt	J-MCL
			429.0	8.5	422.4	420.3	0.3	MCL	20.2	02.1	Brown Silty Clay	J-MCL
				1			1					
			429.0	8.8	420.3	419.8	0.4	SM			Lt Tan Sandy Silt	Discarde
			429.0	9.2	419.8	400.0		SM			Lt Tan Silty Sand	Discarde
			429.0	0.0	429.0	428.8	0.3	MCL			Dark Brown Silty Clay	J-MCL
			429.0	0.3	428.8	427.9	0.8	CH			Dark Black/Gray Clay	J-CH
ļ			429.0	1.1	427.9	427.0	0.9	MCL			Dark Brown Silty Clay	J-MCL
ļ			429.0	2.0	427.0	426.8	0.3	MCL			Dark Gray/Brown Silty Clay	J-MCL
			429.0	2.3	426.8	425.7	1.1	SM			Lt Tan Silt w Fine Sand	Discarde
196	1115605.45	880664.48	429.0	3.3	425.7	424.8	0.9	SM			Lt Tan Silt w Fine Sand	Discarde
130	1110000.40	000004.40	429.0	4.3	424.8	422.5	2.3	SM			Lt Tan Silt w Fine Sand	Discarde
			429.0	6.5	422.5	421.6	0.9	SM			Lt Tan Silt w Fine Sand	Discarde
			429.0	7.4	421.6	420.6	1.0	MCL			Lt Brown Clayey Silt/Silty Clay	J-MCL
			429.0	8.4	420.6	419.8	0.8	MCL			Brown Silty Clay/Clayey Silt	J-MCL
			429.0	9.3	419.8	419.0	0.8	MCL	1		Brown Silty Clay/Clayey Silt	J-MCL
			429.0	10.0	419.0		0.0	SM	1		Lt Tan Silty Sand	Discarde
			429.0	0.0	419.0	428.6	0.4	CL	1		Black/Gray Clay	K-CL
				0.0					+			
			429.0		428.6	428.3	0.3	CL	ł		Dark Brown/Gray Clay	K-CL
	1		429.0	0.8	428.3	426.7	1.6	CH			Dark Brown/Gray Clay	K-CH
			429.0	2.3	426.7	426.3	0.3	CH		<u> </u>	Dark Brown/Gray Clay	K-CH
407	4445500 0-	000004 14		. 07	426.3	425.8	0.6	MCL	18.3	86.2	Dark Brown/Tan Silty Clay	K-MCL
197	1115560.39	880961.11	429.0	2.7				SM	1		Lt Tan Silt w Fine Sand	Discarde
197	1115560.39	880961.11	429.0	3.3	425.8	424.5	1.3					-
197	1115560.39	880961.11	429.0 429.0	3.3 4.5	425.8 424.5	422.5	2.0	ML			Lt Tan Silt w Clay Seam	
197	1115560.39	880961.11	429.0	3.3	425.8 424.5 422.5			ML SM			Lt Tan Silt w Very Fine Sand	
197	1115560.39	880961.11	429.0 429.0	3.3 4.5	425.8 424.5	422.5	2.0					Discarde
197	1115560.39	880961.11	429.0 429.0 429.0	3.3 4.5 6.5	425.8 424.5 422.5	422.5	2.0	SM			Lt Tan Silt w Very Fine Sand	Discarde K-MCL
197	1115560.39	880961.11	429.0 429.0 429.0 429.0	3.3 4.5 6.5 8.5	425.8 424.5 422.5 420.5	422.5 420.5	2.0 2.0	SM MCL			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay	Discarde K-MCL
197	1115560.39	880961.11	429.0 429.0 429.0 429.0 428.5	3.3 4.5 6.5 8.5 0.0	425.8 424.5 422.5 420.5 428.5	422.5 420.5 428.3	2.0 2.0 0.2	SM MCL MCL			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay	Discarde K-MCL K-MCL K-CL
197	1115560.39	880961.11	429.0 429.0 429.0 429.0 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5	425.8 424.5 422.5 420.5 428.5 428.3 428.3 428.0	422.5 420.5 428.3 428.0 426.0	2.0 2.0 0.2 0.3	SM MCL MCL CL			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay	Discarde K-MCL K-MCL K-CL K-CH
197	1115560.39	880961.11	429.0 429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5	425.8 424.5 422.5 420.5 428.5 428.3 428.0 428.0 426.0	422.5 420.5 428.3 428.0 426.0 425.0	2.0 2.0 0.2 0.3 2.0 1.0	SM MCL CL CH MCL			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay	Discarde K-MCL K-MCL K-CL K-CH K-MCL
197	1115560.39	880961.11	429.0 429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 425.0	422.5 420.5 428.3 428.0 426.0 425.0 424.1	2.0 2.0 0.2 0.3 2.0 1.0 0.9	SM MCL CL CH MCL SM			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Slightly Silty Very Fine Sand	Discarde K-MCL K-MCL K-CL K-CH K-MCL Discarde
			429.0 429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5 4.4	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 425.0 424.1	422.5 420.5 428.3 428.0 426.0 425.0 424.1 424.0	2.0 2.0 0.2 0.3 2.0 1.0 0.9 0.1	SM MCL CL CH MCL SM SM			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Silty Silty Very Fine Sand Lt Tan Silty Sand/Sandy Silt	Discarde K-MCL K-MCL K-CL K-CH K-MCL Discarde Discarde
197	1115560.39		429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5 4.4 4.5	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 425.0 424.1 424.0	422.5 420.5 428.3 428.0 426.0 425.0 424.1 424.0 423.8	2.0 2.0 0.2 0.3 2.0 1.0 0.9 0.1 0.3	SM MCL CL CH MCL SM SM CL			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Silghtly Silty Very Fine Sand Lt Tan Silty Sand/Sandy Silt Dark Gray Clay Seam	Discarde K-MCL K-MCL K-CH K-CH Discarde Discarde K-CL
			429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5 4.4 4.5 4.8	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 425.0 425.0 424.1 424.0 423.8	422.5 420.5 428.3 428.0 426.0 425.0 424.1 424.0 423.8 423.1	2.0 2.0 0.2 0.3 2.0 1.0 0.9 0.1 0.3 0.7	SM MCL CL CH MCL SM SM CL SM			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Slightly Silty Very Fine Sand Lt Tan Slightly Silty Very Fine Sand Lt Tan Slightly Silty Sand Lt Tan Slightly Silty Sand	Discarde K-MCL K-MCL K-CH K-CH Discarde Discarde K-CL Discarde
			429.0 429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5 4.4 4.5 4.8 5.4	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 426.0 426.0 426.1 424.1 424.0 423.8 423.1	422.5 420.5 428.3 428.0 426.0 426.0 425.0 424.1 424.1 424.1 423.8 423.1 421.7	2.0 2.0 0.2 0.3 2.0 1.0 0.9 0.1 0.3 0.7 1.4	SM MCL CL CH MCL SM SM CL SM SM			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Slightly Silty Very Fine Sand Lt Tan Silty Sand/Sandy Silt Dark Gray Clay Seam Lt Tan Slightly Silty Sand Lt Tan Slightly Silty Sand Lt Tan Very Fine Sandy Silt/Silty Sang	K-MCL K-CL K-CH Discarde Discarde K-CL Discarde Discarde
			429.0 429.0 429.0 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5 428.5	3.3 4.5 6.5 8.5 0.0 0.2 0.5 2.5 3.5 4.4 4.5 4.8	425.8 424.5 422.5 420.5 428.5 428.3 428.0 426.0 425.0 425.0 424.1 424.0 423.8	422.5 420.5 428.3 428.0 426.0 425.0 424.1 424.0 423.8 423.1	2.0 2.0 0.2 0.3 2.0 1.0 0.9 0.1 0.3 0.7	SM MCL CL CH MCL SM SM CL SM			Lt Tan Silt w Very Fine Sand Brown/Gray Silty Clay Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Slightly Silty Clay Dark Brown/Gray Clay Lt Tan Silt w Brown Clay Lt Tan Slightly Silty Very Fine Sand Lt Tan Slightly Silty Very Fine Sand Lt Tan Slightly Silty Sand Lt Tan Slightly Silty Sand	Discarde K-MCL K-MCL K-CH K-CH Discarde Discarde K-CL Discarde

			Approx.	Starting	<u>501</u>	initiary of Sa	mples from F	ndse z rest	TUIES			Composite
Test Hole			Surface	Depth	Starting	Ending	Thickness	Visually	Moisture	Density,		Sample
Number	Northing	Easting	Elevation	(feet)	Elevation	Elevation	(feet)	Classified	Content, %	pcf	Description	Sector/Class
			428.5	8.9	419.6			MCL			Brown Silty Clay/Clayey Silt	K-MCL
			428.0	0.0	428.0	427.5	0.5	MCL			Dark Black/Gray Silty Clay	J-MCL
			428.0	0.5	427.5	427.0	0.5	CL			Dark Black/Gray Clay	J-CL
199	1115472.83	880040.59	428.0	1.0	427.0	425.7	1.3	CH			Dark Gray/Brown Clay	J-CH
			428.0	2.3	425.7	423.5	2.2	MCL			Dark Brown Silty Clay	J-MCL
			428.0	4.5	423.5	421.5	2.0	MCL			Dark Brown/Tan Silty Clay	J-MCL
			428.0	6.5	421.5	407.0		MCL			Brown Clayey Silt	J-MCL
			428.0	0.0	428.0	427.6	0.4	MCL			Dark Black/Gray Slightly Silty Clay	J-MCL
			428.0	0.4	427.6	427.1	0.5	CL	07.0	05.0	Dark Black/Gray Clay	J-CL
			428.0	0.9	427.1	425.5	1.6 1.9	CH	27.9	95.8	Dark Black/Gray Clay Dark Brown Clay	J-CH
			428.0 428.0	2.5	425.5	423.6		CH	35.1	84	Dark Brown Clay	J-CH
200	1115353.27	880327.08	428.0	4.4 4.8	423.6 423.2	423.2 423.1	0.4	MCL SM			Lt Tan Silt w Fine Sand	J-MCL Discarded
			428.0	4.0	423.2	423.1	1.6	MCL			Dark Brown Silty Clay	J-MCL
			428.0	4.9 6.5	423.1	421.3	0.2	MCL			Brown Slightly Clayey Silt	J-MCL
			428.0	6.7	421.3	421.3	0.2	SP			Lt Tan Sand	Discarded
			428.0	7.0	421.0	421.0	0.5	MCL			Brown w Tan Clayey Silt/Silty Clay	J-MCL
			427.0	0.0	427.0	426.6	0.4	MCL			Dark Brown Slightly Silty Clay	J-MCL
			427.0	0.4	426.6	426.1	0.4	CL			Dark Brown Gray Clay	J-IVIOL J-CL
			427.0	0.9	426.1	424.5	1.6	CH			Dark Brown Clay	J-CH
201	1115308.21	880623.71	427.0	2.5	424.5	422.4	2.1	CH			Dark Brown Clay	J-CH
			427.0	4.6	422.4	420.5	1.9	MCL	14.3	92.9	Brown/Gray clayey silt	J-MCL
			427.0	6.5	420.5			SM	14.6	88.5	Lt Tan Fine Sandy Silt	Discarded
			426.5	0.0	426.5	426.3	0.3	SM			Dark Brown/Gray Silty Sandy Clay	Discarded
			426.5	0.3	426.3	424.1	2.2	СН			Dark Gray Clay	K-CH
			426.5	2.4	424.1	421.8	2.3	СН	32.6	86.7	Brown/Gray Mottled Clay	K-CH
000	4445000 44	000000 00	426.5	4.8	421.8	421.5	0.3	СН			Dark Brown/Gray Clay	K-CH
202	1115263.14	880920.33	426.5	5.0	421.5	421.0	0.5	MCL			Brown/Gray Silty Clay/Clayey Silt	K-MCL
			426.5	5.5	421.0	420.3	0.7	CL			Dark Brown Clay	K-CL
			426.5	6.2	420.3	420.2	0.2	MCL			Brown Slightly Clayey Silt w Fine San	K-MCL
			426.5	6.3	420.2			CL			Brown/Gray Clay	K-CL
			427.0	0.0	427.0	426.3	0.8	SM			Dark Brown/Gray Sandy Silty Clay	Discarded
			427.0	0.8	426.3	424.8	1.5	СН			Dark Gray/Brown Mottled Clay	K-CH
			427.0	2.3	424.8	423.9	0.8	CL			Dark Brown/Gray Clay	K-CL
			427.0	3.1	423.9	422.5	1.4	MCL	27.7	80.7	Dark Brown Silty Clay	K-MCL
203	1115218.07	881216.96	427.0	4.5	422.5	422.0	0.5	CL			Dark Brown/Gray Clay w Silt Seams	K-CL
			427.0	5.0	422.0	420.3	1.7	SM			Lt Tan Silty Sand/Sandy Silt	Discarded
			427.0	6.7	420.3	419.8	0.5	MCL			Brown Silty Clay	K-MCL
			427.0	7.2	419.8	418.9	0.9	CH			Dark Brown Clay	K-CH
			427.0	8.1	418.9			SM			Lt Tan Very Fine Sandy Silt	Discarded
			427.5	0.0	427.5	427.3	0.3	SM			Dark Brown/Gray Sandy Silty Clay	Discarded
			427.5	0.3	427.3	426.3	0.9	CH			Dark Brown/Gray Clay	K-CH
			427.5	1.2	426.3	425.1	1.3	CL			Brown/Gray Slightly Silty Clay	K-CL
			427.5	2.4	425.1	424.8	0.3	CL			Brown/Gray Clay	K-CL
204	1115058.87	880891.85	427.5	2.8	424.8	423.3	1.5	SM			Tan Silt w Very Fine Sand	Discarded
			427.5	4.3	423.3	422.8	0.4	SM			Lt Tan Silt w Fine Sand	Discarded
			427.5	4.7	422.8	422.7	0.1	CH	-		Dark Brown/Gray Clay	K-CH
			427.5	4.8	422.7	420.8	1.9	SM	-		Lt Tan Silt w Very Fine Sand	Discarded
			427.5	6.8	420.8	426.2	0.9	SM	1		Lt Tan Very Fine Sandy Silt w Clay Se Dark Brown/Gray Sandy Silty Clay	Discarded
			427.0	0.0	427.0	426.3	0.8	SM			Dark Brown/Gray Sandy Silty Clay Dark Brown/Gray Clay	Discarded
			427.0	0.8	426.3	426.0	0.3	CL	1		, ,	K-CL
205	1114920.82	881176 10	427.0 427.0	1.0 2.4	426.0 424.6	424.6 423.6	1.4 1.0	CH CH			Dark Brown/Gray Clay Dark Brown/Gray Clay	K-CH K-CH
200		301170.19	427.0	3.4	424.6	423.6	1.0	СН	-		Dark Brown/Gray Clay	K-CH
				3.4 4.7	423.6	422.3	1.3 2.1	CH	24	97.4	Dark Brown/Gray Clay Dark Gray/Brown Clay	K-CH K-CL
			427.0 427.0	6.8	422.3	420.3	2.1	MCL	24	97.4	Brown Clayey Silt	K-CL K-MCL
	I	I	421.0	0.0	420.3	1	1	INICL	1	L	Drown Glayey Sill	IV-IVIUL

Appendix 2

STUDY OF GEOTECHNICAL ENGINEERING PROPERTIES OF ASH FROM SIOUX POWER PLANT

ENGINEERING PROPERTIES OF FLYASH

<u>Test Pits</u>

Fifteen tests pits were made in the flyash pond in November 2001. The approximate locations of the test pits are shown in Figure B-1. The water level in the pond had been lowered as much as possible. The tests pits were dug by Energy Resources, Inc., using a tracked Bobcat with a small backhoe. The Bobcat had to use 4'x8' plywood mats to move around most areas of the pond. The locations of the test pits were selected by Reitz & Jens. Our Senior Soils Technician directed the excavations, logged the test pits, and collected bulk samples. Bag samples were obtained at intervals of 1 foot in each test pit. The depths of the test pits were between 6 and 8 feet. Some test pits would stand open while digging, and others caved soon after digging began. We also obtained relatively undisturbed samples of the flyash by driving a thin-wall tube sampler by hand. The tube samples could only be obtained from depths up to 18 inches because they were done by hand.

Normally, sediment in a pond is sorted by grain size, with larger particles settling first and finer particles staying in suspension longer. As the pond fills, the sediments become finer with depth. However, channels have been dug through the deposited flyash near the discharge pipes at the north end to keep the pond operational. Therefore, the grain-size distribution of the flyash appeared to vary randomly by location and with depth in the pond.

Laboratory Tests on Test Pit Samples

The moisture content and dry unit weight of the tube samples were measured in the lab. These are summarized in Table B-1. The dry unit weights ranged from 53 to 77 lbs/ft³, and averaged about 65 lbs/ft³. The dry unit weights generally increased with depth over the 18 inches that were sampled. Moisture contents ranged from 42% to 57% in the flyash, and 31% to 43% in the coarser economizer ash.

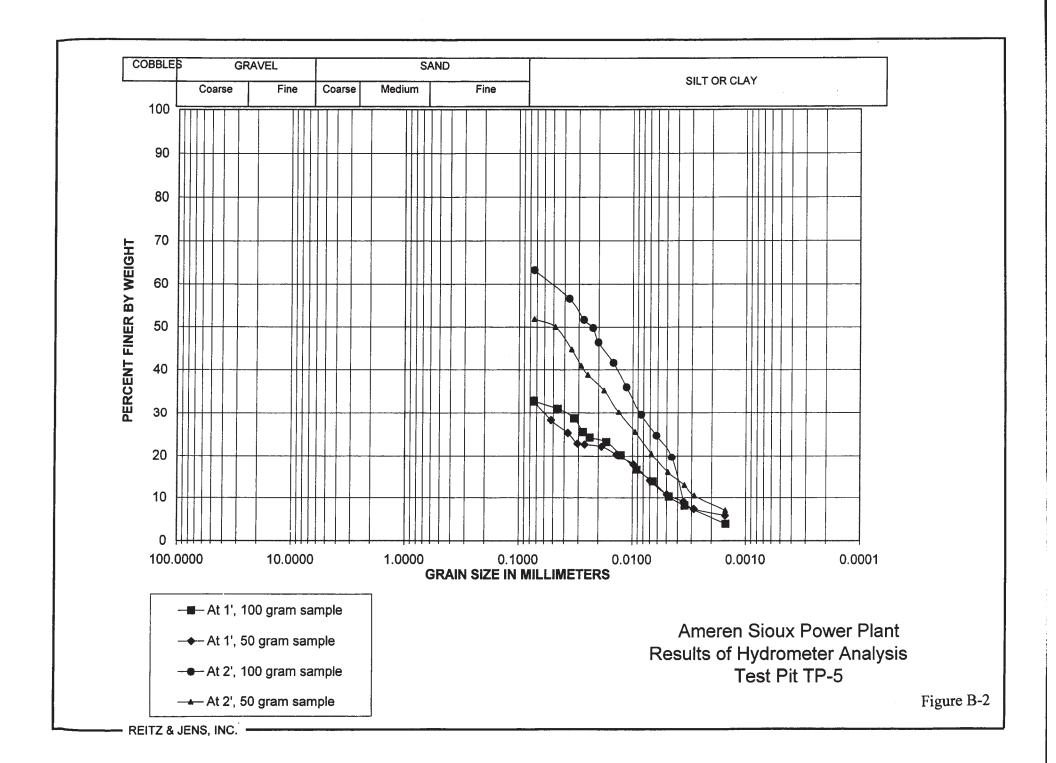
Test	Sample	Sample	Wet Unit	Moisture	Dry Unit
No.	Location	Depth, in.	Weight, pcf	Content, %	Weight, pcf
1	Discharge	3 – 9	100.2	51.0	69.5
2	TP-2	0 - 6	88.0	57.2	56.0
3	TP-2	6 – 12	101.8	51.7	67.1
4	TP-5	0-6	96.5	52.1	63.4
5	TP-5	8-14	109.6	42.5	76.9
6	TP-8	0 - 6	100.0	57.5	63.5
7	TP-8	6 – 12	104.8	49.6	70.1
8	TP-11	3 – 9	108.1	45.4	74.4
9	Economizer	0 - 6	83.7	31.1	63.9
10	Economizer	12 - 18	93.7	42.6	65.7
11	Economizer	0-6	87.4	35.8	64.4
12	TP-13	0-6	92.0	44.2	63.8
13	TP-14	0-6	80.4	51.9	52.9
14	TP-15	0-6	96.5	56.9	61.5

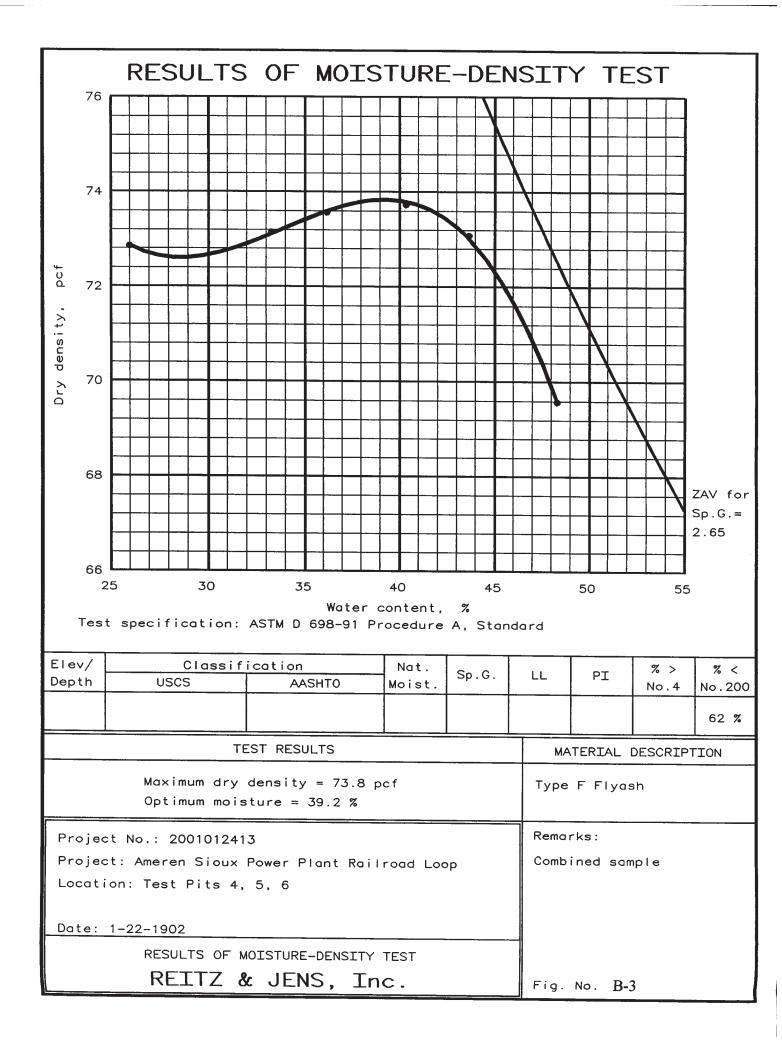
Table B-1 – Moisture Contents and Dry Unit Weights of Flyash Samples

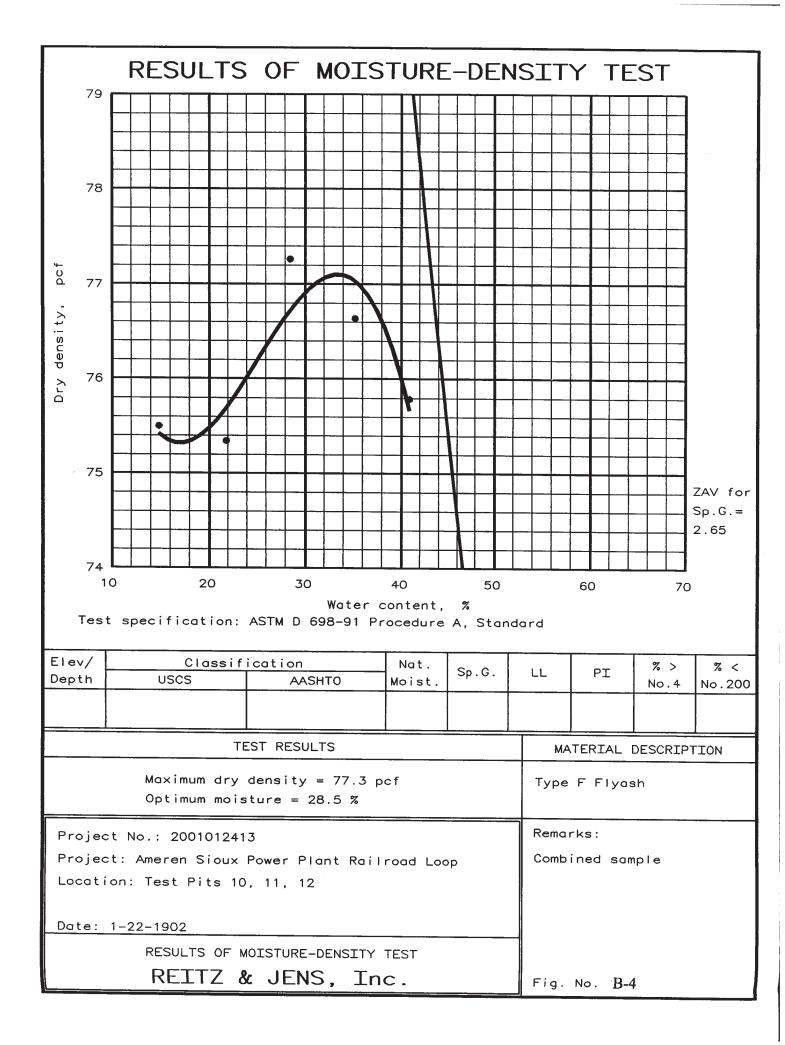
AmerenUE's Sioux Power Plant Railroad Loop Expansion

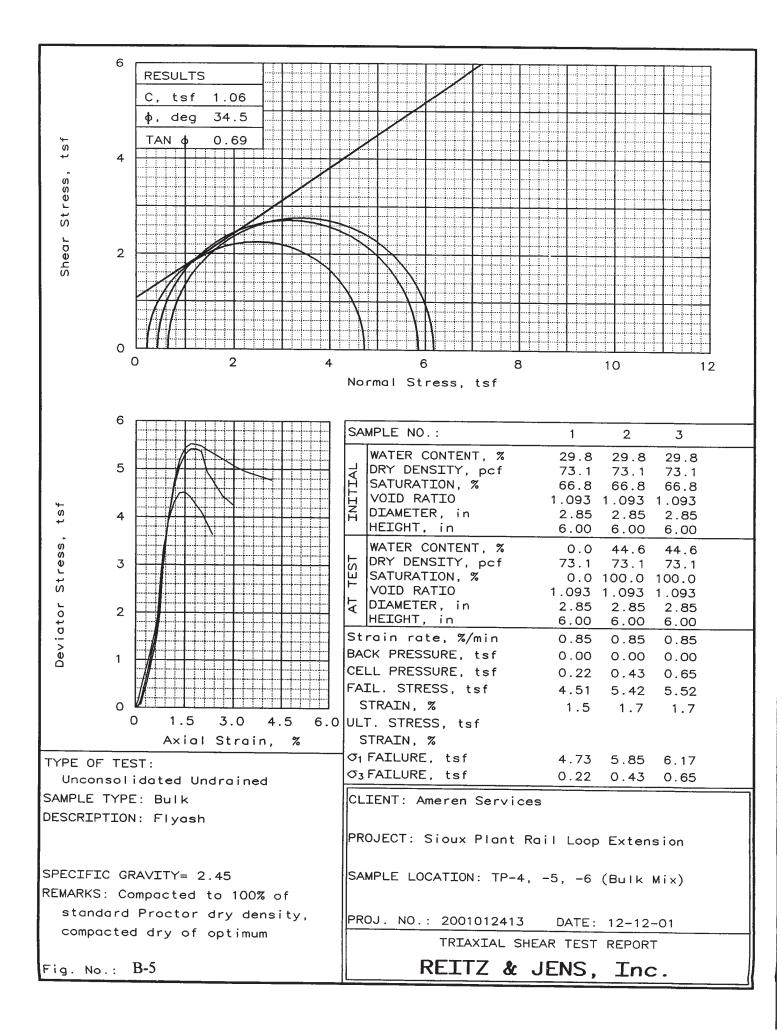
We ran several hydrometer tests to obtain the grain-size distribution of the flyash. Generally, there were slightly-cemented conglomerates of flyash mixed throughout each sample. Most of these conglomerates were easily crushed by hand. We tried not to crush the conglomerates since these will occur in the flyash fill. Therefore, instead of deflocculating the samples, we ran hydrometer tests on 50-gram and 100-gram samples, to determine the affect on the results. We ran hydrometer tests on samples at 1-foot and 2-foot depths from Test Pit 5. The results are shown in Figure B-2. The differences between the 50-gram and 100-gram samples were not significant. The sample at 2-foot depth was coarser than the sample at 1-foot. The sample at 2-foot depth may be classified as a sandy silt or a silty sand. The sample at 1-foot depth may be classified as a clayey silt.

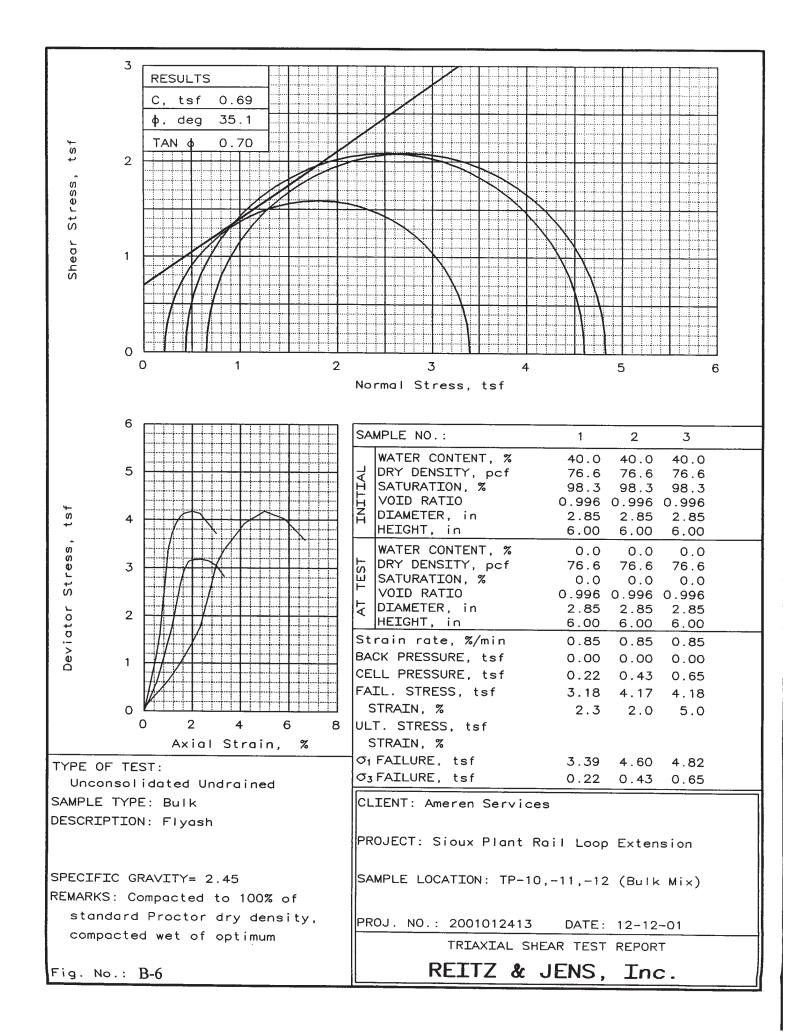
We combined the flyash samples from Test Pits 4, 5 and 6, and from Test Pits 10, 11 and 12, for two standard Proctor compaction tests (ASTM D-698). The results are shown in Figures B-3 and B-4, respectively. From Test Pits 4-6, the maximum dry unit weight ($\gamma_{d,max}$) was 73.8 lbs/ft³ and the optimum moisture content was 39%. From Test Pits 10-12, $\gamma_{d,max}$ was 77.3 lbs/ft³ and the optimum moisture content was 29%.

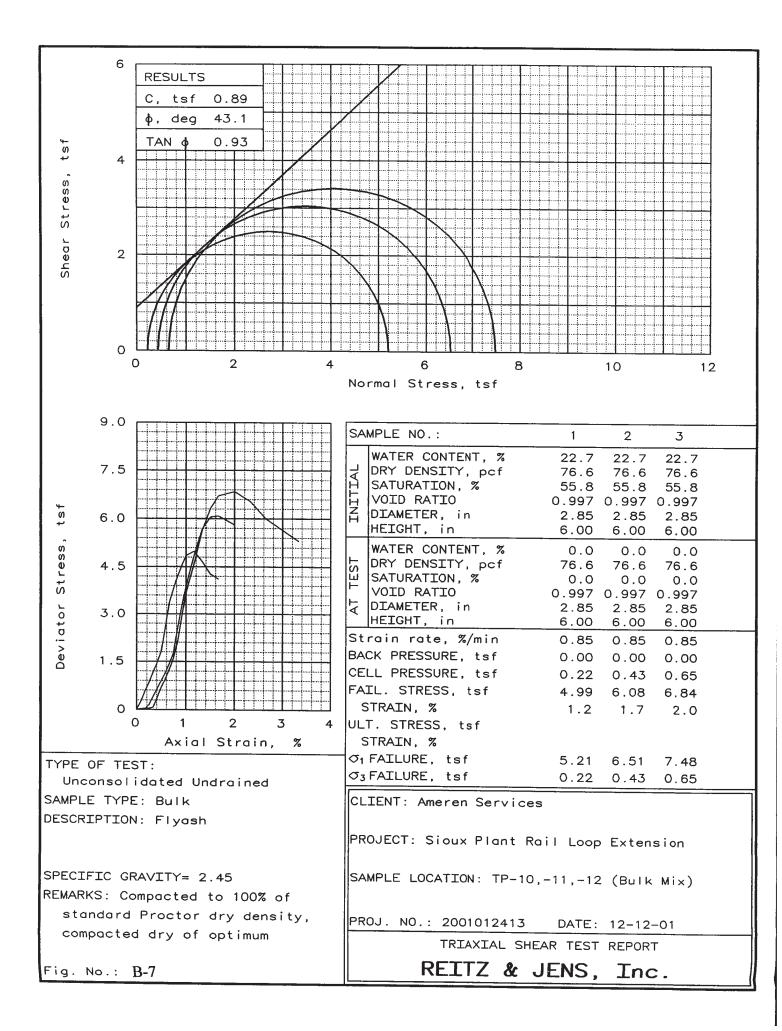

We ran four series of unconsolidated-undrained triaxial tests to determine the shear strength characteristics of the compacted flyash. Three samples were compacted in a miniature mold at 99% of $\gamma_{d,max}$ for each series. We ran two series on a combined sample from Test Pits 4, 5 and 6 – one series compacted wet of optimum and one series compacted dry of optimum. Similarly, we ran two series on a combined sample from Test Pits 10, 11 and 12. Confining pressures of 3, 6 and 9 psi were used. comparable to the stresses that we expect in the field. The results from each series of tests are shown in Figures B-5 through B-8, and are summarized in the following table.

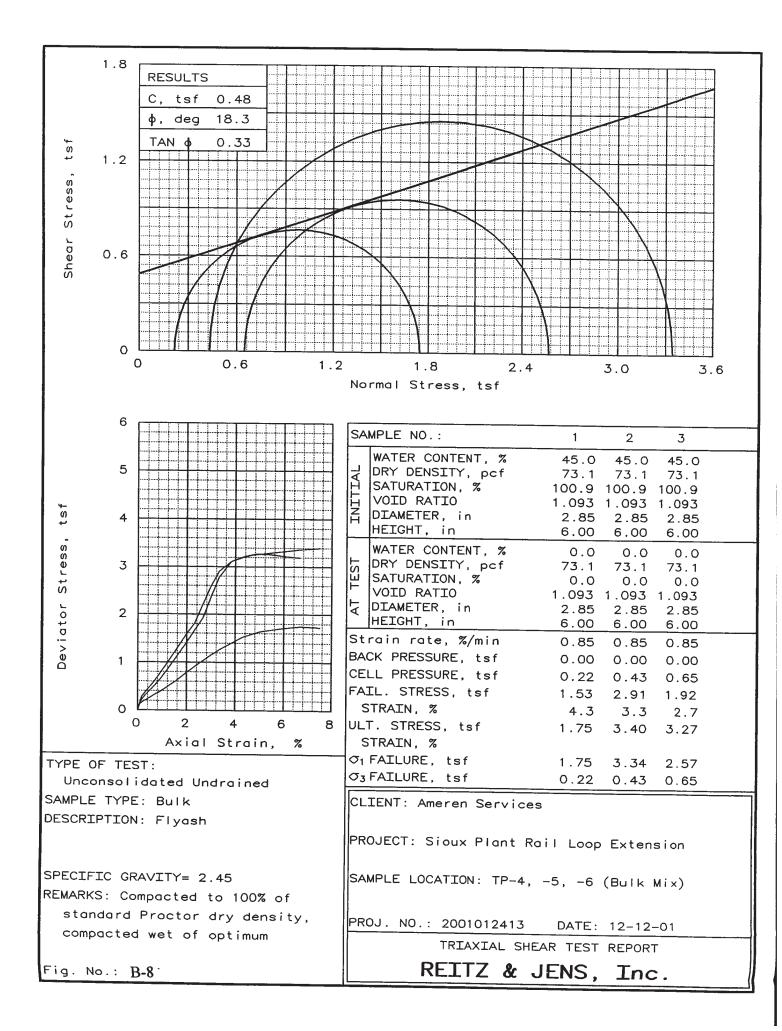

Test Pits	Moisture Content	Friction Angle (\phi')	Cohesion c', psf	Initial Tangent Modulus k, psi
156	45% (wet)	18°	960	500 - 1000
4, 5, 6	30% (dry)	34°	2100	5500
10 11 12	40% (wet)	35°	1400	1000 - 4600
10, 11, 12	23% (dry)	43°	1800	5200 - 6000

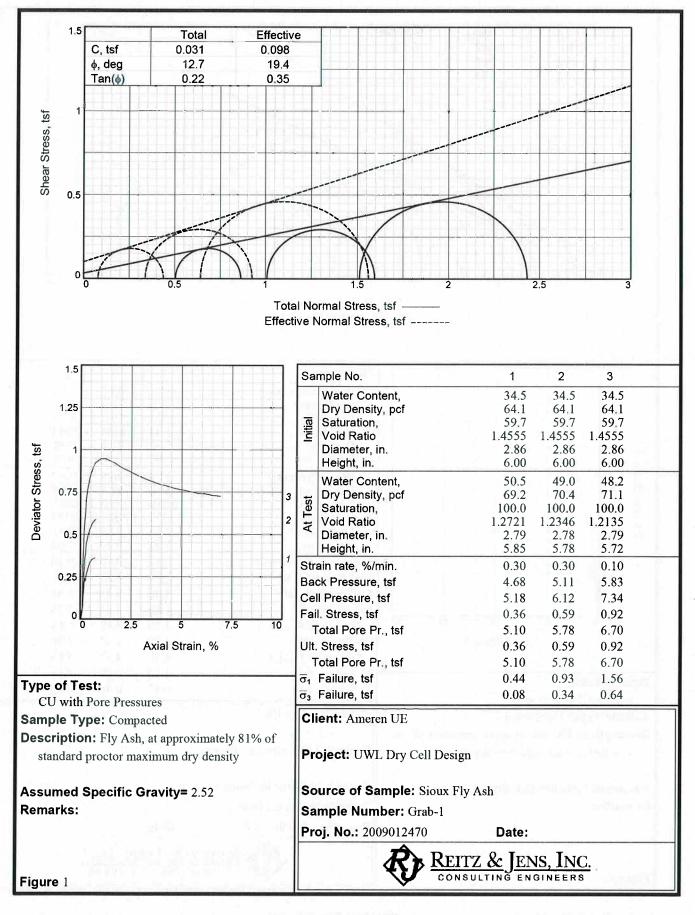

Table B-2 – Results of Triaxial Shear Strength Tests on Compacted Flyash Samples

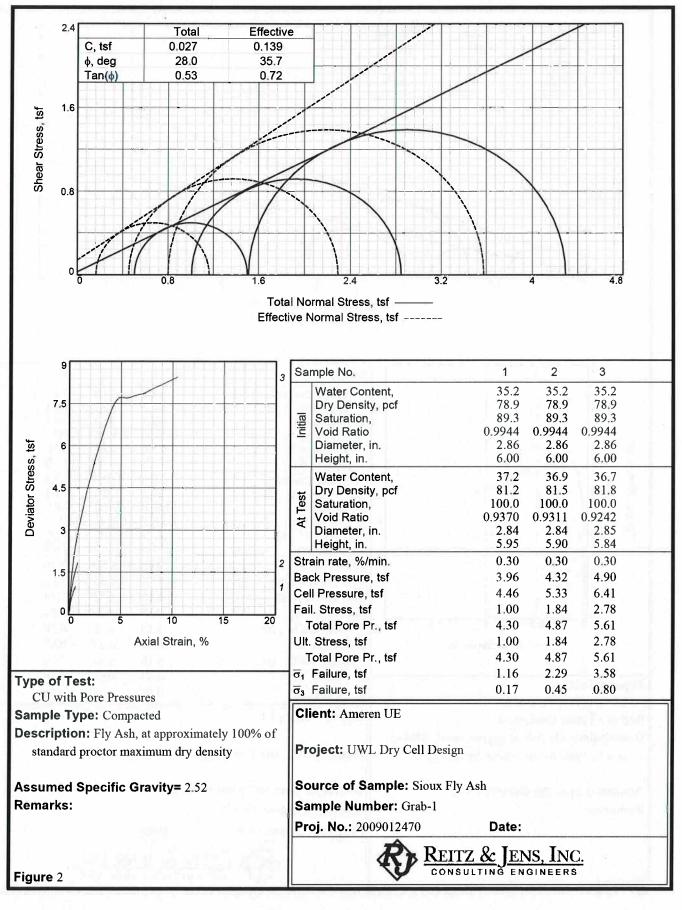

We also performed flexible-wall hydraulic conductivity tests (ASTM D-5084) on combined samples from Test Pits 4, 5 and 6 and Test Pits 10, 11 and 12. The samples were compacted in a miniature mold to 98% of the corresponding $\gamma_{d,max}$ and at moisture contents of 45% and 40%, respectively. At a hydraulic gradient of 3% and net confining pressure of 2.5 psi, the measured permeability (K) was 1.8×10^{-4} cm/sec for the sample from Test Pits 4-6, and 9.9×10^{-5} cm/sec for the sample from Test Pits 10-12.

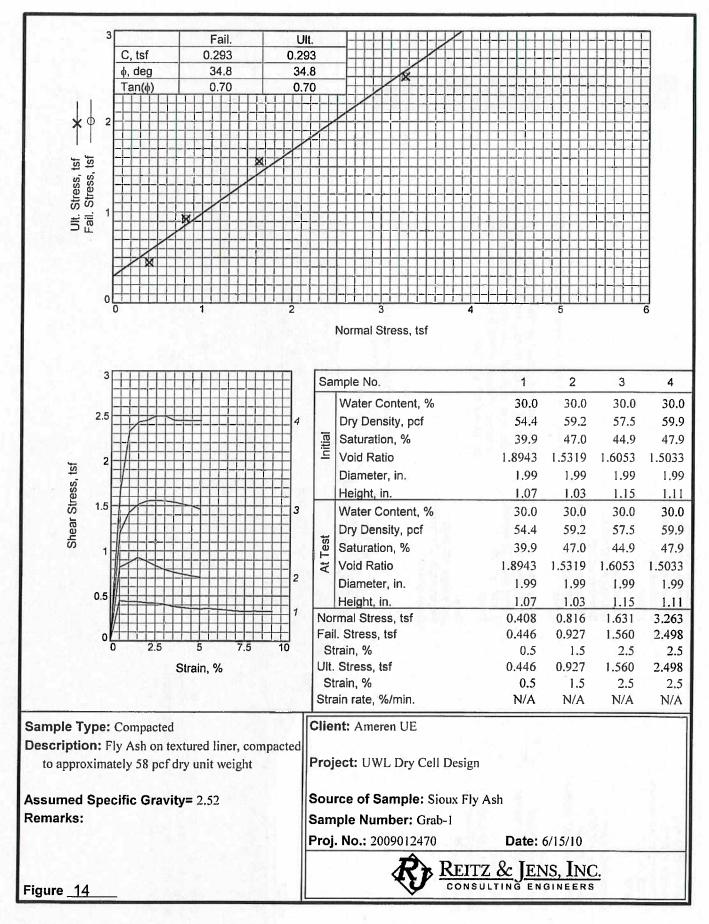






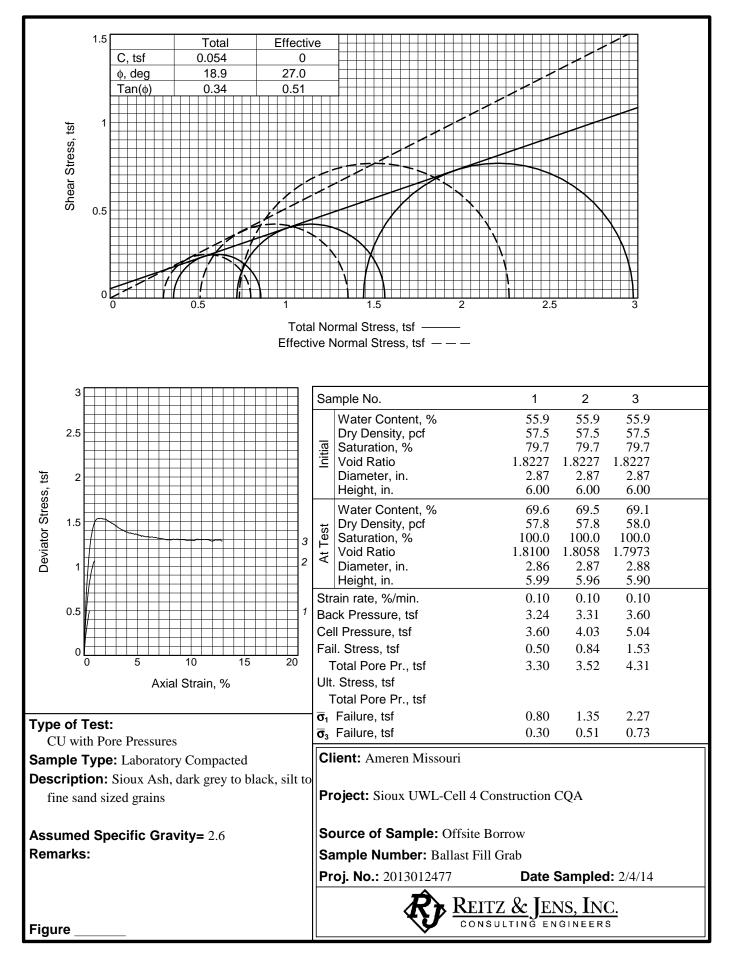






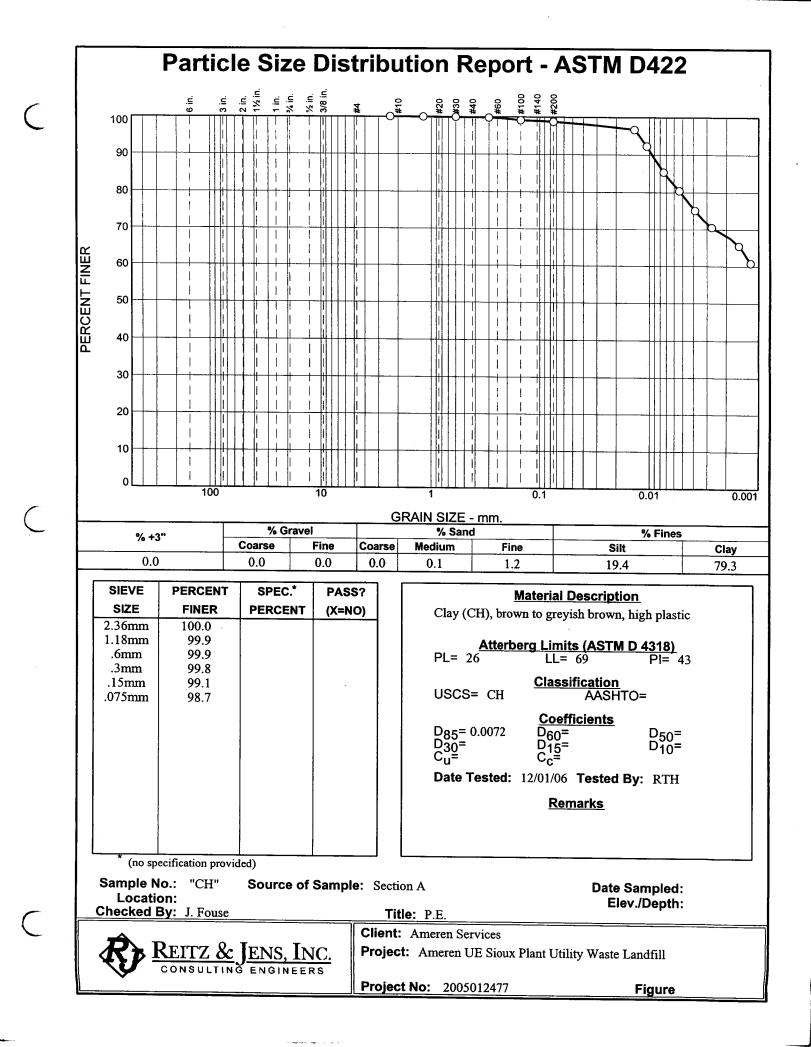
Appendix 2.1

RESULTS OF LABORATORY TESTING ON FLY ASH FROM ADDENDUM



Tested By: J. Crose, J. Pruett

Checked By: J. Fouse


Appendix 2.2

RESULTS OF LABORATORY TESTING ON FLY ASH FROM CQA REPORT FOR CELL 4A PHASE 3 – INITIAL FILLING

Appendix 3

RESULTS OF GRAIN SIZE ANALYSES ON COMPOSITE SAMPLES

PI: 43

Title: P.E.

Test Date: 12/01/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section A

Sample Number: "CH"

Material Description: Clay (CH), brown to greyish brown, high plastic LL: 69

PL: 26

USCS Classification: CH

Tested By: RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Tes	t Weights (grams): Dry Sample and Tare =37.88
	Tare Wt. = 37.18
	Minus #200 from wach = 08 69/

INTER CONTRACTOR		MITUS	us #200 from wash = 98.6%					
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer			
50.00	0.00	0.00	2.36mm	0.00	100.0			
			1.18mm	0.03	99.9			
			.6mm	0.06	99.9			
			.3mm	0.12	99.8			
			.15mm	0.46	99.1			
			.075mm	0.65	98.7			

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

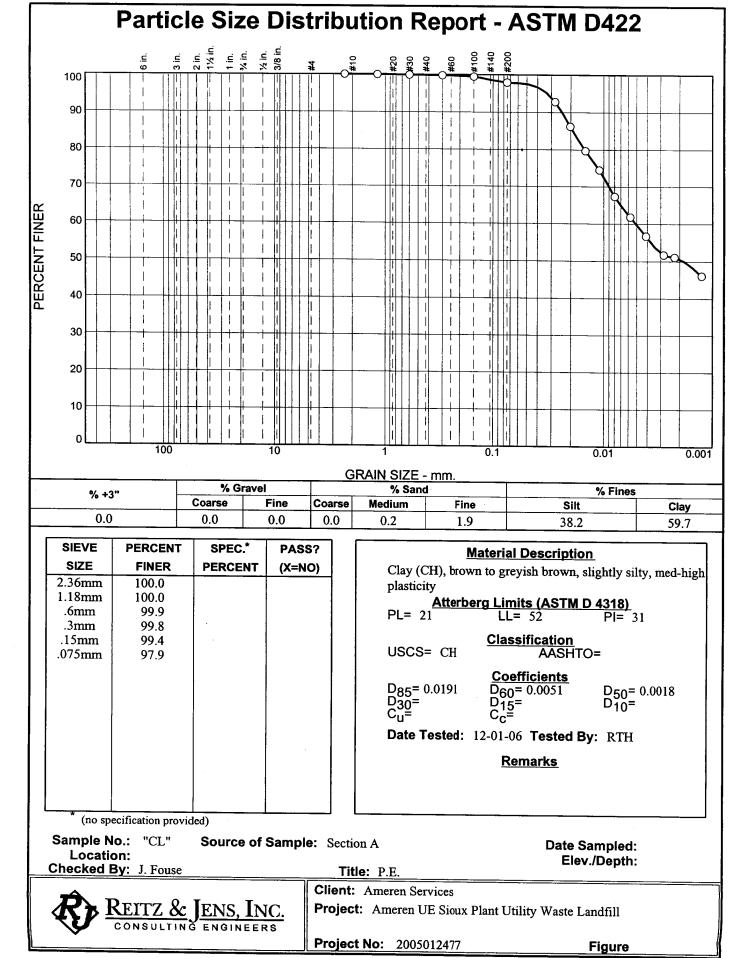
Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H


Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
8.00	22.1	48.2	48.6	0.0132	47.2	8.6	0.0136	96.6
14.00	22.1	46.0	46.4	0.0132	45.0	8.9	0.0105	92.3
30.00	22.2	42.5	43.0	0.0132	41.5	9.5	0.0074	85.4
60.00	22.2	40.0	40.5	0.0132	39.0	9.9	0.0053	80.4
120.00	22.3	37.3	37.8	0.0131	36.3	10.3	0.0039	75.1
252.00	22.7	34.9	35.5	0.0131	33.9	10.7	0.0027	70.5
815.00	23.0	32.3	33.0	0.0130	31.3	11.2	0.0015	65.5
1468.00	20.6	30.5	30.6	0.0134	29.5	11.5	0.0012	60.8

							· · ·			
Cobbles		Gravel		<u> </u>	Sa	nd			Fines	
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	1.2	1.3	19.4	79.3	98.7

ſ		D	D							
	D ₁₀	U15	^D 20	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
							0.0052	0.0072	0.0094	0.0122

Fineness Modulus 0.01

PI: 31

Title: P.E.

Test Date: 12-01-06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section A

Sample Number: "CL"

Material Description: Clay (CH), brown to greyish brown, slightly silty, med-high plasticity

PL: 21

USCS Classification: CH

Tested By: RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash To	est Weights (grams): Dry Sample and Ta	re =38.41
	Tare Wt. = 37.31	
	Minus #200 from wa	ash =97.8%
Dmit	• • • •	_

LL: 52

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.06	99.9
			.3mm	0.11	99.8
			.15mm	0.29	99.4
			.075mm	1.05	97.9

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample ∋0

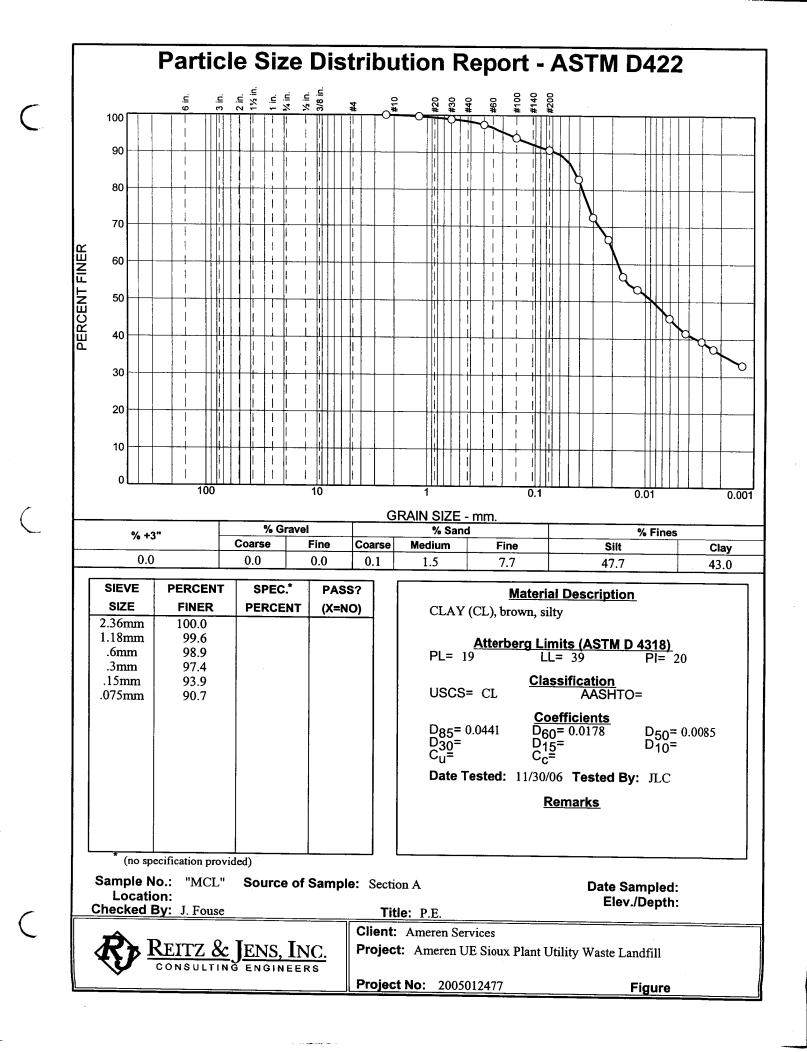
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.3	46.2	46.7	0.0131	45.2	8.9	0.0277	92.8
4.00	22.3	42.9	43.4	0.0131	41.9	9.4	0.0202	86.2
8.00	22.3	39.6	40.1	0.0131	38.6	10.0	0.0147	79.7
15.00	22.3	37.0	37.5	0.0131	36.0	10.4	0.0109	74.5
30.00	22.3	33.4	33.9	0.0131	32.4	11.0	0.0080	67.3
60.00	22.3	30.6	31.1	0.0131	29.6	11.4	0.0057	61.8
120.00	22.4	28.0	28.5	0.0131	27:0	11.9	0.0041	56.7
265.00	22.8	25.4	26.0	0.0131	24.4	12.3	0.0028	51.7
423.00	23.1	25.0	25.7	0.0130	24.0	12.4	0.0022	51.1
1440.00	20.6	23.1	23.2	0.0134	22.1	12.7	0.0013	46.1

Cobbles		Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	0.2	1.9	2.1	38.2	59.7	97.9	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0018	0.0051	0.0150	0.0191	0.0240	0.0325
Fineness					······	• • • • •	·		L

Modulus 0.01

(

Client: Ameren Services

USCS Classification: CL

Checked By: J. Fouse

Tested By: JLC

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section A Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 19 LL: 39

PI: 20

Test Date: 11/30/06 **Title:** P.E.

Sieve opening list: (Default opening sizes)

	sh Test Weig	Tare Wt. =41.01 Minus #200 from wash =90.1%								
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.18	99.6					
			.6mm	0.56	98.9					
			.3mm	1.28	97.4					
			.15mm	3.06	93.9					
			.075mm	4.66	90.7					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

Automatic temperature correction

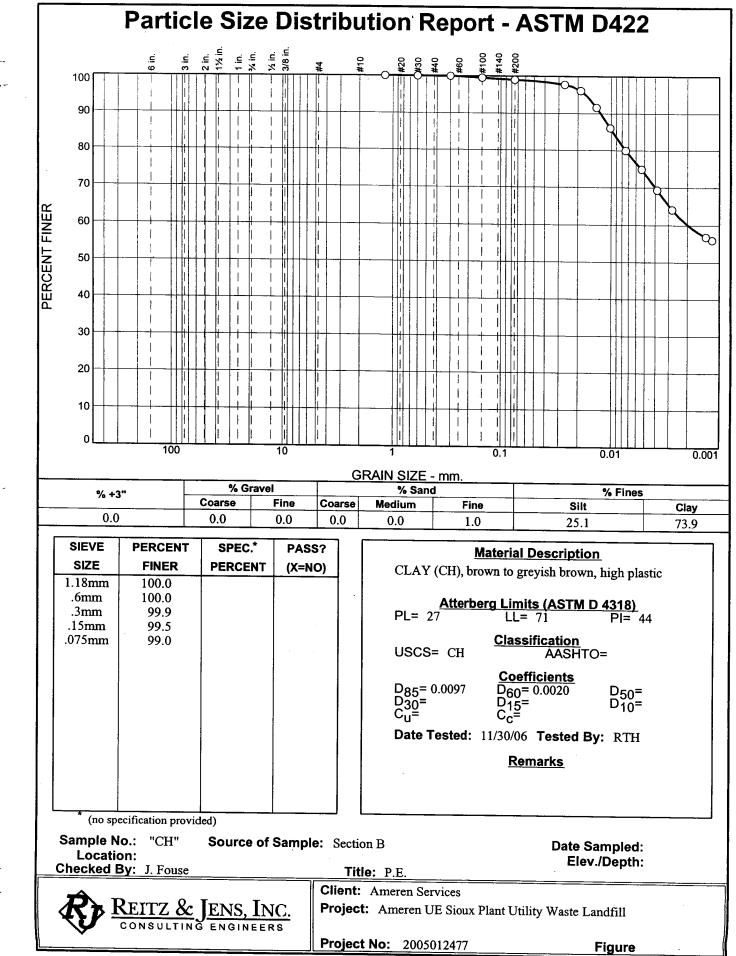
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	22.7	41.1	41.7	0.0131	40.1	9.7	0.0408	82.8
2.00	22.7	35.9	36.5	0.0131	34.9	10.6	0.0301	72.5
4.00	22.7	32.9	33.5	0.0131	31.9	11.1	0.0218	66.5
8.00	22.7	27.9	28.5	0.0131	26.9	11.9	0.0159	56.6
15.00	22.7	26.2	26.8	0.0131	25.2	12.2	0.0118	53.2
60.00	22.7	22.3	22.9	0.0131	21.3	12.8	0.0060	45.5
120.00	23.0	20.2	20.9	0.0130	19.2	13.1	0.0043	41.5
240.00	23.7	18.9	19.8	0.0129	17.9	13.4	0.0030	39.3
409.00	23.6	17.9	18.7	0.0129	16.9	13.5	0.0024	37.2
1440.00	22.3	16.1	16.6	0.0131	15.1	13.8	0.0013	33.0


. . .

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	1.5	7.7	9.3	47.7	43.0	90.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0085	0.0178	0.0375	0.0441	0.0643	0.1835

Fineness Modulus 0.10

C

PI: 44

Title: P.E.

Test Date: 11/30/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section B

Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic LL: 71

PL: 27

USCS Classification: CH Tested By: RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.32 Tare Wt. = 40.76 Minus #200 from wash = 98 9%

			s #200 moin was	M - 70.770	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	1.18mm	0.00	100.0
			.6mm	0.01	100.0
			.3mm	0.04	99.9
			.15mm	0.27	99.5
			.075mm	0.52	99.0

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample ∋0

Automatic temperature correction

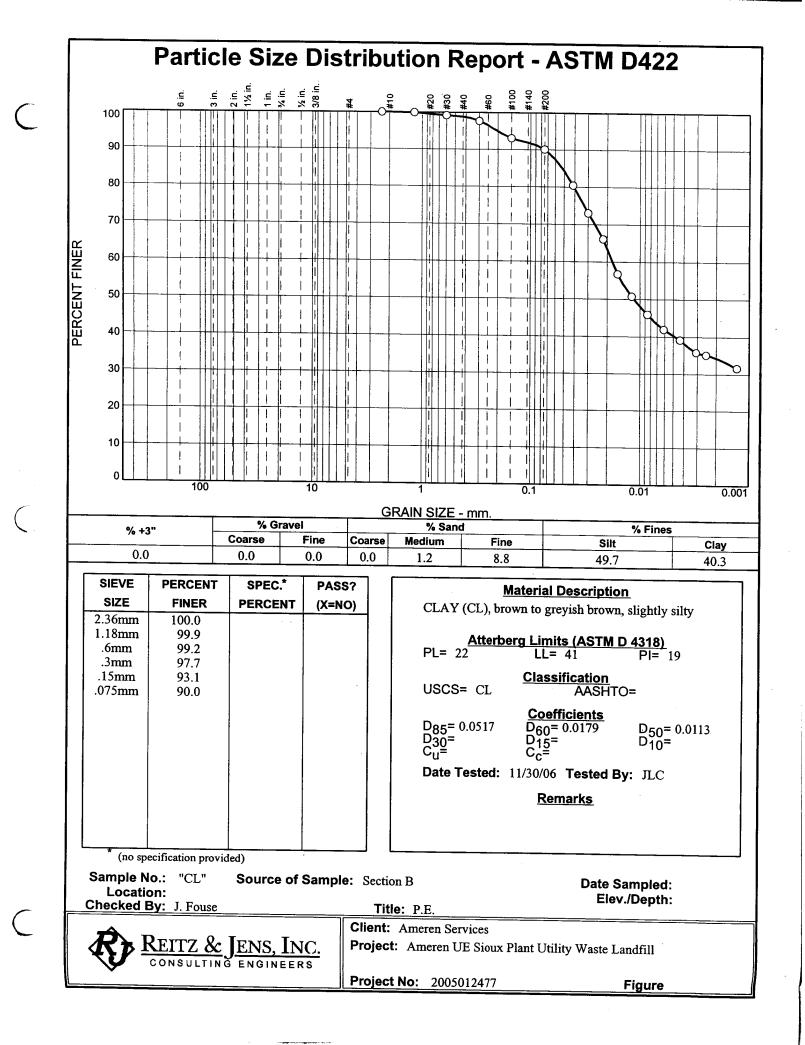
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	24.7	48.0	49.2	0.0128	47.0	8.6	0.0265	97.7
4.00	24.7	47.2	48.4	0.0128	46.2	8.7	0.0189	96.1
8.00	24.5	45.0	46.1	0.0128	44.0	9.1	0.0136	91.6
15.00	24.5	42.2	43.3	0.0128	41.2	9.5	0.0102	86.1
30.00	24.5	39.1	40.2	0.0128	38.1	10.0	0.0074	79.9
60.00	25.0	36.4	37.7	0.0127	35.4	10.5	0.0053	74.9
120.00	25.3	33.5	34.9	0.0127	32.5	11.0	0.0038	69.3
240.00	25.0	31.0	32.3	0.0127	30.0	11.4	0.0028	64.1
1132.00	23.1	27.9	28.6	0.0130	26.9	11.9	0.0013	56.8
1440.00	25.0	26.9	28.2	0.0127	25.9	12.0	0.0012	56.0
								•


		Gravel								
Cobbles			T		Sand			Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	25.1	73.9	99.0

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅]
l						0.0020	0.0075	0.0097	0.0125	0.0170	

Fineness	
Modulus	
0.01	

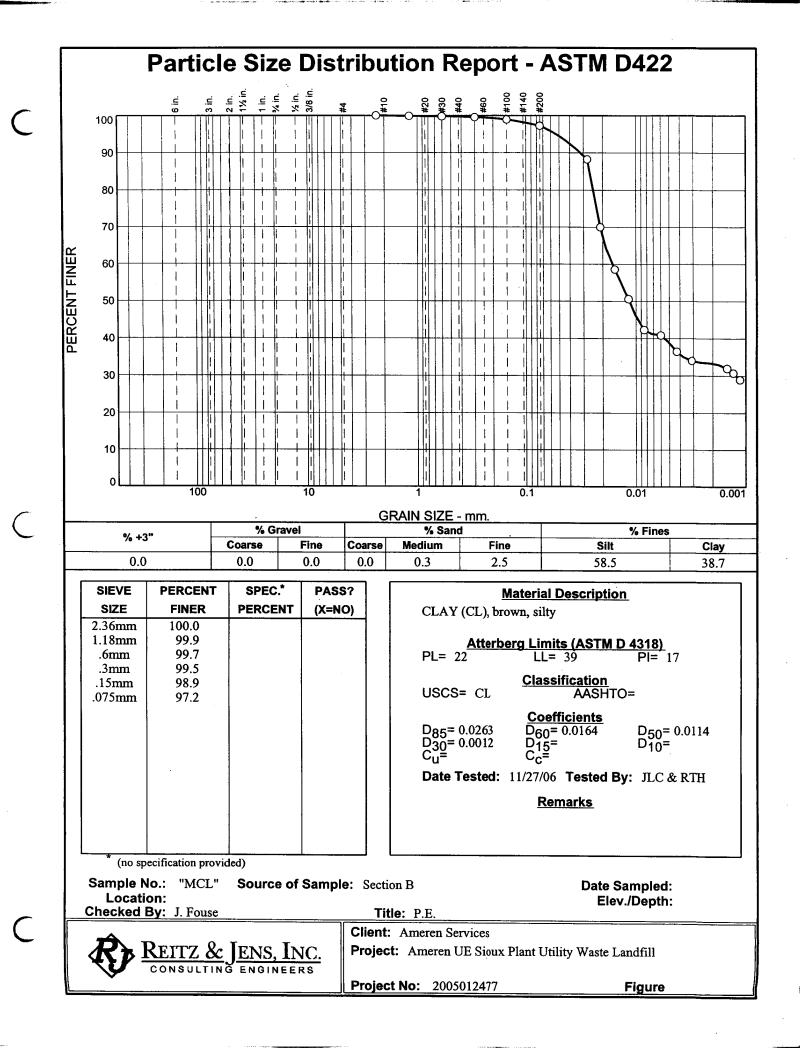
C

C

Ment. Amer	en Services									
roject: Am	eren UE Siou	ıx Plant Utili	ity Waste La	ndfill						
	ber: 20050			nann						
.ocation: Se										
ample Num	nber: "CL"									
		AY (CL) b	rown to grey	ish broug	a aliahthu ai	الد .				
°L: 22		LL: 4			Pl: 19	-				
JSCS Class	ification: CI				FI: 19	,				
Tested By: J		-			Teet	Date: 11/3	20/07			
Checked By					Title:		30/06			
Sieve openir		ult opening	sizes)		nue:	P.E.				
	3 (- t	an opening	51203)							
ost #200 Wa	sh Test Weig	hts (grams).	Dry Sample a	nd Toro	45 72					
			Tare Wt. = 40.	.67						-
-		1	Minus #200 fr	om wash	=89.9%					
Dry Sample		Cumulativ Pan	-		Cumulative					
and Tare	Tare	Pan Tare Weigh		eve ening	Weight Retained	Percen				
(grams)	(grams)	(grams)		ize	(grams)	Finer	ι			
(grains)						100.0				
(grains) 50.00	0.00	0.00	2.36	mm	0.00	100.0				
	,	0.00		ómm Smm	0.00 0.06	100.0 99.9				
	,	0.00	1.18							
	,	0.00	1.18 .6 .3	8mm 6mm 6mm	0.06	99.9				
	,	0.00	1.18 .6 .3	3mm 5mm	0.06 0.42	99.9 99.2				
50.00 lydrometer te Percent passir	0.00 st uses mate	rial passing#	1.18 .6 .15 .075	8mm 6mm 6mm 6mm	0.06 0.42 1.15	99.9 99.2 97.7				
50.00 50.00 lydrometer te ercent passir Veight of hydr sutomatic tem Composite of leniscus corr pecific gravit ydrometer ty Hydrometer	0.00 st uses mate og #4 based to ometer samp perature con correction (file ection only = y of solids = y of solids = be = 152H	rial passing# upon complet ole ≂50 rection uid density at -1.0 2.68	1.18 .6 .15 .075	Smm Smm Smm Smm Mm OO.0 height) a	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓	99.9 99.2 97.7 93.1 90.0				
50.00 50.00 lydrometer te ercent passir Veight of hydr utomatic tem Composite of leniscus com pecific gravit ydrometer ty	0.00 st uses mate og #4 based to ometer samp perature con correction (file ection only = y of solids = y of solids = be = 152H	rial passing# upon complet ole ≂50 rection uid density at -1.0 2.68	1.18 .6 .3 .15 .075 4 te sample =10	8mm 6mm 6mm 6mm 90.0 height) a	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓	99.9 99.2 97.7 93.1 90.0	Diameter (mm)	Percent		
50.00 50.00 lydrometer te ercent passir Veight of hydr utomatic tem Composite of leniscus com- pecific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00	0.00 st uses mate og #4 based of ometer sam perature con correction (file ection only = y of solids =/ pe = 152H effective dep Temp.	rial passing# upon completole =50 rection uid density at -1.0 2.68 th equation: Actual	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected	Smm Smm Smm Smm Smm OO.0 height) a - 0.164 x K	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ k Rm Rm	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth	(mm.)	Finer		- · · ·
50.00 50.00 lydrometer te ercent passir Veight of hydr sutomatic term Composite of leniscus corri- ppecific gravit lydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00	0.00 st uses mate og #4 based to ometer samp perature cont correction (nly = y of solids =/ pe = 152H effective dep Temp. (deg. C.) 22.6 22.6	rial passing# upon complet ole =50 rection uid density at -1.0 2.68 th equation: Actual Reading	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading	8mm 6mm 6mm 6mm 90.0 height) a	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C ≓ t 20 deg. S ≓	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9	(mm.) 0.0412	Finer 80.4		
50.00 Solution	0.00 st uses mate og #4 based to correction only = y of solids =/ pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6	rial passing# upon completion ole =50 rection uid density and -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5	8mm 9mm 9mm 9mm 90.0 1 - 0.164 x K 0.0131	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ k Rm Rm	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth	(mm.) 0.0412 0.0300	Finer 80.4 73.0		
Solution Sol	0.00 st uses mate og #4 based u rometer samp perature con correction only = y of solids =/ pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.5	rial passing# upon complet ole =50 rection uid density at -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8	8mm 9mm 9mm 9mm 90.0 1 - 0.164 x 1 - 0.164 x 0.0131 0.0131	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C ≓ t Rm 38.9 35.2	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5	(mm.) 0.0412 0.0300 0.0218	Finer 80.4 73.0 66.1		
50.00 Solution States of the second	0.00 st uses mate og #4 based of cometer samp perature con correction (file ection only = y of solids = pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.6 22.5 22.5	rial passing# upon completed ble =50 rection uid density and -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5	8mm 9mm 9mm 9mm 90.0 height) a 0.0131 0.0131 0.0131	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C ≓ t 20 deg. C ≓ t 20 deg. C ≓	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1	(mm.) 0.0412 0.0300 0.0218 0.0160	Finer 80.4 73.0 66.1 56.7		
50.00 50.00 Veight of hydromatic tem Percent passin Veight of hydromatic tem Composite of Heniscus com- pecific gravit ydrometer ty Hydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00	0.00 st uses mate og #4 based to ometer samp perature con- correction (fill ection only = y of solids = pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.6 22.5 22.5	rial passing# upon completed ple =50 rection uid density and -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0 22.6	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5 23.1	Bmm Smm Smm Smm Smm Smm Smm Smm	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C ≓ t Rm 38.9 35.2 31.7 27.0	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1 11.9	(mm.) 0.0412 0.0300 0.0218	Finer 80.4 73.0 66.1 56.7 50.7	· · ·	
50.00 50.00 fydrometer te Percent passir Veight of hydr Nutomatic term Composite of Meniscus corri- ppecific gravit lydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00	0.00 st uses mate og #4 based to ometer samp perature con correction (fil etion only = y of solids =2 pe = 152H effective dep (deg. C.) 22.6 22.6 22.6 22.6 22.5 22.5 22.5 22.5	rial passing# upon completed ple =50 rection uid density and -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0 22.6 20.5	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5 23.1 21.1	Bmm Smm Smm Smm Smm Smm Smm Smm	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. 2	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1 11.9 12.4	(mm.) 0.0412 0.0300 0.0218 0.0160 0.0119	Finer 80.4 73.0 66.1 56.7 50.7 46.0	· ·	
Aydrometer te Percent passin Veight of hydrometer Second passin Veight of hydrometer Second passin Composite of Meniscus correspecific gravit Hydrometer ty Hydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	0.00 st uses mate og #4 based u rometer samp perature con- correction only = y of solids =2 pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.5 22.5 22.5 22.5 22.8 23.1	rial passing# upon completed ple =50 rection uid density at -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0 22.6 20.5 19.0	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5 23.1 21.1 19.7	Bmm Smm Smm Smm Smm Smm Smm Smm	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C ≡ t 20	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1 11.9 12.4 12.8	(mm.) 0.0412 0.0300 0.0218 0.0160 0.0119 0.0086	Finer 80.4 73.0 66.1 56.7 50.7	· ·	
Solution Sol	0.00 st uses mate og #4 based of rometer samp perature con- correction only = y of solids =2 pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.5 22.5 22.5 22.5 22.5 22.8 23.1 23.8	rial passing# upon complete fection uid density ar -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0 22.6 20.5 19.0 17.1	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5 23.1 21.1 19.7 18.0	8mm 9mm 9mm 9mm 9mm 90.0 height) ar 90.0 height) ar 90.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131	0.06 0.42 1.15 3.46 4.98 t 20 deg. C t 20 deg. C t 	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1 11.9 12.4 12.8 13.1	(mm.) 0.0412 0.0300 0.0218 0.0160 0.0119 0.0086 0.0061	Finer 80.4 73.0 66.1 56.7 50.7 46.0 42.0	· · ·	
Aydrometer te Percent passin Veight of hydrometer Second passin Veight of hydrometer Second passin Composite of Meniscus correspecific gravit Hydrometer ty Hydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 4.00 8.00 15.00 30.00 60.00 120.00	0.00 st uses mate og #4 based u rometer samp perature con- correction only = y of solids =2 pe = 152H effective dep Temp. (deg. C.) 22.6 22.6 22.6 22.5 22.5 22.5 22.5 22.8 23.1	rial passing# upon completed ple =50 rection uid density at -1.0 2.68 th equation: Actual Reading 39.9 36.2 32.7 28.0 25.0 22.6 20.5 19.0	1.18 .6 .3 .15 .075 4 te sample =10 nd meniscus L =16.294964 Corrected Reading 40.5 36.8 33.3 28.5 25.5 23.1 21.1 19.7	Bmm Smm Smm Smm Smm Smm Smm Smm	0.06 0.42 1.15 3.46 4.98 t 20 deg. C ≓ t 20 deg. C = t 20 deg. C = t 20	99.9 99.2 97.7 93.1 90.0 01352 Eff. Depth 9.9 10.5 11.1 11.9 12.4 12.8 13.1 13.3	(mm.) 0.0412 0.0300 0.0218 0.0160 0.0119 0.0086 0.0061 0.0043	Finer 80.4 73.0 66.1 56.7 50.7 46.0 42.0 39.1		

C

C


C

the second second second

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	1.2	8.8	10.0	49.7	40.3	90.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0113	0.0179	0.0405	0.0517	0.0747	0.2022
Fineness							• 	L _m	
Modulus									
0.10									

(

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section B Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 22 LL: 39 USCS Classification: CL Tested By: JLC & RTH

PI: 17

Test Date: 11/27/06 **Title:** P.E.

Sieve opening list: (Default opening sizes)

Checked By: J. Fouse

Post #200 Wash Test Weights (grams): Dry Sample and Tare =42.26 Tare Wt. = 40.84 Minus #200 from wash =97.2%

				J. J	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.07	99.9
			.6mm	0.13	99.7
			.3mm	0.25	99.5
			.15mm	0.57	98.9
			.075mm	1.40	97.2

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

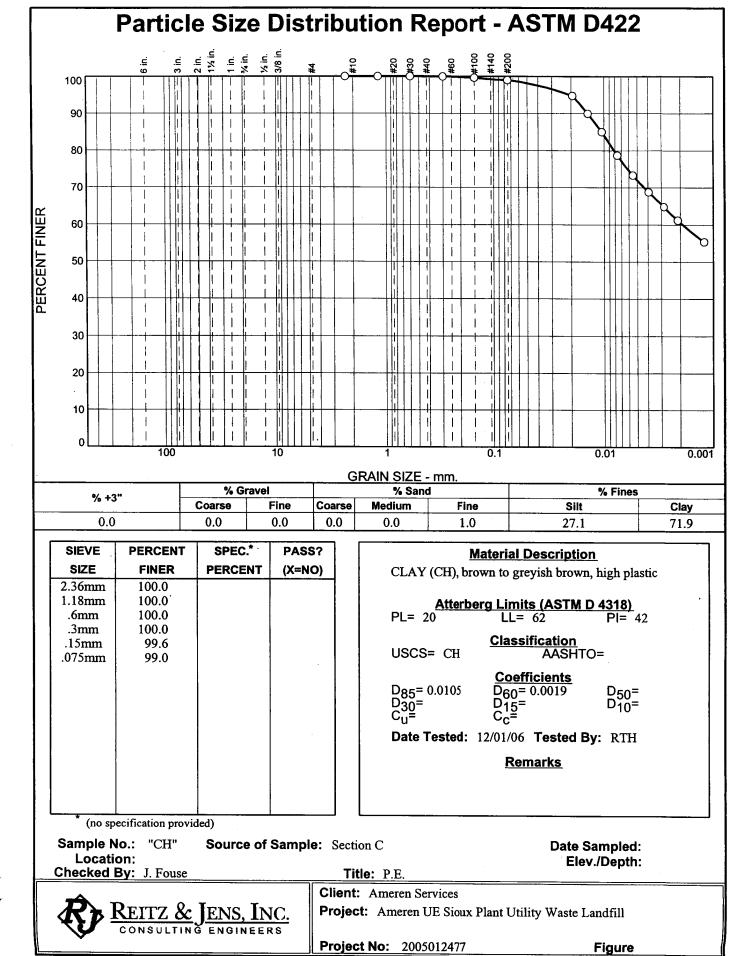
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68 Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	24.8	43.2	44.4	0.0128	42.2	9.4	0.0276	88.2
4.00	24.8	34.0	35.2	0.0128	33.0	10.9	0.0210	70.0
8.00	24.7	28.3	29.5	0.0128	27.3	11.8	0.0155	58.6
15.00	24.7	24.3	25.5	0.0128	23.3	12.5	0.0117	50.6
30.00	24.7	20.1	21.3	0.0128	19.1	13.2	0.0085	42.3
60.00	24.9	19.3	20.6	0.0127	18.3	13.3	0.0060	40.8
120.00	25.2	17.0	18.4	0.0127	16.0	13.7	0.0043	36.5
240.00	23.8	16.2	17.1	0.0129	15.2	13.8	0.0031	34.0
1165.00	19.6	16.2	16.1	0.0136	15.2	13.8	0.0015	32.0
1440.00	22.1	15.0 [.]	15.4	0.0132	14.0	14.0	0.0013	30.7
1917.00	22.1	14.1	14.5	0.0132	13.1	14.1	0.0011	28.9

...

				:	: · ·					
Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.3	2.5	2.8	58.5	38.7	97.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0012	0.0114	0.0164	0.0244	0.0263	0.0319	0.0532

Fineness Modulus 0.02

guit

Test Date: 12/01/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Section C

Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic PL: 20 LL: 62 **PI:** 42

and the second s

USCS Classification: CH

Tested By: RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.33 Tare Wt. = 40.78 Minus #200 from wash = 98.9%

		Wintus #200 Irolli wasii = 30.370							
Dry Sample and Tare (grams)	Cumulative Pan Tare Tare Weight (grams) (grams)		Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer				
50.00	0.00	0.00	2.36mm	0.00	100.0				
			1.18mm	0.00	100.0				
			.6mm	0.01	100.0				
			.3mm	0.02	100.0				
			.15mm	0.21	99.6				
			.075mm	0.52	99.0				

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample $\Rightarrow 0$

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

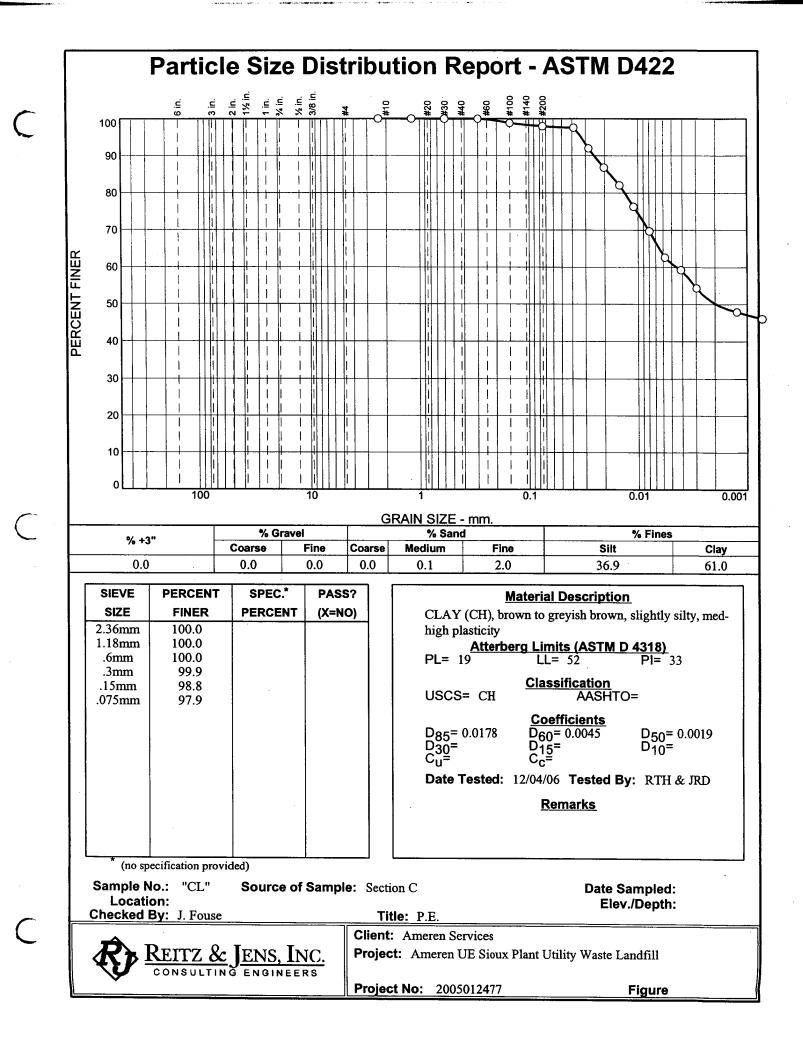
Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
4.00	22.3	47.2	47.7	0.0131	46.2	8.7	0.0194	94.7
8.00	22.3	44.8	45.3	0.0131	43.8	9.1	0.0140	90.0
15.00	22.3	42.3	42.8	0.0131	41.3	9.5	0.0105	85.0
30.00	22.3	39.1	39.6	0.0131	38.1	10.0	0.0076	78.7
60.00	22.3	36.4	36.9	0.0131	35.4	10.5	0.0055	73.3
120.00	22.4	34.1	34.6	0.0131	33.1	10.9	0.0040	68.8
240.00	22.8	32.0	32.6	0.0131	31.0	11.2	0.0028	64.8
441.00	23.1	30.1	30.8	0.0130	29.1	11.5	0.0021	61.2
1454.00	20.6	27.8	27.9	0.0134	26.8	11.9	0.0012	55.4

O ahhlar	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	27.1	71.9	99.0


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0019	0.0082	0.0105	0.0140	0.0205

Fineness	
Modulus	
0.00	

C

C

С

Test Date: 12/04/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section C Sample Number: "CL" Material Description: CLAY (CH), brown to grevish brown, si

Material Description: CLAY (CH), brown to greyish brown, slightly silty, med-high plasticityPL: 19LL: 52PI: 33

USCS Classification: CH Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.69 Tare Wt. =40.58 Minus #200 from wash =97.8%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.02	100.0
			.3mm	0.04	99.9
			.15mm	0.60	98.8
			.075mm	1.04	97.9

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

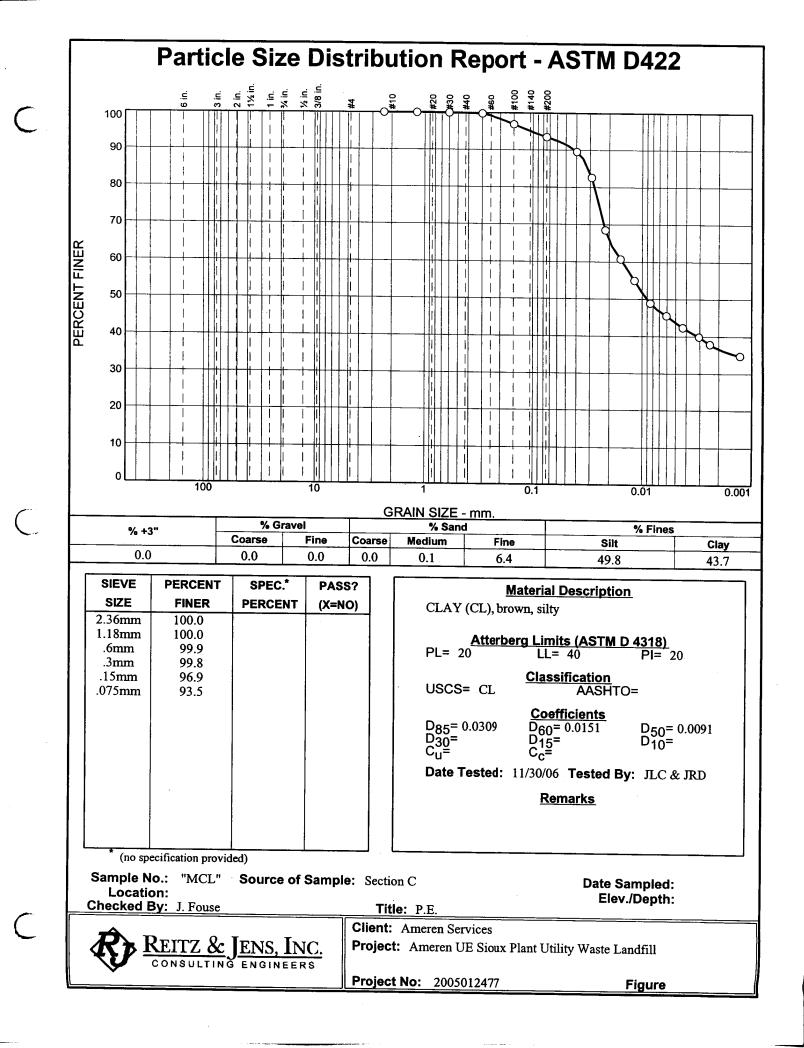
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	21.5	48.8	49.1	0.0133	47.8	8.5	0.0386	97.5
2.00	21.5	46.0	46.3	0.0133	45.0	8.9	0.0280	92.0
4.00	21.5	43.4	43.7	0.0133	42.4	9.3	0.0203	86.8
8.00	21.5	41.0	41.3	0.0133	40.0	9.7	0.0146	82.0
15.00	21.5	38.1	38.4	0.0133	37.1	10.2	0.0110	76.3
30.00	21.5	34.8	35.1	0.0133	33.8	10.8	0.0079	69.7
60.00	21.6	31.2	31.5	0.0133	30.2	11.3	0.0058	62.6
120.00	21.6	29.5	29.8	0.0133	28.5	11.6	0.0041	59.3
240.00	21.7	27.0	27.4	0.0132	26.0	12.0	0.0030	54.3
1439.00	20.7	24.0	24.1	0.0134	23.0	12.5	0.0013	47.9
4310.00	20.1	23.2	23.2	0.0135	22.2	12.7	0.0007	46.1

__ REITZ & JENS, INC. __

				5						
Cobbles	Gravel				Sai	Fines				
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	2.0	2.1	36.9	61.0	97.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0019	0.0045	0.0131	0.0178	0.0250	0.0328

~

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section C Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 20 LL: 40 USCS Classification: CL Tested By: JLC & JRD Checked By: J. Fouse

PI: 20

Test Date: 11/30/06 **Title:** P.E.

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights	(grams): Dry Sample and Tare =44.05
	Tare Wt. = 40.63
	Minus #200 from wash =93.2%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.03	99.9
			.3mm	0.11	99.8
			.15mm	1.57	96.9
			.075mm	3.27	93.5

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

Automatic temperature correction

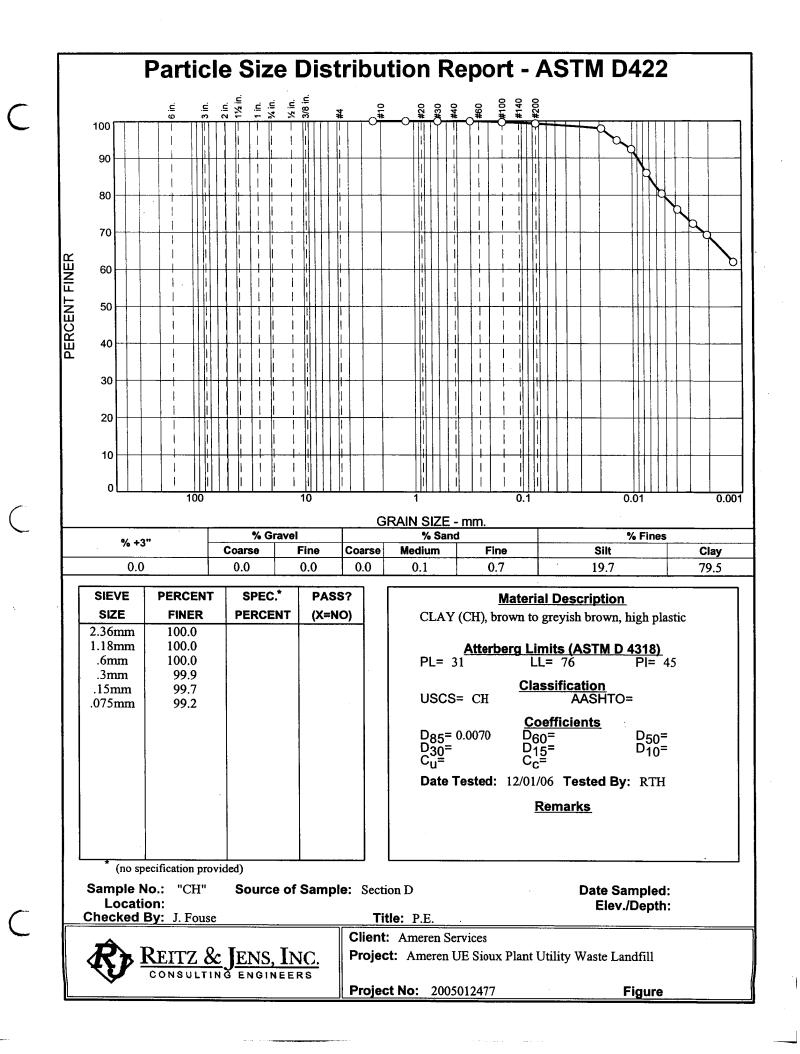
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68 Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	22.6	44.5	45.1	0.0131	43.5	9.2	0.0396	89.5
2.00	22.6	41.0	41.6	0.0131	40.0	9.7	0.0289	82.6
4.00	22.6	33.9	34.5	0.0131	32.9	10.9	0.0216	68.5
8.00	22.6	30.0	30.6	0.0131	29.0	11.5	0.0157	60.7
15.00	22.6	27.1	27.7	0.0131	26.1	12.0	0.0117	55.0
30.00	22.7	24.0	24.6	0.0131	23.0	12.5	0.0085	48.9
60.00	22.7	22.3	22.9	0.0131	21.3	12.8	0.0060	45.5
120.00	23.1	20.6	21.3	0.0130	19.6	13.1	0.0043	42.3
240.00	23.7	19.2	20.1	0.0129	18.2	13.3	0.0030	39.9
390.00	23.7	18.2	19.1	0.0129	17.2	13.5	0.0024	37.9
1440.00	22.4	17.0	17.5	0.0131	16.0	13.7	0.0013	34.8


_____ REITZ & JENS, INC. _____

× .

C

Cobbles	Gravel				Sa	nd	Fines			
0000163	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	6.4	6.5	49.8	43.7	93.5

		0.0001					
		0.0091	0.0151	0.0273	0.0309	0.0415	0.1045
Fineness							
Modulus 0.03							

Test Date: 12/01/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section D Sample Number: "CH" Material Description: CLAY (CH) brown to grevish brow

Material Description: CLAY (CH), brown to greyish brown, high plasticPL: 31LL: 76PI: 45

USCS Classification: CH

Tested By: RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights	s (grams): Dry Sample and Tare =41.09
	Tare Wt. = 40.70
	Minus #200 from week = 00.20/

		Minus	s #200 from was	sh =99.2%	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.02	100.0
			.3mm	0.04	99.9
			.15mm	0.17	99.7
			[.] .075mm	0.38	99.2

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

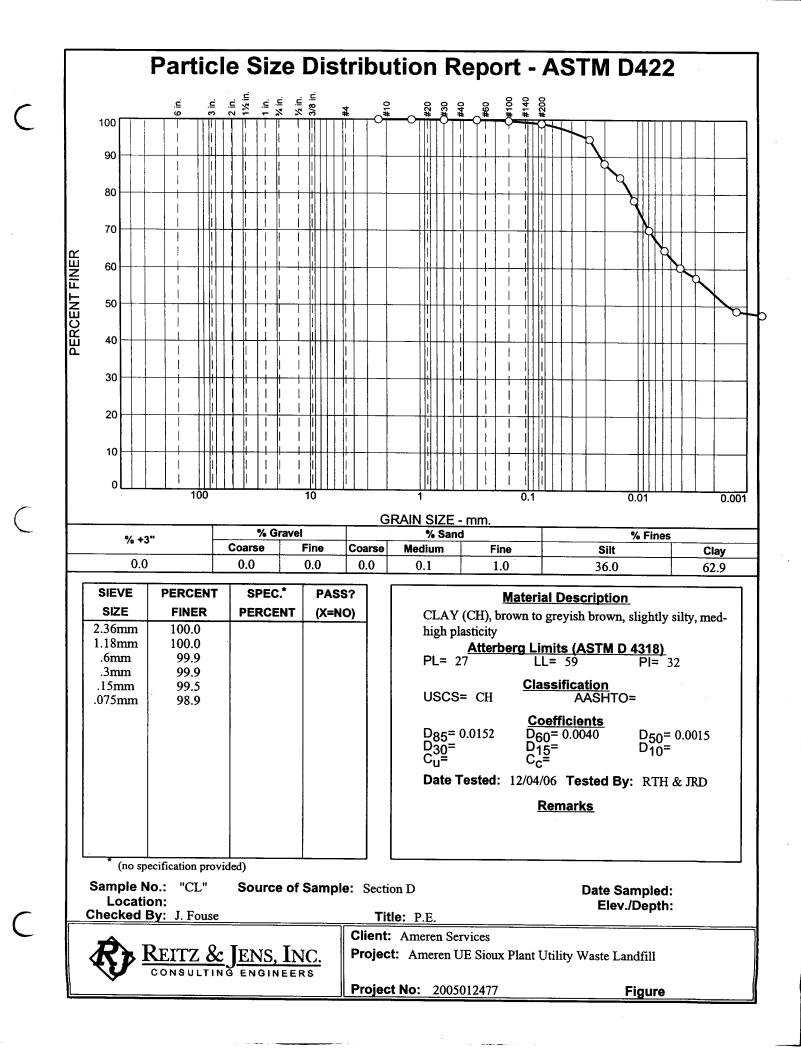
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type = 152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
4.00	22.3	48.8	49.3	0.0131	47.8	8.5	0.0191	97.9
8.00	22.3	47.2	47.7	0.0131	46.2	8.7	0.0137	94.7
15.00	22.3	46.0	46.5	0.0131	45.0	8.9	0.0101	92.4
30.00	22.2	42.8	43.3	0.0132	41.8	9.4	0.0074	86.0
60.00	22.2	40.0	40.5	0.0132	39.0	9.9	0.0053	80.4
120.00	22.4	37.8	38.3	0.0131	36.8	10.3	0.0038	76.1
240.00	22.7	35.8	36.4	0.0131	34.8	10.6	0.0027	72.3
432.00	23.0	34.2	34.9	0.0130	33.2	10.9	0.0021	69.3
1445.00	20.6	31.1	31.2	0.0134	30.1	11.4	0.0012	62.0

					•					
Cabbles		Gravel			Sar	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	0.7	0.8	19.7	79.5	99.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.0052	0.0070	0.0089	0.0142

C

C

Test Date: 12/04/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section D

Sample Number: "CL"

Material Description: CLAY (CH), brown to greyish brown, slightly silty, med-high plasticity LL: 59 **PI:** 32

PL: 27

USCS Classification: CH

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.31 Tare Wt. = 40.71 m wash = 0.0 00/Minue #200 fre

		Minus	s #200 from was	in ≈98.8%	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.03	99.9
			.3mm	0.06	99.9
			.15mm	0.23	99.5
-			.075mm	0.56	98.9

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

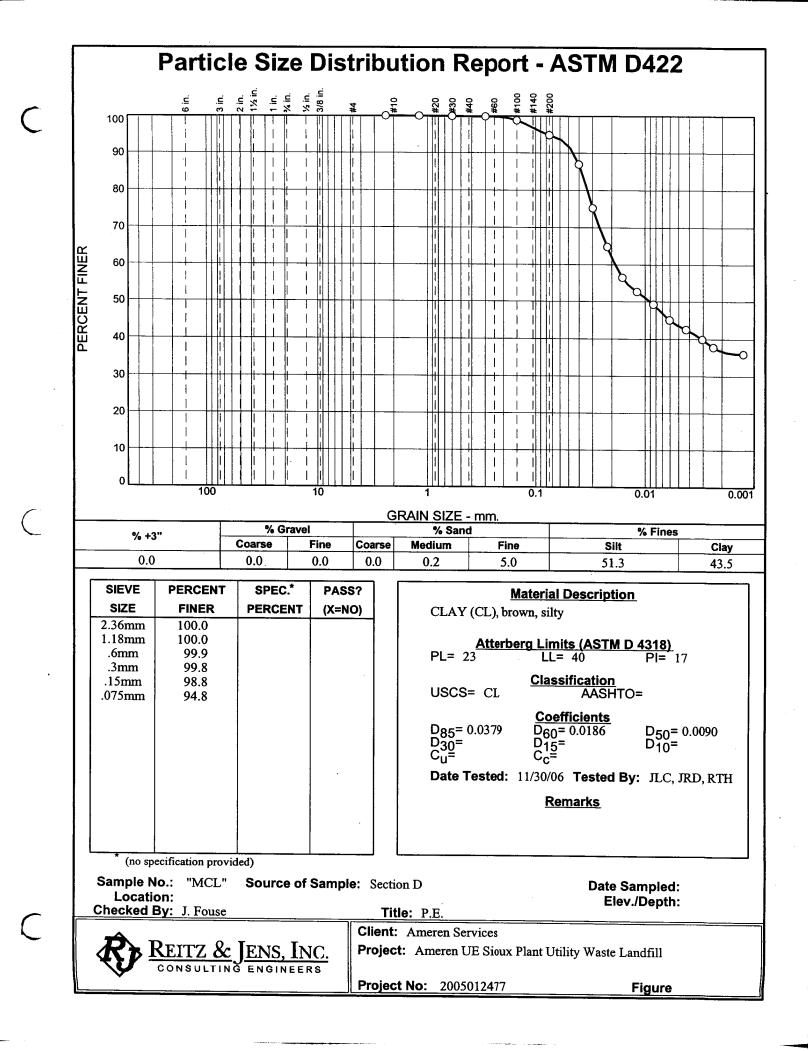
Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.8	47.3	47.7	0.0132	46.3	8.7	0.0276	94.7
4.00	21.8	44.0	44.4	0.0132	43.0	9.2	0.0201	88.1
8.00	21.8	42.1	42.5	0.0132	41.1	9.6	0.0145	84.4
15.00	21.8	39.0	39.4	0.0132	38.0	10.1	0.0108	78.2
30.00	21.7	35.0	35.4	0.0132	34.0	10.7	0.0079	70.2
60.00	21.7	32.3	32.7	0.0132	31.3	11.2	0.0057	64.9
120.00	21.6	30.0	30.3	0.0133	29.0	11.5	0.0041	60.2
240.00	21.6	28.6	28.9	0.0133	27.6	11.8	0.0029	57.5
1431.00	20.7	24.3	24.4	0.0134	23.3	12.5	0.0013	48.5
4302.00	20.1	23.9	23.9	0.0135	22.9	12.5	0.0007	47.5

1/11/2007

__ REITZ & JENS, INC. _


Cobbles		Gravel			Sa	nd			Fines	
Cobbles -	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	1.0	1.1	36.0	62.9	98.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0015	0.0040	0.0116	0.0152	0.0222	0.0290

C

Ċ.

 \mathcal{C}

PI: 17

Title: P.E.

Test Date: 11/30/06

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section D Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 23 LL: 40 USCS Classification: CL Tested By: JLC, JRD, RTH Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =44.07 Tare Wt. =40.88 Minus #200 from wash =93.6%

		Willia	s #200 nom was	-95.076	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	·0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.05	99.9
			.3mm	0.10	99.8
			.15mm	0.61	98.8
			.075mm	2.61	9 4.8

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

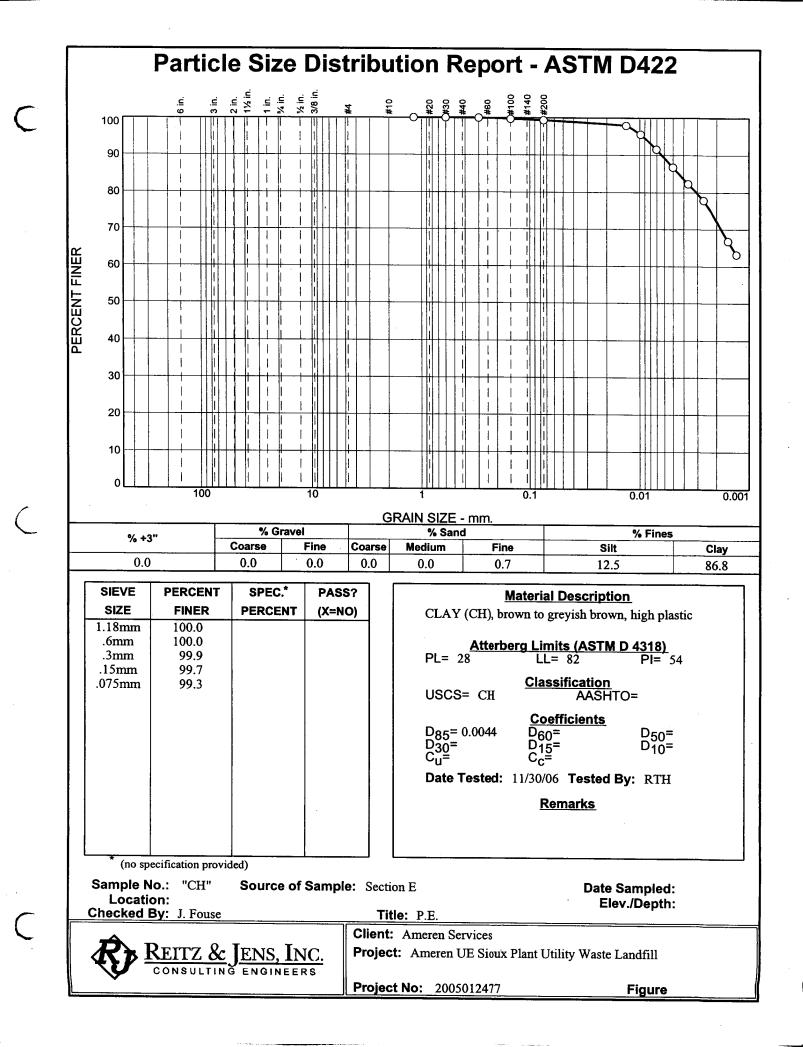
Meniscus correction only =-1.0.

Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	22.6	43.2	43.8	0.0131	42.2	9.4	0.0401	87.0
2.00	22.6	37.3	37.9	0.0131	36.3	10.3	0.0298	75.2
4.00	22.5	32.1	32.6	0.0131	31.1	11.2	0.0219	64.9
8.00	22.5	27.9	28.4	0.0131	26.9	11.9	0.0160	56.5
15.00	22.7	25.9	26.5	0.0131	24.9	12.2	0.0118	52.6
30.00	22.7	24.2	24.8	0.0131	23.2	12.5	0.0084	49.3
60.00	22.7	22.1	22.7	0.0131	21.1	12.8	0.0061	45.1
120.00	23.1	20.7	21.4	0.0130	19.7	13.1	0.0043	42.5
240.00	23.7	19.2	20.1	0.0129	18.2	13.3	0.0030	39.9
391.00	23.5	18.2	19.0	0.0130	17.2	13.5	0.0024	37.8
1440.00	23.4	17.3	18.1	0.0130	16.3	13.6	0.0013	35.9


_ REITZ & JENS, INC. _

a ta ta t

Cobbles Gravel Sand Fines											
Cobbles	Coarse	Fine	Total	Coarse	Medium ·	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	0.2	5.0	5.2	51.3	43.5	94.8	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0090	0.0186	0.0334	0.0379	0.0449	0.0785

Fineness Modulus 0.02

Client: Ameren Services

Tested By: RTH

Checked By: J. Fouse

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section E Sample Number: "CH" Material Description: CLAY (CH), brown to greyish brown, high plastic PL: 28 LL: 82 USCS Classification: CH

PI: 54

Test Date: 11/30/06 Title: P.E.

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams)	: Dry Sample and Tare =41.71
	Tare Wt. = 41.32
	Minus #200 from wash =99.2%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
50.00	0.00	0.00	1.18mm	0.00	100.0	
			.6mm	0.01	100.0	
			.3mm	0.03	99.9	
			.15mm	0.17	99.7	
			.075mm	0.35	99.3	

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample ∋0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

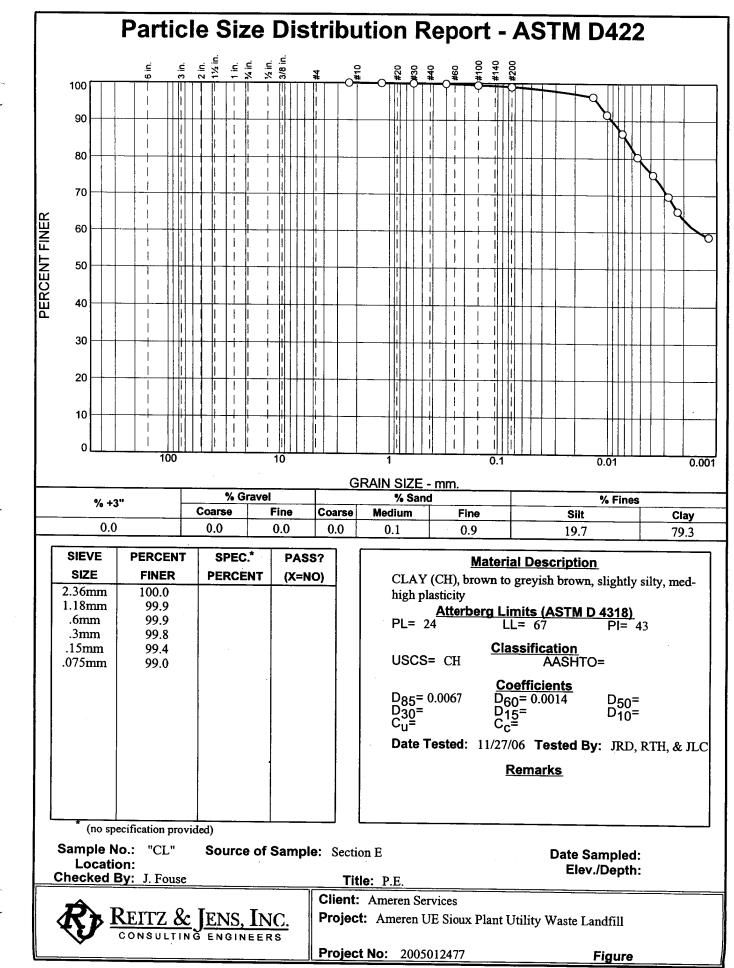
Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
8.00	24.4	48.2	49.3	0.0128	47.2	8.6	0.0133	97.9
15.00	24.4	47.0	48.1	0.0128	46.0	8.8	0.0098	95.5
30.00	24.4	45.0	46.1	0.0128	44.0	9.1	0.0071	91.6
62.00	24.7	42.5	43.7	0.0128	41.5	9.5	0.0050	86.8
120.00	25.1	40.1	41.4	0.0127	39.1	9.9	0.0036	82.3
240.00	25.0	37.9	39.2	0.0127	36.9 [°]	10.2	0.0026	77.8
763.00	23.1	32.9	33.6	0.0130	31.9	11.1	0.0016	66.8
1080.00	25.0	30.5	31.8	0.0127	29.5	11.5	0.0013	63.1

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.7	12.5	86.8	99.3


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.0030	0.0044	0.0063	0.0093

Fineness	
Modulus	
0.00	

C

, .

C

PI: 43

Title: P.E.

Test Date: 11/27/06

1/11/2007

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Section E

Sample Number: "CL"

Material Description: CLAY (CH), brown to greyish brown, slightly silty, med-high plasticity LL: 67

PL: 24

USCS Classification: CH Tested By: JRD, RTH, & JLC

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.34 Tare Wt. = 40.83

	Minus #200 from wash =99.0%									
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size							
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.04	99.9					
			.6mm	0.05	99.9					
			.3mm	0.11	99.8					
			.15mm	0.31	99.4					
			.075mm	0.50	99.0					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0 Weight of hydrometer sample = 50

Automatic temperature correction

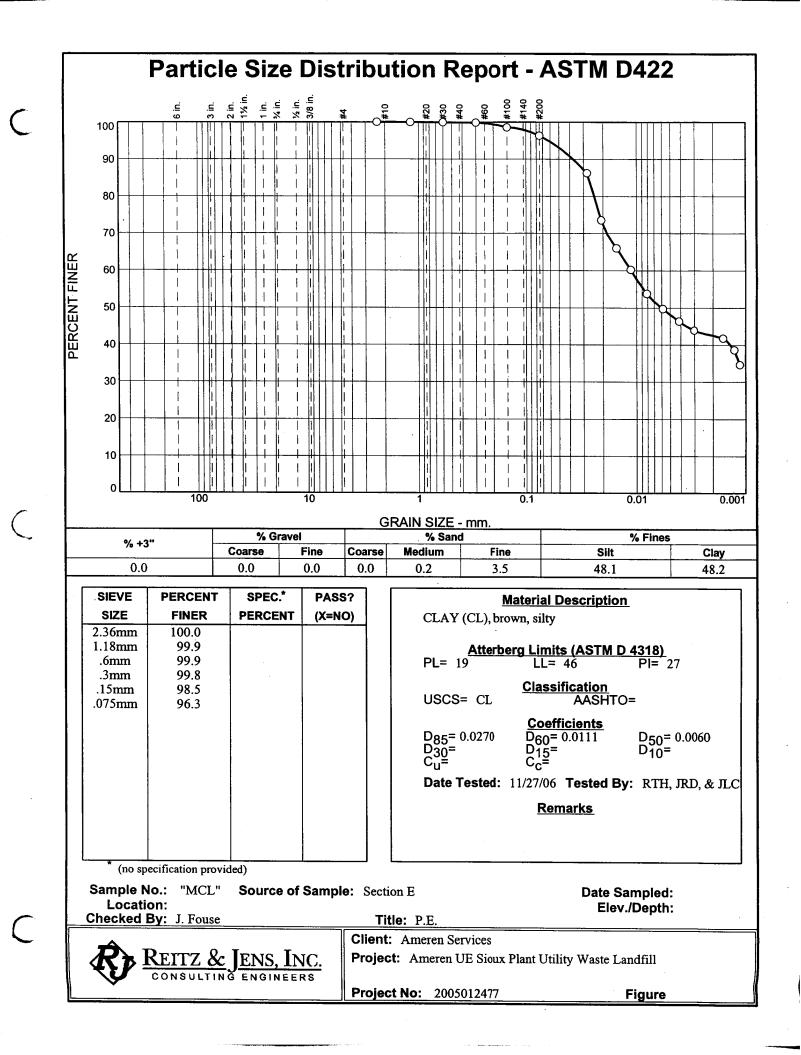
Composite correction (fluid density and meniscus height) at 20 deg. C =01352 Meniscus correction only =-1.0

Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
8.00	22.7	47.9	48.5	0.0131	46.9	8.6	0.0136	96.3
15.00	22.7	45.5	46.1	0.0131	44.5	9.0	0.0101	91.6
30.00	22.7	43.0	43.6	0.0131	42.0	9.4	0.0073	86.6
60.00	22.8	39.8	40.4	0.0131	38.8	9.9	0.0053	80.3
120.00	23.1	37.3	38.0	0.0130	36.3	10.3	0.0038	75.5
240.00	23.7	34.2	35.1	0.0129	33.2	10.9	0.0027	69.7
366.00	23.5	32.2	33.0	0.0130	31.2	11.2	0.0023	65.6
1440.00	22.4	29.0	29.5	0.0131	28.0	11.7	0.0012	58.6


Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	0.9	1.0	19.7	79.3	99.0

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
l	<u> </u>					0.0014	0.0052	0.0067	0.0091	0.0125

Fineness	
Modulus	
0.01	

C

(

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section E Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 19 LL: 46 USCS Classification: CL Tested By: RTH, JRD, & JLC

PI: 27

Test Date: 11/27/06 **Title:** P.E.

Post #200 Wash Test Weights (grams): Dry Sample and Tare =43.19

Sieve opening list: (Default opening sizes)

	Tare Wt. = 41.30 Minus #200 from wash =96.2%											
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer							
50.00	0.00	0.00	2.36mm	0.00	100.0							
			1.18mm	0.03	99.9							
			.6mm	0.06	99.9							
			.3mm	0.10	99.8							
			.15mm	0.73	98.5							
			.075mm	1.85	96.3							

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample $\Rightarrow 0$

Automatic temperature correction

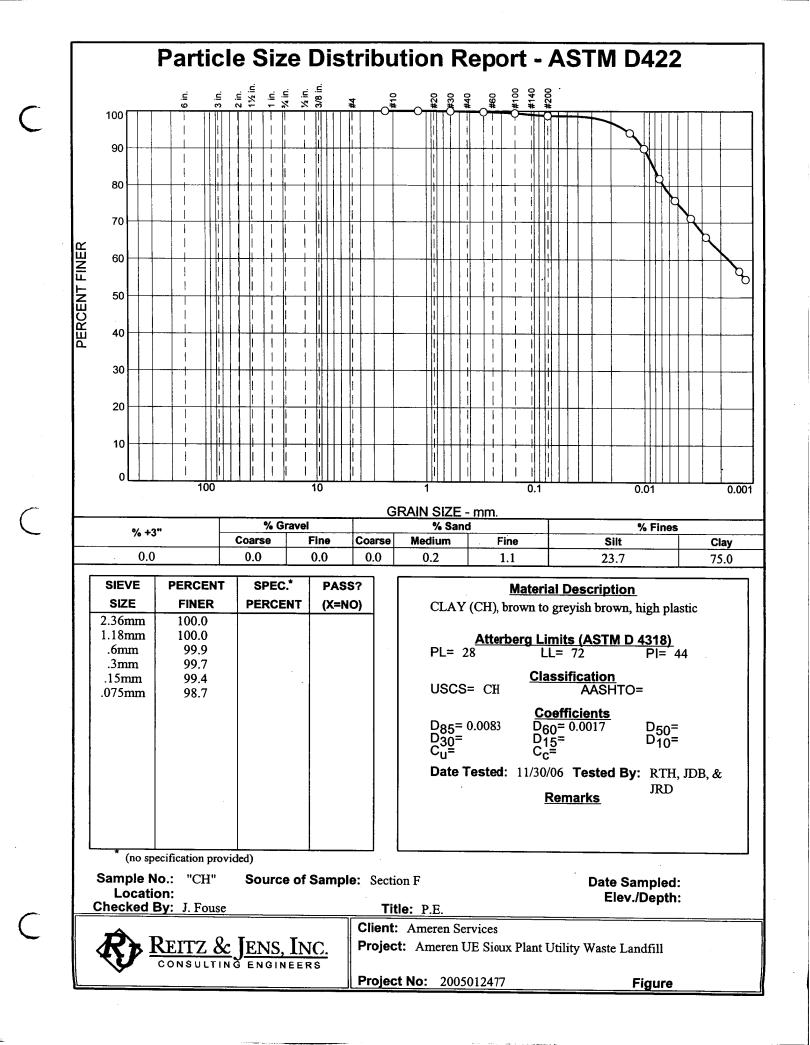
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68 Hydrometer type = 152H

Checked By: J. Fouse

nyurometer type = 132n


Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	24.8	42.2	43.4	0.0128	41.2	9.5	0.0279	86.3
4.00	24.8	35.8	37.0	0.0128	34.8	10.6	0.0208	73.5
8.00	24.8	32.0	33.2	0.0128	31.0	11.2	0.0151	66.0
15.00	24.8	29.1	30.3	0.0128	28.1	11.7	0.0113	60.2
30.00	24.7	25.9	27.1	0.0128	24.9	12.2	0.0082	53.8
60.00	24.9	23.8	25.1	0.0127	22.8	12.6	0.0058	49.8
120.00	25.2	22.0	23.4	0.0127	21.0	12.9	0.0042	46.4
240.00	23.8	21.2	22.1	0.0129	20.2	13.0	0.0030	43.9
916.00	19.8	21.1	21.0	0.0136	20.1	13.0	0.0016	41.8
1440.00	22.1	19.0	19.4	0.0132	18.0	13.3	0.0013	38.6
1908.00	21.1	17.2	17.4	0.0133	16.2	13.6	0.0011	34.6

_ REITZ & JENS, INC. __

										•
0.111.0	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.2	3.5	3.7	48.1	48.2	96.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0060	0.0111	0.0242	0.0270	0.0371	0.0620

Client: Ameren Services

 Project: Ameren UE Sioux Plant Utility Waste Landfill

 Project Number: 2005012477

 Location: Section F

 Sample Number: "CH"

 Material Description: CLAY (CH), brown to greyish brown, high plastic

 PL: 28
 LL: 72

 PI: 44

 USCS Classification: CH

 Tested By: RTH, JDB, & JRD

 Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams):	Dry Sample and Tare =38.83
	Tare Wt. = 38.09
	Minus #200 from wash =98.5%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	. 0.00	100.0
			1.18mm	0.00	100.0
			.6mm	0.04	99.9
			.3mm	0.14	99.7
			.15mm	0.30	99.4
			.075mm	0.63	98.7

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

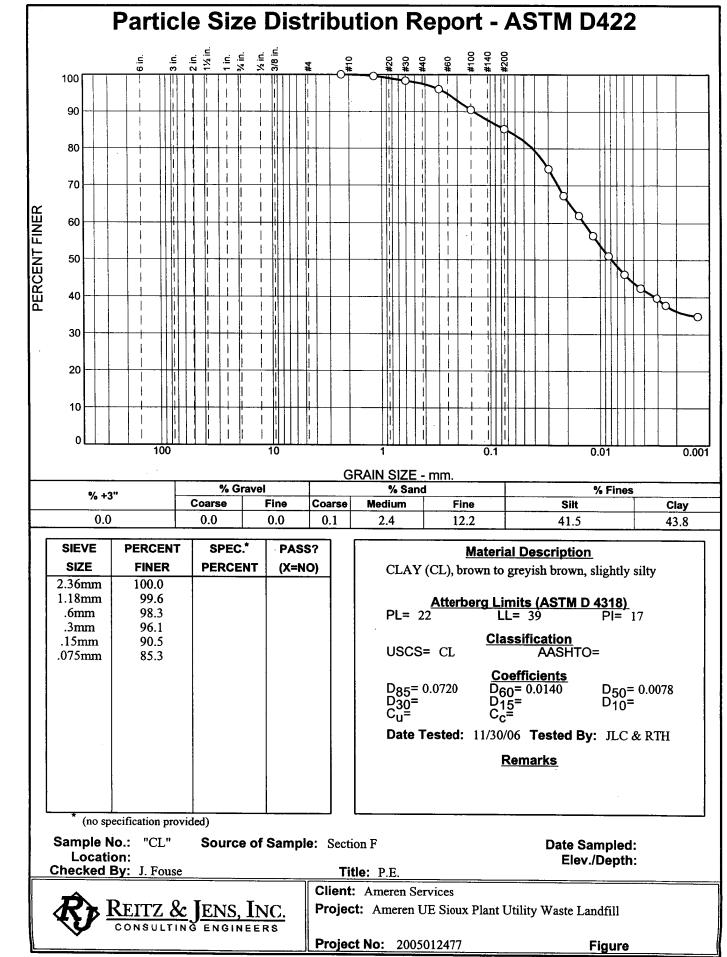
Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	κ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
8.00	24.4	46.3	47.4	0.0128	45.3	8.9	0.0135	94.1
15.00	24.4	44.2	45.3	0.0128	43.2	9.2	0.0100	90.0
30.00	24.5	40.1	41.2	0.0128	39.1	9.9	0.0073	81.9
60.00	24.8	37.0	38.2	0.0128	36.0	10.4	0.0053	75.9
120.00	25.0	34.5	35.8	0.0127	33.5	10.8	0.0038	71.1
240.00	24.9	32.0	33.3	0.0127	31.0	11.2	0.0028	66.1
1115.00	23.1	28.0	28.7	0.0130	27.0	11.9	0.0013	57.0
1440.00	25.0	26.3	27.6	0.0127	25.3	12.1	0.0012	54.8

Cabbles		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.2	1.1	1.3	23.7	75.0	98.7


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0017	0.0068	0.0083	0.0101	0.0149

Fineness Modulus
0.01

C

C

 \square

Test Date: 11/30/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill **Project Number:** 2005012477 **Location:** Section F

Sample Number: "CL"

Material Description: CLAY (CL), brown to greyish brown, slightly siltyPL: 22LL: 39PI: 17

USCS Classification: CL

Tested By: JLC & RTH

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =48.95 Tare Wt. = 41.13

Minus #200 from wash = 84.4%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.22	99.6
			.6mm	0.85	98.3
			.3mm	1.96	96.1
			.15mm	4.77	90.5
			.075mm	7.36	85.3

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

Automatic temperature correction

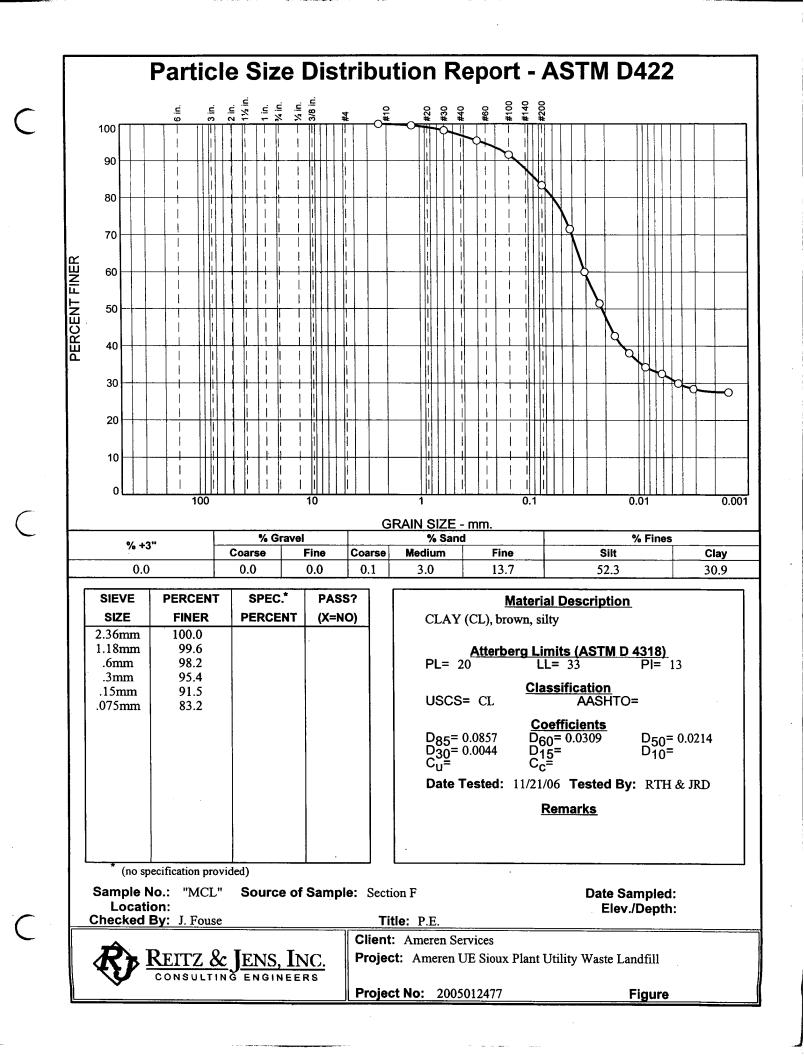
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	23.0	36.8	37.5	0.0130	35.8	10.4	0.0298	74.5
4.00	23.0	33.2	33.9	0.0130	32.2	11.0	0.0216	67.3
8.00	23.0	30.5	31.2	0.0130	29.5	11.5	0.0156	61.9
15.00	23.0	27.8	28.5	0.0130	26.8	11.9	0.0116	56.6
30.00	23.1	25.0	25.7	0.0130	24.0	12.4	0.0084	51.1
60.00	23.1	22.5	23.2	0.0130	21.5	12.8	0.0060	46.1
120.00	23.1	20.6	21.3	0.0130	19.6	13.1	0.0043	42.3
240.00	23.7	19.1	20.0	0.0129	18.1	13.3	0.0030	39.7
358.00	23.5	18.2	19.0	0.0130	17.2	13.5	0.0025	37.8
1440.00	22.4	17.0	17.5	0.0131	16.0	13.7	0.0013	34.8


_ REITZ & JENS, INC. _

Cobbles		Gravel		L	Sand			Fines		
CODDIes	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	2.4	12.2	14.7	41.5	43.8	85.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0078	0.0140	0.0414	0.0720	0.1420	0.2554

C

C

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section F Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 20 LL: 33 USCS Classification: CL Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =43.10 Tare Wt. = 34.48

	Minus #200 from wash = 82.8%									
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.21	99.6					
			.6mm	0.88	98.2					
			.3mm	2.28	95.4					
			.15mm	4.23	91.5					
			.075mm	8.39	83.2					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample 50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

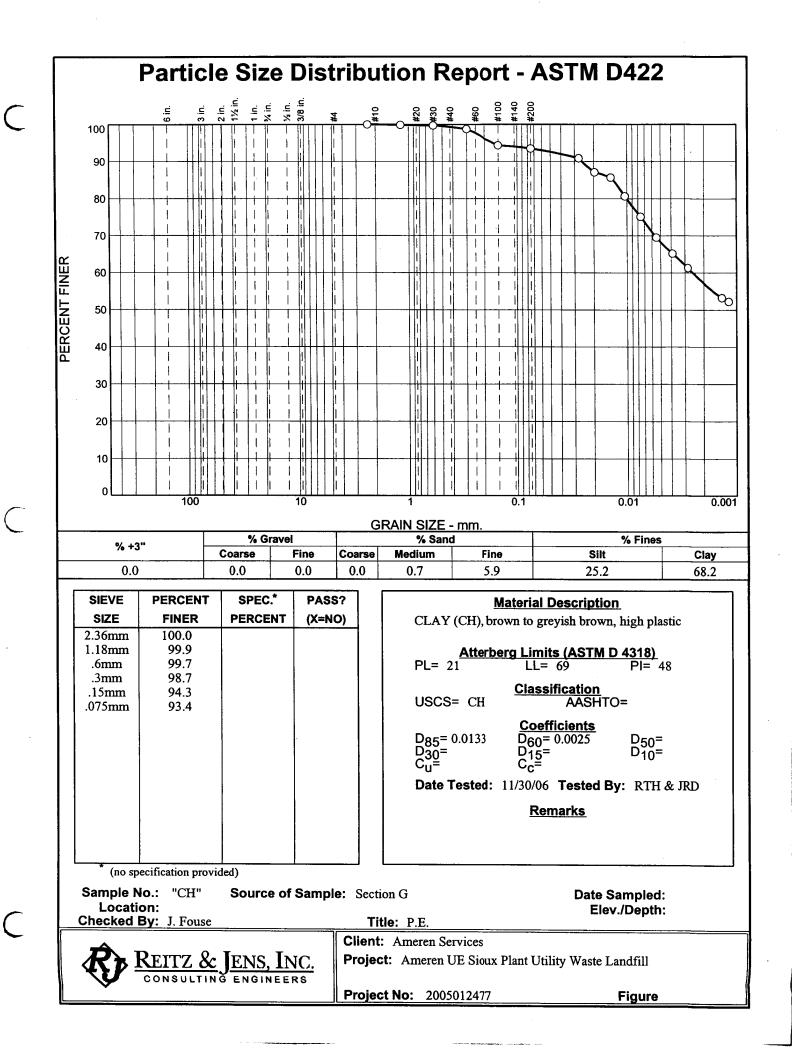
Specific gravity of solids =2.68 Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	24.7	34.8	36.0	0.0128	33.8	10.8	0.0419	71.5
2.00	24.7	29.0	30.2	0.0128	28.0	11.7	0.0309	60.0
4.00	24.7	24.7	25.9	0.0128	23.7	12.4	0.0225	51.4
8.00	24.7	20.3	21.5	0.0128	19.3	13.1	0.0164	42.7
15.00	24.6	18.0	19.2	0.0128	17.0	13.5	0.0121	38.0
30.00	24.6	16.1	17.3	0.0128	15.1	13.8	0.0087	34.3
60.00	24.6	15.2	16.4	0.0128	14.2	14.0	0.0062	32.5
120.00	25.2	13.7	15.1	0.0127	12.7	14.2	0.0044	29.9
240.00	23.4	13.5	14.3	0.0130	12.5	14.2	0.0032	28.4
1147.00	19.5	14.0	13.9	0.0136	13.0	14.2	0.0015	27.5

PI: 13

Test Date: 11/21/06 **Title:** P.E.


_ REITZ & JENS, INC. _____

Cobbles		Gravel		Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	3.0	13.7	16.8	52.3	30.9	83.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0044	0.0214	0.0309	0.0598	0.0857	0.1284	0.2703

Ç

C

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section G Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic LL: 69

PL: 21

PI: 48

0.00

0.07

0.16

0.64

2.86

3.30

Test Date: 11/30/06

100.0

99.9

99.7

98.7

94.3

93.4

Title: P.E.

USCS Classification: CH Tested By: RTH & JRD

Checked By: J. Fouse

50.00

Sieve opening list: (Default opening sizes)

Post #200 Wa	sh Test Weig	hts (grams): Dry S	ample and Tar	e =36.79					
		Tare \	Nt. = 33.44						
	Minus #200 from wash =93.3%								
Dry		Cumulative		Cumulative					
Sample		Pan	Sieve	Weight					
and Tare	Tare	Tare Weight	Opening	Retained	Percent				
(grams)	(grams)	(grams)	Size	(grams)	Finer				

0.00

Hydrometer test uses	material	passing#4
----------------------	----------	-----------

0.00

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68 Hydrometer type = 152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

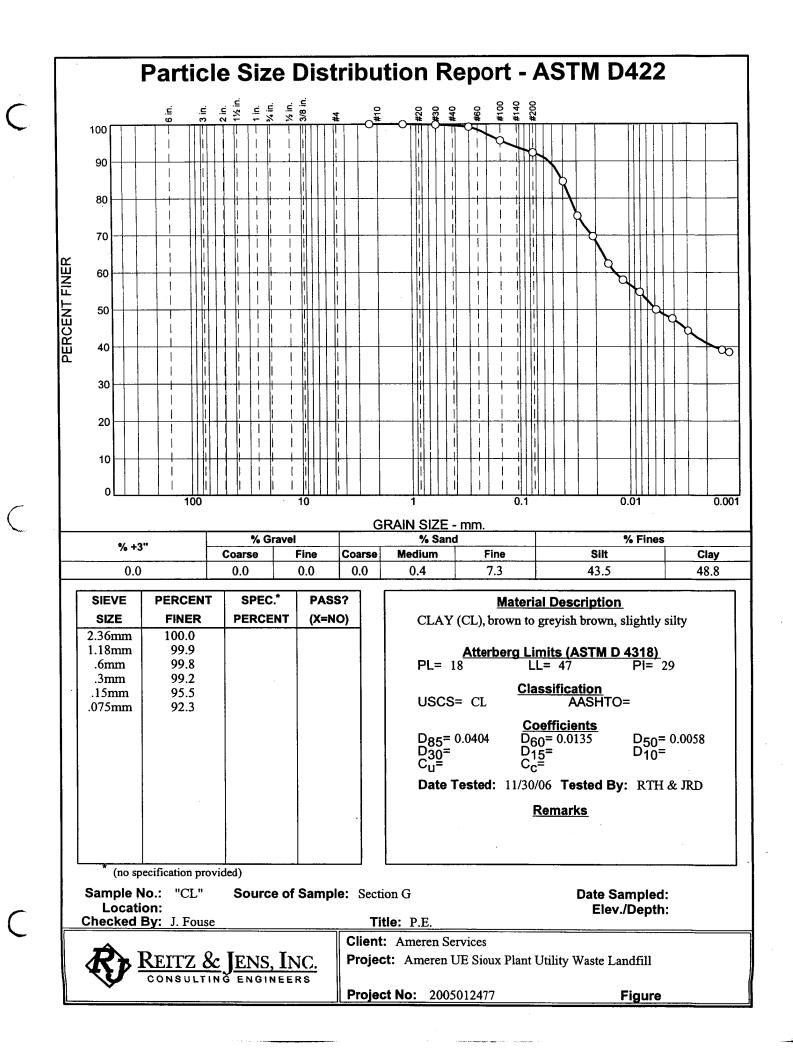
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	24.5	44.6	45.7	0.0128	43.6	9.1	0.0274	90.8
4.00	24.5	42.7	43.8	0.0128	41.7	9.5	0.0197	87.1
8.00	24.5	42.0	43.1	0.0128	41.0	9.6	0.0140	85.7
15.00	24.4	39.5	40.6	0.0128	38.5	10.0	0.0105	80.6
30.00	24.5	36.7	37.8	0.0128	35.7	10.4	0.0076	75.1
60.00	24.7	33.8	35.0	0.0128	32.8	10.9	0.0054	69.5
120.00	25.0	31.5	32.8	0.0127	30.5	11.3	0.0039	65.1
240.00	24.9	29.6	30.9	0.0127	28.6	11.6	0.0028	61.3
1107.00	23.1	26.1	26.8	0.0130	25.1	12.2	0.0014	53.2
1440.00	25.0	25.0	26.3	0.0127	24.0	12.4	0.0012	52.2

2.36mm

1.18mm

.6mm

.3mm


.15mm

.075mm

REITZ & JENS, INC.

O - h h l		Gravel			Sa	nd					
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Totai	
0.0	0.0	0.0	0.0	0.0	0.7	5.9	6.6	25.2	68.2	93.4	

[.] D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0025	0.0101	0.0133	0.0256	0.1704

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section G

Sample Number: "CL"

Material Description: CLAY (CL), brown to greyish brown, slightly silty LL: 47

PL: 18

PI: 29

Title: P.E.

Test Date: 11/30/06

USCS Classification: CL Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =43.43 Tare Wt. = 39.44

		Minus #200 from wash =92.0%						
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer			
50.00	0.00	0.00	2.36mm	0.00	100.0			
			1.18mm	0.03	99.9			
			.6mm	0.09	99.8			
			.3mm	0.39	99.2			
	×		.15mm	2.24	95.5			
			.075mm	3.87	92.3			

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

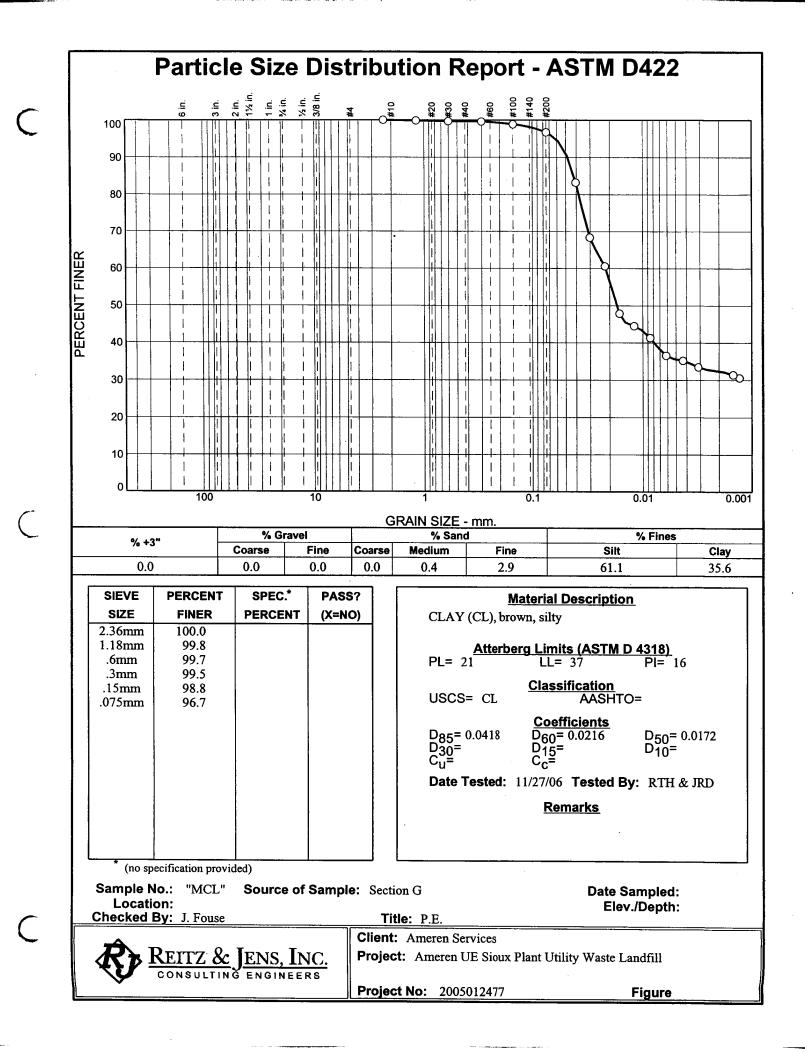
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	24.4	41.5	42.6	0.0128	40.5	9.7	0.0398	84.6
2.00	24.4	36.8	37.9	0.0128	35.8	10.4	0.0293	75.3
4.00	24.4	34.0	35.1	0.0128	33.0	10.9	0.0211	69.7
8.00	24.4	30.3	31.4	0.0128	29.3	11.5	0.0154	62.4
15.00	24.4	28.1	29.2	0.0128	27.1	11.9	0.0114	58.0
30.00	24.6	26.4	27.6	0.0128	25.4	12.1	0.0081	54.7
60.00	24.7	24.0	25.2	0.0128	23.0	12.5	0.0058	50.0
120.00	24.9	22.7	24.0	0.0127	21.7	12.7	0.0042	47.6
240.00	24.7	21.1	22.3	0.0128	20.1	13.0	0.0030	44.3
1099.00	23.1	19.0	19.7	0.0130	18.0	13.3	0.0014	39.1
1440.00	25.0	18.1	19.4	0.0127	17.1	13.5	0.0012	38.5


____ REITZ & JENS, INC. _____

1/11/2007

.

Cabbles	·····	Gravel	···		Sand Fines					
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Totai	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.4	7.3	7.7	43.5	48.8	92.3

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0058	0.0135	0.0344	0.0404	0.0532	0.1364

PI: 16

Title: P.E.

Test Date: 11/27/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Section G

Sample Number: "MCL"

Material Description: CLAY (CL), brown, silty

PL: 21

USCS Classification: ${\rm CL}$

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =39.04 Tare Wt. = 37.31

LL: 37

		Minus #200 from wash =96.5%								
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.10	99.8					
			.6mm	0.17	99.7					
			.3mm	0.23	99.5					
			.15mm	0.58	98.8					
			.075mm	1.65	96.7					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

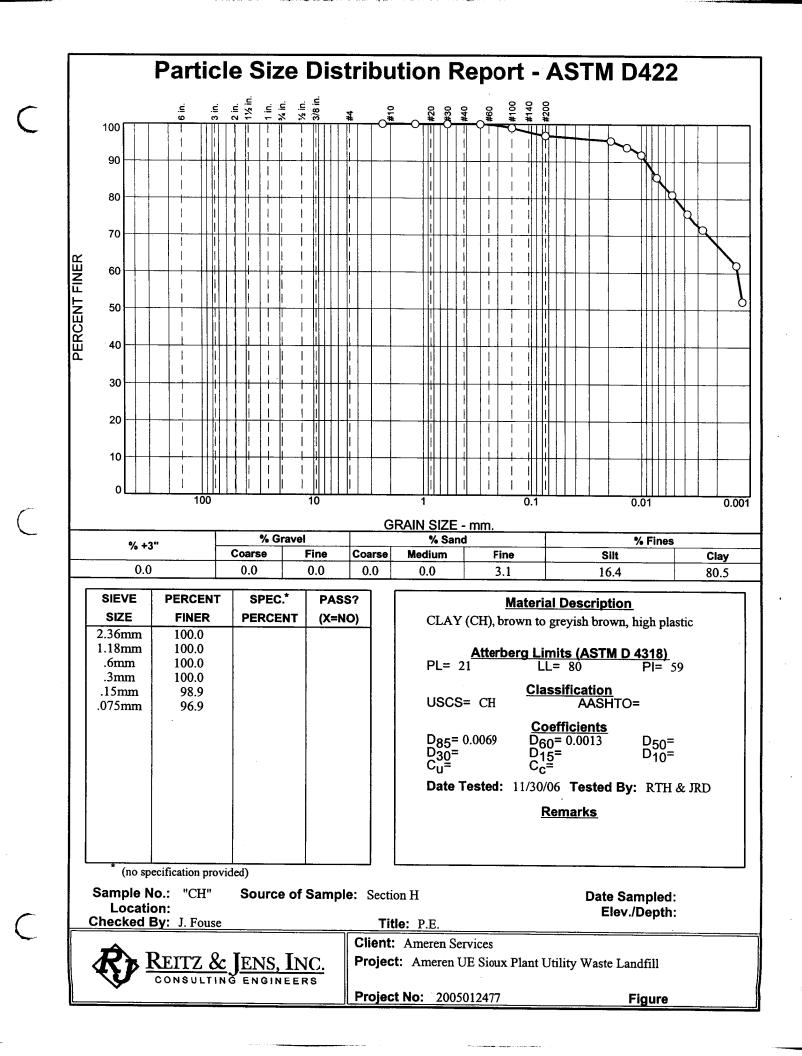
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type = 152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	κ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	23.8	41.0	41.9	0.0129	40.0	9.7	0.0403	83.2
2.00	23.8	33.5	34.4	0.0129	32.5	11.0	0.0302	68.3
4.00	23.8	29.6	30.5	0.0129	28.6	11.6	0.0220	60.6
8.00	23.8	23.2	24.1	0.0129	22.2	12.7	0.0162	47.9
15.00	23.8	21.5	22.4	0.0129	20.5	12.9	0.0120	44.5
30.00	23.8	19.9	20.8	0.0129	18.9	13.2	0.0086	41.3
60.00	23.8	17.5	18.4	0.0129	16.5	13.6	0.0061	36.6
120.00	24.8	16.5	17.7	0.0128	15.5	13.8	0.0043	35.2
240.00	23.2	16.1	16.8	0.0130	15.1	13.8	0.0031	33.4
1163.00	19.7	15.9	15.8	0.0136	14.9	13.9	0.0015	31.4
1440.00	22.3	14.9	15.4	0.0131	13.9	14.0	0.0013	30.6

Cobbles		Gravel			Sai	nd		Fines		
Connes	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Totai
0.0	0.0	0.0	0.0	0.0	0.4	2.9	3.3	61.1	35.6	96.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0172	0.0216	0.0379	0.0418	0.0478	0.0611

Ć

C

PI: 59

Title: P.E.

Test Date: 11/30/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section H Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic LL: 80

PL: 21 USCS Classification: CH

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =42.35 Tare Wt. = 40.71 Minue #200 5-

	minus #200 from wash = 90.7%									
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.00	100.0					
			.6mm	0.01	100.0					
			.3mm	0.02	100.0					
			.15mm	0.53	98.9					
			.075mm	1.54	96.9					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

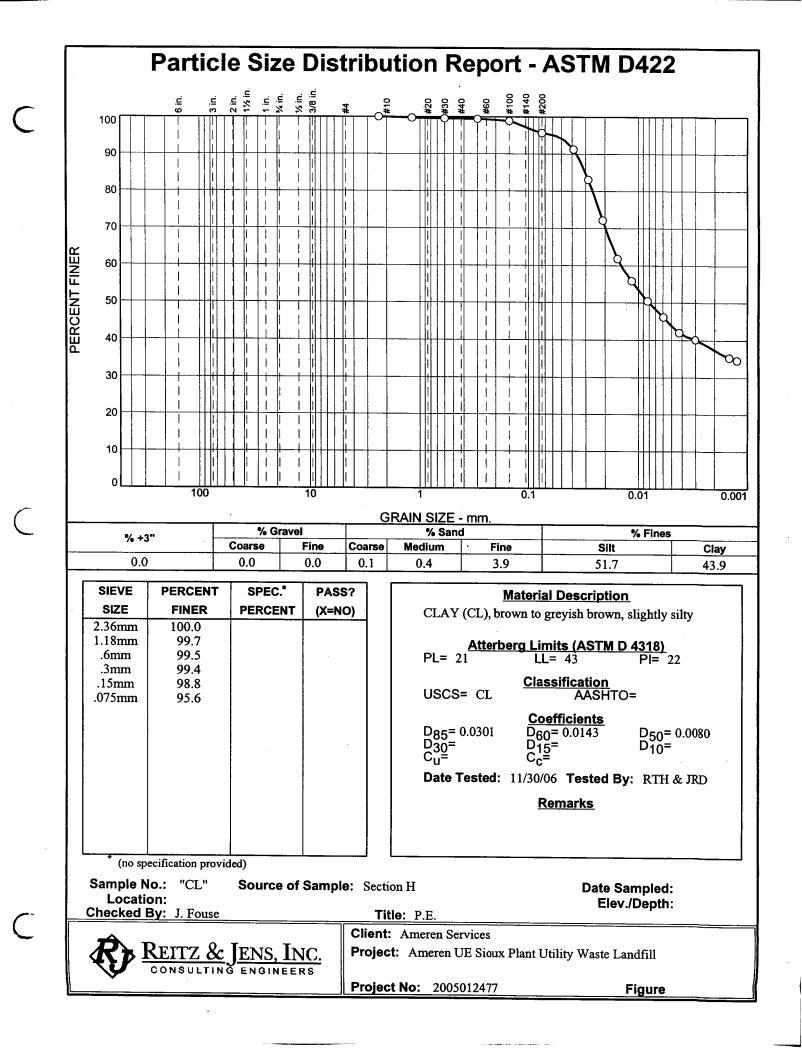
Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
4.00	24.5	47.0	48.1	0.0128	46.0	8.8	0.0189	95.6
8.00	24.5	46.1	47.2	0.0128	45.1	8.9	0.0135	93.8
15.00	24.5	45.1	46.2	0.0128	44.1	9.1	0.0100	91.8
30.00	24.6	42.0	43.2	0.0128	41.0	9.6	0.0072	85.7
60.00	24.8	39.6	40.8	0.0128	38.6	10.0	0.0052	81.1
120.00	24.8	37.0	38.2	0.0128	36.0	10.4	0.0038	75.9
240.00	24.9	34.8	36.1	0.0127	33.8	10.8	0.0027	71.6
1083.00	23.1	30.5	31.2	0.0130	29.5	11.5	0.0013	62.0
1440.00	25.0	25.0	26.3	0.0127	24.0	12.4	0.0012	52.2

_ REITZ & JENS, INC. _____


Cobbles		Gravel			Sand				Fines		
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	0.0	3.1	3.1	16.4	80.5	96.9	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95
					0.0013	0.0048	0.0069	0.0089	0.0169

C

(

C

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section H Sample Number: "CL" Material Description: CLAY (CL), brown to greyish brown, slightly silty PL: 21 LL: 43 **PI:** 22 USCS Classification: CL Tested By: RTH & JRD Test Date: 11/30/06 Checked By: J. Fouse Title: P.E.

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare = 39.90
Tare Wt. = 37.58
Minus #200 from wash =95.4%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.15	99.7
			.6mm	0.24	99.5
			.3mm	0.30	99.4
			.15mm	0.59	98.8
			.075mm	2.18	95.6

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

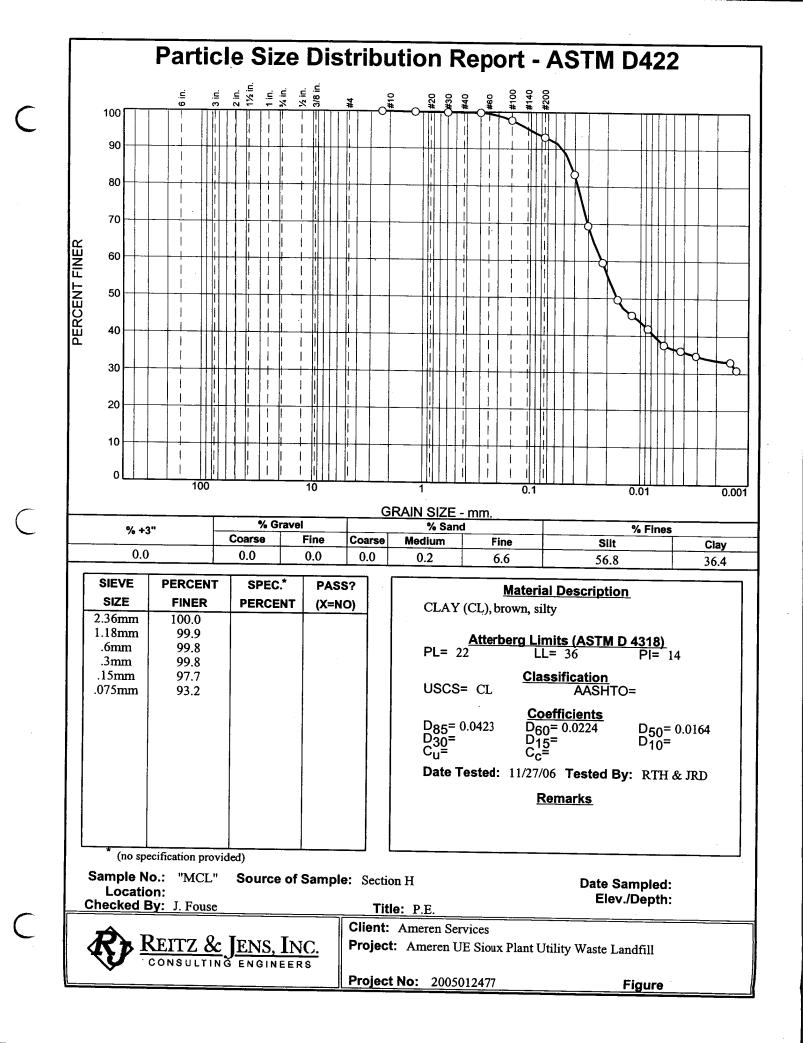
Specific gravity of solids =2.68 Hydrometer type =152H

Ĵ

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	24.5	44.8	45.9	0.0128	43.8	9.1	0.0387	91.2
2.00	24.5	40.7	41.8	0.0128	39.7	9.8	0.0283	83.1
4.00	24.5	35.2	36.3	0.0128	34.2	10.7	0.0209	72.2
8.00	24.5	30.0	31.1	0.0128	29.0	11.5	0.0154	61.8
15.00	24.5	27.0	28.1	0.0128	26.0	12.0	0.0115	55.9
30.00	24.7	24.2	25.4	0.0128	23.2	12.5	0.0082	50.4
60.00	24.8	22.0	23.2	0.0128	21.0	12.9	0.0059	46.1
120.00	24.5	20.0	21.1	0.0128	19.0	13.2	0.0042	42.0
240.00	25.0	18.9	20.2	0.0127	17.9	13.4	0.0030	40.1
1075.00	23.1	17.1	17.8	0.0130	16.1	13.7	0.0015	35.4
1440.00	25.1	16.1	17.4	0.0127	15.1	13.8	0.0012	34.6
	$ \begin{array}{r} 1.00\\ 2.00\\ 4.00\\ 8.00\\ 15.00\\ 30.00\\ 60.00\\ 120.00\\ 240.00\\ 1075.00 \end{array} $	Time (min.)(deg. C.)1.0024.52.0024.54.0024.58.0024.515.0024.530.0024.760.0024.8120.0024.5240.0025.01075.0023.1	Time (min.)(deg. C.)Reading1.0024.544.82.0024.540.74.0024.535.28.0024.530.015.0024.527.030.0024.724.260.0024.822.0120.0024.520.0240.0025.018.91075.0023.117.1	Time (min.)(deg. C.)ReadingReading1.0024.544.845.92.0024.540.741.84.0024.535.236.38.0024.530.031.115.0024.527.028.130.0024.724.225.460.0024.822.023.2120.0024.520.021.1240.0025.018.920.21075.0023.117.117.8	Time (min.)(deg. C.)ReadingReadingK1.0024.544.845.90.01282.0024.540.741.80.01284.0024.535.236.30.01288.0024.530.031.10.012815.0024.527.028.10.012830.0024.724.225.40.012860.0024.822.023.20.0128120.0024.520.021.10.0128240.0025.018.920.20.01271075.0023.117.117.80.0130	Time (min.)(deg. C.)ReadingReadingKRm1.0024.544.845.90.012843.82.0024.540.741.80.012839.74.0024.535.236.30.012834.28.0024.530.031.10.012829.015.0024.527.028.10.012829.030.0024.724.225.40.012823.260.0024.822.023.20.012821.0120.0024.520.021.10.012819.0240.0025.018.920.20.012717.91075.0023.117.117.80.013016.1	Time (min.)(deg. C.)ReadingReadingKRmDepth 1.00 24.5 44.8 45.9 0.0128 43.8 9.1 2.00 24.5 40.7 41.8 0.0128 39.7 9.8 4.00 24.5 35.2 36.3 0.0128 34.2 10.7 8.00 24.5 35.2 36.3 0.0128 24.2 10.7 8.00 24.5 30.0 31.1 0.0128 29.0 11.5 15.00 24.5 27.0 28.1 0.0128 26.0 12.0 30.00 24.7 24.2 25.4 0.0128 23.2 12.5 60.00 24.8 22.0 23.2 0.0128 21.0 12.9 120.00 24.5 20.0 21.1 0.0128 19.0 13.2 240.00 25.0 18.9 20.2 0.0127 17.9 13.4 1075.00 23.1 17.1 17.8 0.0130 16.1 13.7	Time (min.)(deg. C.)ReadingReadingKRmDepth(mm.)1.0024.544.845.90.012843.89.10.03872.0024.540.741.80.012839.79.80.02834.0024.535.236.30.012834.210.70.02098.0024.530.031.10.012829.011.50.015415.0024.527.028.10.012826.012.00.011530.0024.724.225.40.012823.212.50.008260.0024.822.023.20.012821.012.90.0059120.0024.520.021.10.012819.013.20.0042240.0025.018.920.20.012717.913.40.00301075.0023.117.117.80.013016.113.70.0015

_ REITZ & JENS, INC. _____


						· · · ·				
Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	0.4	3.9	4.4	51.7	43.9	95.6

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
L					0.0080	0.0143	0.0259	0.0301	0.0364	0.0582

С

C

C

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section H Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 22 LL: 36 USCS Classification: CL Tested By: RTH & JRD Checked By: J. Fouse

PI: 14

Test Date: 11/27/06 Title: P.E.

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.21 Tare Wt. = 37.73 Minus #200 from wash = 93.0%

		Winds #200 Holli Wasii ~ 93.0%									
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer						
50.00	0.00	0.00	2.36mm	0.00	100.0						
			1.18mm	0.06	99.9						
			.6mm	0.09	99.8						
			.3mm	0.12	99.8						
			.15mm	1.14	97.7						
			.075mm	3.42	93.2						

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

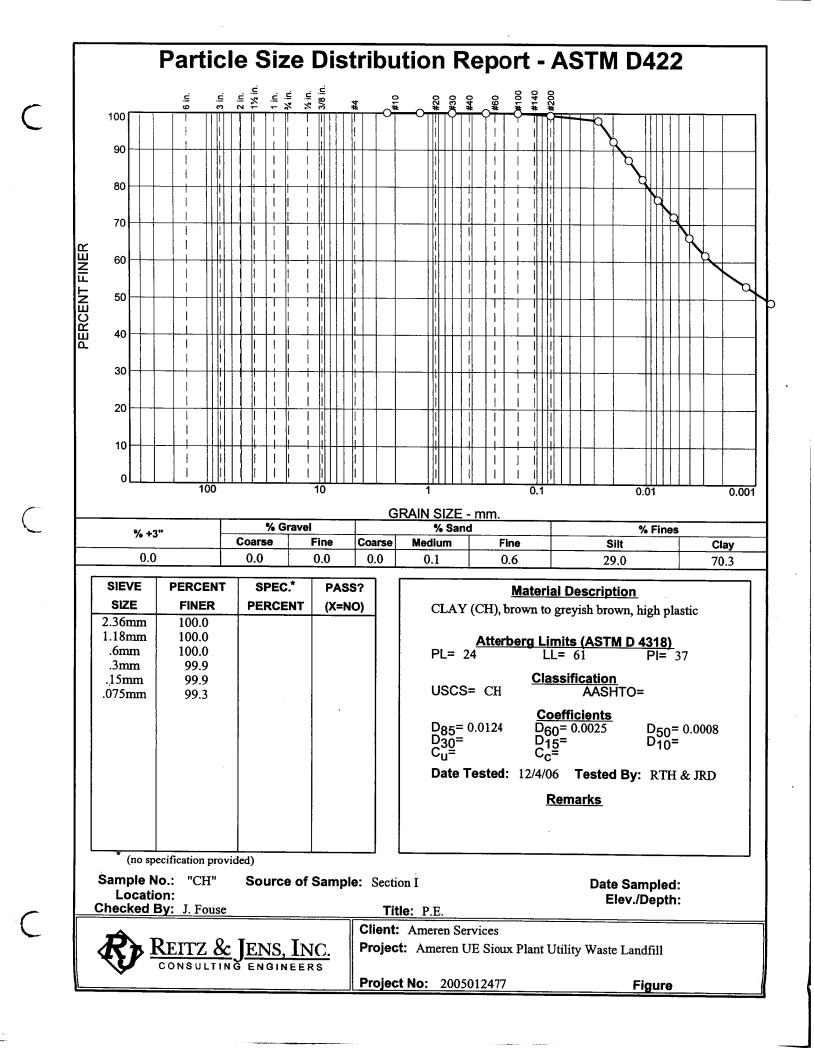
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	23.7	41.0	41.9	0.0129	40.0	9.7	0.0403	83.2
2.00	23.7	34.1	35.0	0.0129	33.1	10.9	0.0301	69.5
4.00	23.7	29.1	30.0	0.0129	28.1	11.7	0.0221	59.5
8.00	23.7	24.1	25.0	0.0129	23.1	12.5	0.0162	49.6
15.00	23.7	22.0	22.9	0.0129	21.0	12.9	0.0120	45.4
30.00	23.7	20.2	21.1	0.0129	19.2	13.1	0.0086	41.9
60.00	23.7	18.0	18.9	0.0129	17.0	13.5	0.0061	37.5
120.00	24.8	16.9	18.1	0.0128	15.9	13.7	0.0043	36.0
240.00	23.2	16.7	17.4	0.0130	15.7	13.7	0.0031	34.6
1154.00	19.7	16.7	16.6	0.0136	15.7	13.7	0.0015	33.0
1440.00	22.4	15.0	15.5	0.0131	14.0	14.0	0.0013	30.8
								-

_ REITZ & JENS, INC. __

Cobbles		Gravel		Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.2	6.6	6.8	56.8	36.4	93.2

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅]
				0.0164	0.0224	0.0375	0.0423	0.0516	0.1000	1

С

Client: Ameren Services

 Project: Ameren UE Sioux Plant Utility Waste Landfill

 Project Number: 2005012477

 Location: Section I

 Sample Number: "CH"

 Material Description: CLAY (CH), brown to greyish brown, high plastic

 PL: 24
 LL: 61

 PI: 37

 USCS Classification: CH

 Tested By: RTH & JRD

 Test Date: 12/4/06

 Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =41.72 Tare Wt. = 41.32 Minus #200 from wash =99.2%

		WITT CAS	s who it offit was	- 39.270	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.02	100.0
			.3mm	0.03	99.9
			.15mm	0.07	99.9
			.075mm	0.36	99.3

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

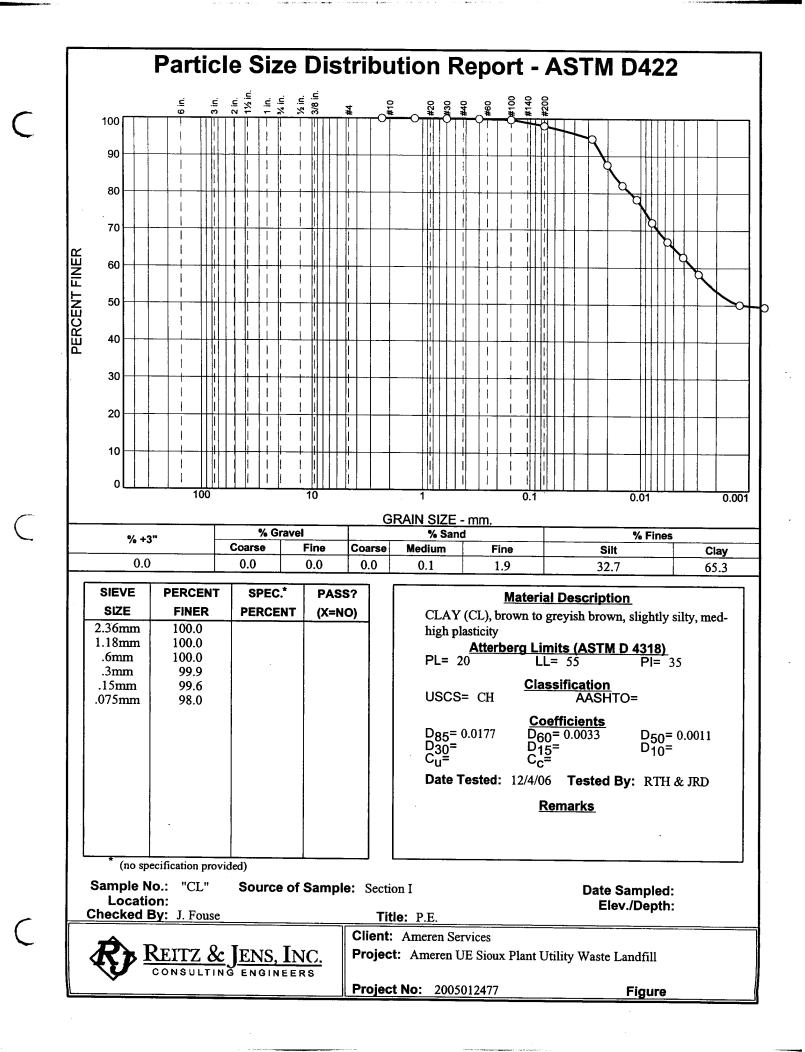
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.5	49.0	49.3	0.0133	48.0	8.4	0.0272	97.9
4.00	21.5	46.2	46.5	0.0133	45.2	8.9	0.0198	92.4
8.00	21.5	43.7	44.0	0.0133	42.7	9.3	0.0143	87.4
15.00	21.5	41.1	41.4	0.0133	40.1	9.7	0.0107	82.2
30.00	21.5	38.3	38.6	0.0133	37.3	10.2	0.0077	76.7
60.00	21.5	36.0	36.3	0.0133	35.0	10.6	0.0056	72.1
120.00	21.7	33.1	33.5	0.0132	32.1	11.0	0.0040	66.4
240.00	21.7	30.7	31.1	0.0132	29.7	11.4	0.0029	61.7
1448.00	20.7	26.8	26.9	0.0134	25.8	12.1	0.0012	53.5
4320.00	20.1	24.7	24.7	0.0135	23.7	12.4	0.0007	49.1

						:				
Cobbles		Gravel			Sa	nd			Fines	
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	0.6	0.7	29.0	70.3	99.3

(

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0008	0.0025	0.0094	0.0124	0.0170	0.0229
Fineness									
Modulus									
0.00									

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section I Sample Number: "CL" Material Description: CLAY (CL), brown to greyish brown, slightly silty, med-high plasticity PL: 20 LL: 55 PI: 35 USCS Classification: CH Tested By: RTH & JRD Test Date: 12/4/06 Checked By: J. Fouse Title: P.E. Sieve opening list: (Default opening sizes)

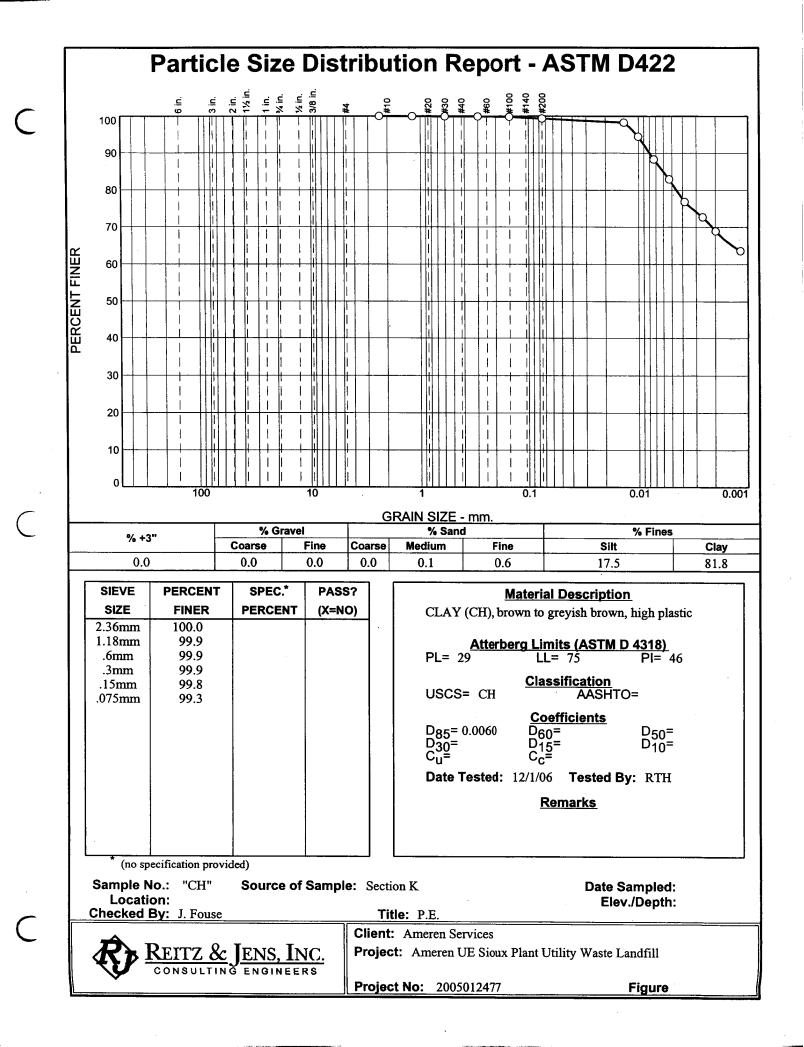
Post #200 Wash Test Weights (grams): Dry Sample and Tare =42.15 Tare Wt. =41.13 Minus #200 from wash =98.0%										
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.01	100.0					
			.6mm	0.02	100.0					
			.3mm	0.06	99.9					
			.15mm	0.19	99.6					
			.075mm	1.00	98.0					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

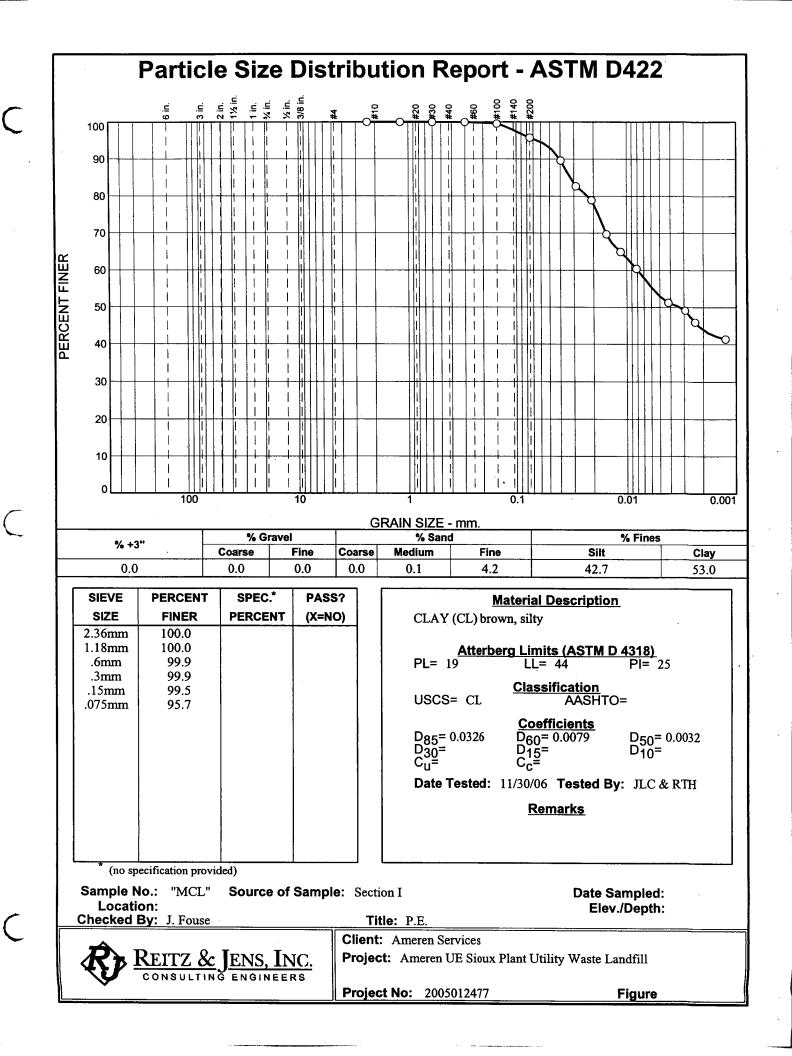
Automatic temperature correction


Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68 Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.5	47.3	47.6	0.0133	46.3	8.7	0.0277	94.6
4.00	21.5	43.8	44.1	0.0133	42.8	9.3	0.0202	87.6
8.00	21.5	41.0	41.3	0.0133	40.0	9.7	0.0146	82.0
15.00	21.5	39.1	39.4	0.0133	38.1	10.0	0.0109	78.3
30.00	21.5	36.0	36.3	0.0133	35.0	10.6	0.0079	72.1
60.00	21.5	33.4	33.7	0.0133	32.4	11.0	· 0.0057	67.0
120.00	21.6	31.3	31.6	0.0133	30.3	11.3	0.0041	62.8
240.00	21.7	29.0	29.4	0.0132	28.0	11.7	0.0029	58.3
1457.00	20.7	25.1	25.2	0.0134	24.1	12.3	0.0012	50.1
4320.00	20.1	24.9	24.9	0.0135	23.9	12.4	0.0007	49.5

Cobbles		Gravel			Sa	nd			Fines	
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	1.9	2.0	32.7	65.3	98.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0011	0.0033	0.0123	0.0177	0.0224	0.0308

K

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section I Sample Number: "MCL" Material Description: CLAY (CL) brown, silty PL: 19 LL: 44 USCS Classification: CL Tested By: JLC & RTH Checked By: J. Fouse Sieve opening list: (Default opening sizes)

PI: 25

Test Date: 11/30/06 **Title:** P.E.

Post #200 Wash Test Weights (grams): Dry Sample and Tare =43.94 Tare Wt. = 41.35

		Minus #200 from wash =94.8%								
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer					
50.00	0.00	0.00	2.36mm	0.00	100.0					
			1.18mm	0.00	100.0					
			.6mm	0.03	99.9					
			.3mm	0.04	99.9					
			.15mm	0.24	99.5					
			.075mm	2.15	95.7					

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 50

Automatic temperature correction

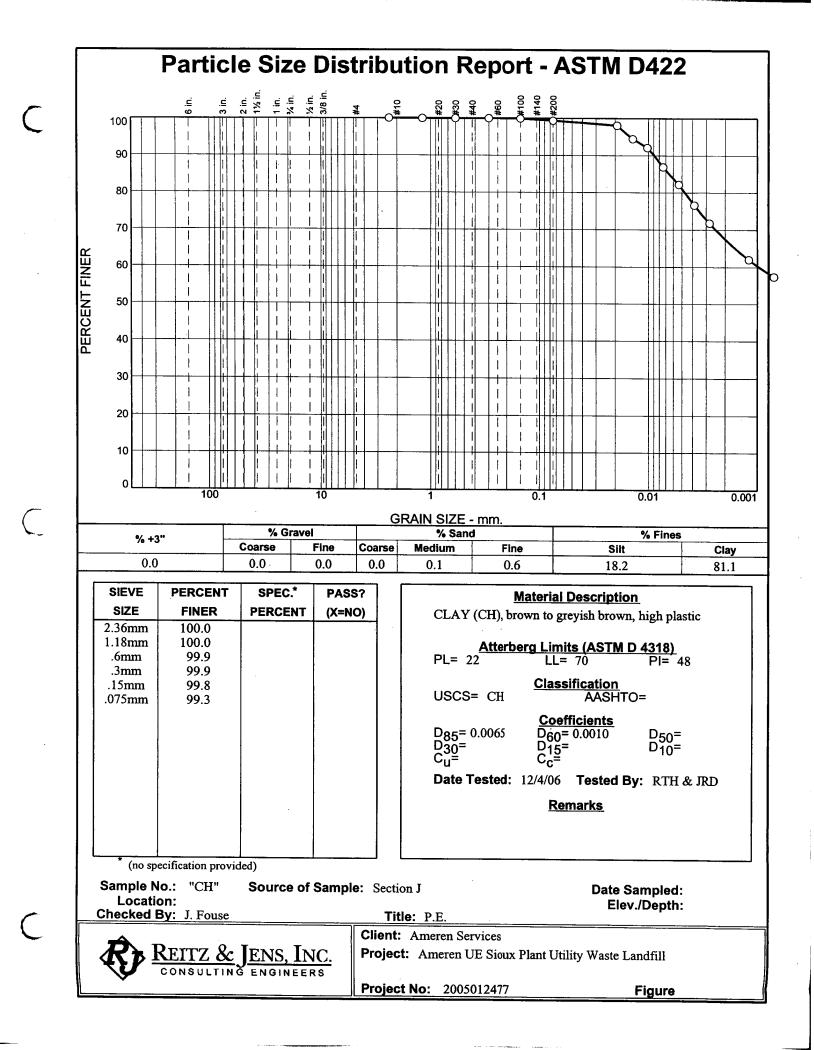
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	22.7	44.5	45.1	0.0131	43.5	9.2	0.0396	89.6
2.00	22.7	41.0	41.6	0.0131	40.0	9.7	0.0289	82.6
4.00	22.7	39.1	39.7	0.0131	38.1	10.0	0.0207	78.9
8.00	22.7	34.5	35.1	0.0131	33.5	10.8	0.0152	69.7
15.00	22.7	32.1	32.7	0.0131	31.1	11.2	0.0113	65.0
30.00	22.7	29.8	30.4	0.0131	28.8	11.6	0.0081	60.4
120.00	23.1	25.1	25.8	0.0130	24.1	12.3	0.0042	51.3
245.00	23.8	23.8	24.7	0.0129	22.8	12.6	0.0029	49.1
383.00	23.5	22.3	23.1	0.0130	21.3	12.8	0.0024	45.9
1440.00	22.4	20.3	20.8	0.0131	19.3	13.1	0.0013	41.4


Cabbles		Gravel			Sar	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	4.2	4.3	42.7	53.0	95.7

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0032	0.0079	0.0222	0.0326	0.0404	0.0650

Ç

C

ġ

PI: 48

Title: P.E.

Test Date: 12/4/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477

Location: Section J

Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic LL: 70

PL: 22

USCS Classification: CH

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =40.09 Tare Wt. = 39.73 Minus #200 from wash =99.3%

			meoo nom was		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.02	100.0
			.6mm	0.03	99.9
			.3mm	0.03	99.9
			.15mm	0.08	99.8
			.075mm	0.34	99.3

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample ∋0

Automatic temperature correction

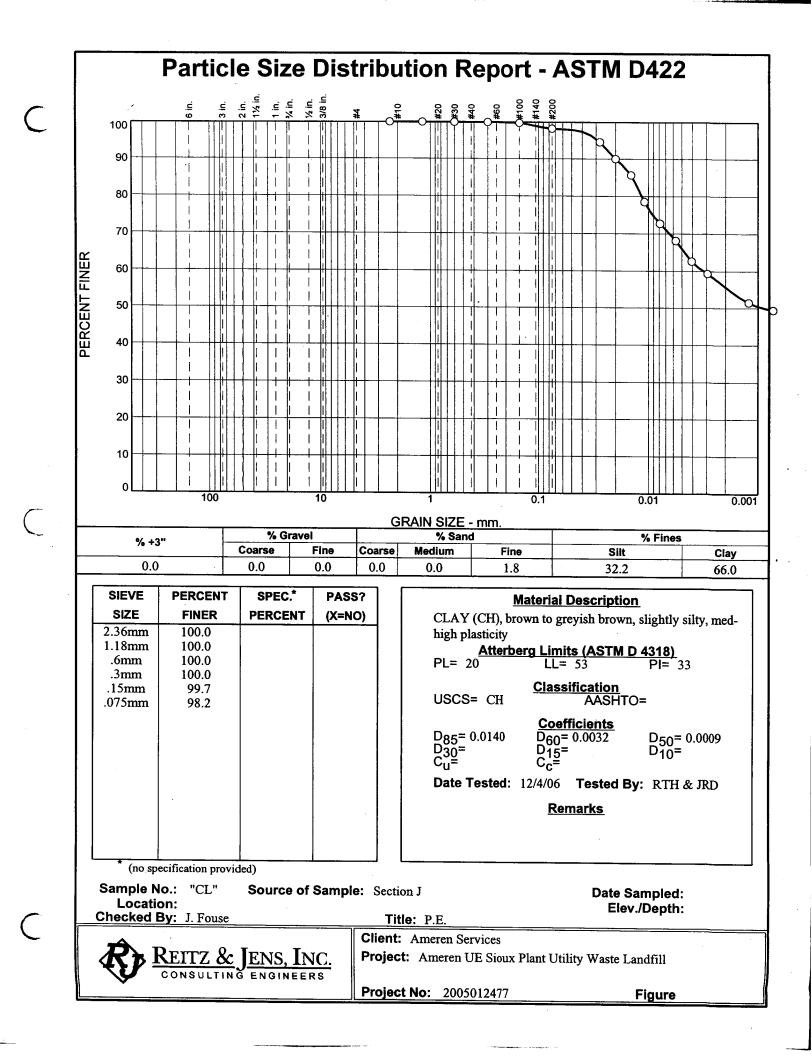
Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
4.00	21.7	49.0	49.4	0.0132	48.0	8.4	0.0192	98.0
8.00	21.7	47.2	47.6	0.0132	46.2	8.7	0.0138	94.5
15.00	21.7	46.0	46.4	0.0132	45.0	8.9	0.0102	92.1
30.00	21.7	43.4	43.8	0.0132	42.4	9.3	0.0074	86.9
60.00	21.7	41.0	41.4	0.0132	40.0	9.7	0.0053	82.1
120.00	21.7	38.2	38.6	0.0132	37.2	10.2	0.0039	76.6
240.00	21.6	35.8	36.1	0.0133	34.8	10.6	0.0028	71.8
1422.00	20.7	31.1	31.2	0.0134	30.1	11.4	0.0012	62.0
4293.00	20.1	28.9	28.9	0.0135	27.9	11.7	0.0007	57.4


_ REITZ & JENS, INC. _

0-1-1-1-	Gravel			Sand				Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	0.1	0.6	0.7	18.2	81.1	99.3	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0010	0.0047	0.0065	0.0089	0.0146

C

C

PI: 33

Title: P.E.

Test Date: 12/4/06

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Section J

Sample Number: "CL"

Material Description: CLAY (CH), brown to greyish brown, slightly silty, med-high plasticity

PL: 20

USCS Classification: CH

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =42.31 Tare Wt. = 41.35 Minus #200 from wash =98 1%

LL: 53

		will us #200 from wash = 90.1%									
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer						
50.00	0.00	0.00	2.36mm	0.00	100.0						
			1.18mm	0.01	100.0						
			.6mm	0.02	100.0						
			.3mm	0.02	100.0						
			.15mm	0.14	99.7						
			.075mm	0.91	98.2						

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

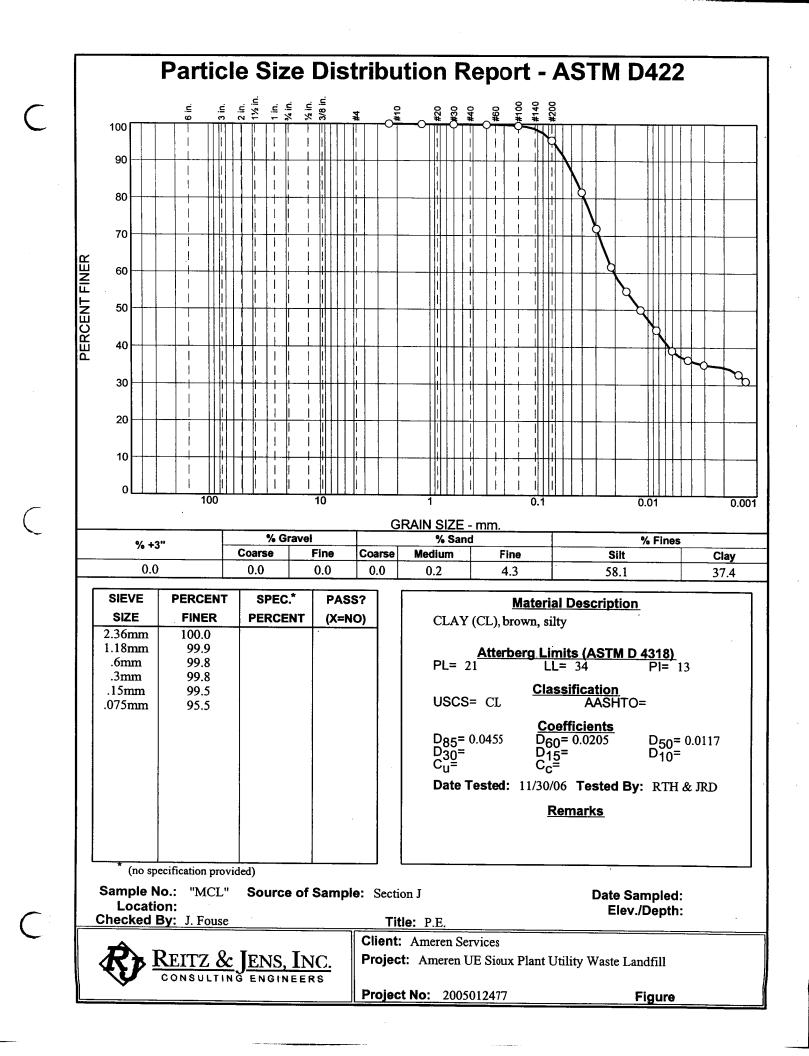
Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Temp. Actual Corrected Eff. Diameter Percent Time (min.) (deg. C.) Reading Reading κ Rm Depth (mm.) Finer 2.00 21.5 47.3 47.6 0.0133 46.3 8.7 0.0277 94.6 4.00 21.5 45.0 45.3 0.0133 44.0 9.1 0.0200 90.0 8.00 21.5 42.8 43.1 0.0133 41.8 9.4 0.0144 85.6 15.00 21.5 39.2 39.5 0.0133 38.2 10.0 0.0109 78.5 30.00 21.5 36.3 36.6 0.0133 35.3 10.5 0.0079 72.7 60.00 21.5 34.0 34.3 0.0133 33.0 10.9 0.0057 68.1 120.00 21.6 31.2 31.5 0.0133 30.2 11.3 0.0041 62.6 240.00 21.7 29.5 29.9 0.0132 28.5 11.6 0.0029 59.3 1465.00 20.7 25.8 25.9 0.0134 24.8 12.2 0.0012 51.5 4320.00 20.1 24.9 24.9 0.0135 23.9 12.4 0.0007 49.5

REITZ & JENS, INC.


Cabbles	Gravel				Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.8	32.2	66.0	98.2	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0009	0.0032	0.0115	0.0140	0.0200	0.0287

Ç

C

C

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section J Sample Number: "MCL" Material Description: CLAY (CL), brown, silty PL: 21 LL: 34 USCS Classification: CL Tested By: RTH & JRD Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

PI: 13

Test Date: 11/30/06 Title: P.E.

Post #200 Wash Test Weights (grams): Dry Sample and Tare =43.07 Tare Wt. = 40.68

	Minus #200 from wash =95.2%										
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer						
50.00	0.00	0.00	2.36mm	0.00	100.0						
			1.18mm	0.05	99.9						
			.6mm	0.08	99.8						
			.3mm	0.11	99.8						
			.15mm	0.27	99.5						
			.075mm	2.24	95.5						

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0

Specific gravity of solids =2.68

Hydrometer type =152H

Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	24.4	40.0	41.1	0.0128	39.0	9.9	0.0403	81.6
2.00	24.4	35.1	36.2	0.0128	34.1	10.7	0.0297	71.9
4.00	24.4	29.9	31.0	0.0128	28.9	11.6	0.0218	61.6
8.00	24.4	26.6	27.7	0.0128	25.6	12.1	0.0158	55.0
15.00	24.6	24.0	25.2	0.0128	23.0	12.5	0.0117	50.0
30.00	24.6	21.3	22.5	0.0128	20.3	13.0	0.0084	44.6
60.00	24.7	18.5	19.7	0.0128	17.5	13.4	0.0060	39.1
120.00	24.8	17.2	18.4	0.0128	16.2	13.6	0.0043	36.6
240.00	24.9	16.5	17.8	0.0127	15.5	13.8	0.0031	35.3
1091.00	23.1	15.8	16.5	0.0130	14.8	13.9	0.0015	32.8
1440.00	25.0	14.3	15.6	0.0127	13.3	14.1	0.0013	31.0

_ REITZ & JENS, INC. _____

.

Cobbles	bles Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.2	4.3	4.5	58.1	37.4	95.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0117	0.0205	0.0382	0.0455	0.0556	0.0724

Fineness Modulus 0.01

C

۵.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Section K

Sample Number: "CH"

Material Description: CLAY (CH), brown to greyish brown, high plastic LL: 75

PI: 46

Test Date: 12/1/06

Title: P.E.

USCS Classification: CH

Tested By: RTH

PL: 29

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams): Dry Sample and Tare =34.95 Tare Wt. = 34.57 Minus #200 from wash =99.2%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.03	99.9
			.6mm	0.05	99.9
			.3mm	0.06	99.9
			.15mm	0.12	99.8
			.075mm	0.36	99.3

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type =152H

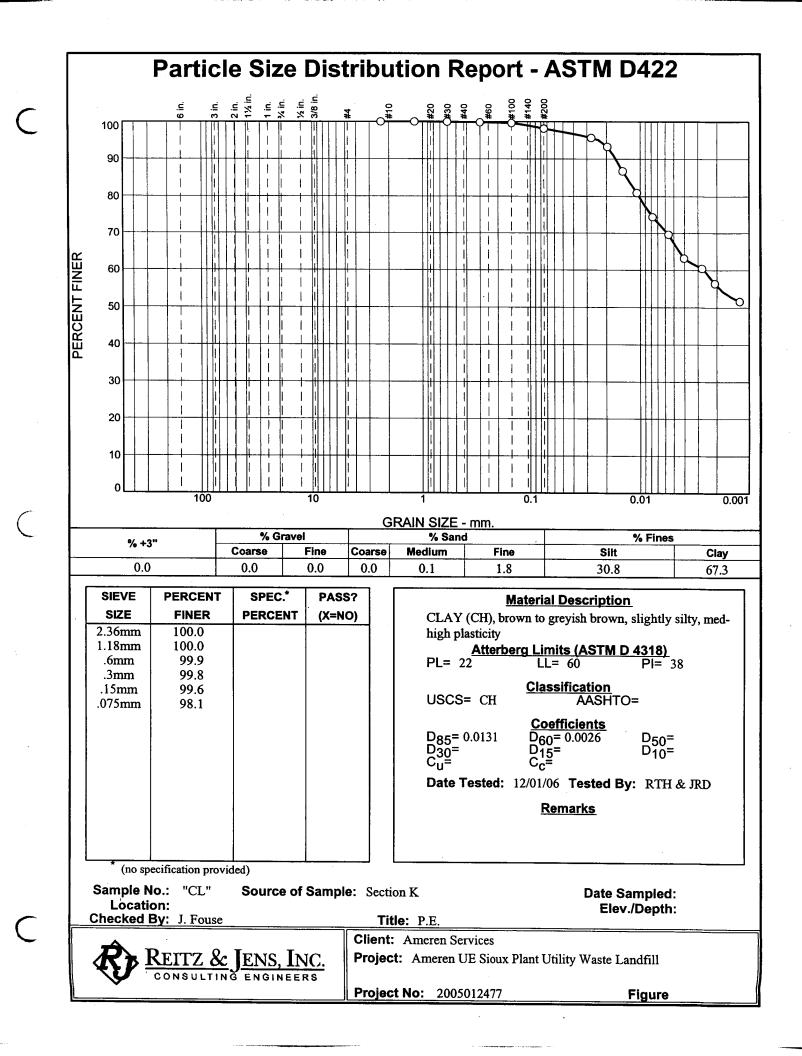
Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
8.00	22.1	49.0	49.4	0.0132	48.0	8.4	0.0135	98.2
15.00	22.1	47.1	47.5	0.0132	46.1	8.7	0.0101	94.5
30.00	22.1	44.0	44.4	0.0132	43.0	9.2	0.0073	88.3
60.00	22.1	41.3	41.7	0.0132	40.3	9.7	0.0053	82.9
120.00	22.2	38.2	38.7	0.0132	37.2	10.2	0.0038	76.8
270.00	22.7	36.0	36.6	0.0131	35.0	10.6	0.0026	72.7
473.00	23.0	34.0	34.7	0.0130	33.0	10.9	0.0020	68.9
. 1485.00	20.6	31.9	32.0	0.0134	30.9	11.2	0.0012	63.6

				na	Sar			Gravel		Cobbles
Coarse Fine Total Coarse Medium Fine Total Silt Clay	Silt Clay Total	I Silt	Total	Fine	Medium	Coarse	Total	Fine	Coarse	Copples

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.0046	0.0060	0.0080	0.0104

Fineness Modulus 0.01


Ċ

C

 \mathcal{C}

i.

_ REITZ & JENS, INC.

GRAIN SIZE DISTRIBUTION TEST DATA

Test Date: 12/01/06

Title: P.E.

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section K Sample Number: "CL"

Material Description: CLAY (CH), brown to greyish brown, slightly silty, med-high plasticityPL: 22LL: 60PI: 38

USCS Classification: CH

Tested By: RTH & JRD

Checked By: J. Fouse

Sieve opening list: (Default opening sizes)

Post #200 Wash Test Weights (grams)	: Dry Sample and Tare =41.82
	Tare Wt. = 40.84
	Minus #200 from wash = 98.0%

		WITTUS	5 #200 HOIH Was	- 90.070	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.01	100.0
			.6mm	0.04	99.9
			.3mm	0.09	99.8
			.15mm	0.21	99.6
			.075mm	0.94	98.1

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample =50

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352

Meniscus correction only =-1.0 Specific gravity of solids =2.68

Hydrometer type = 152H

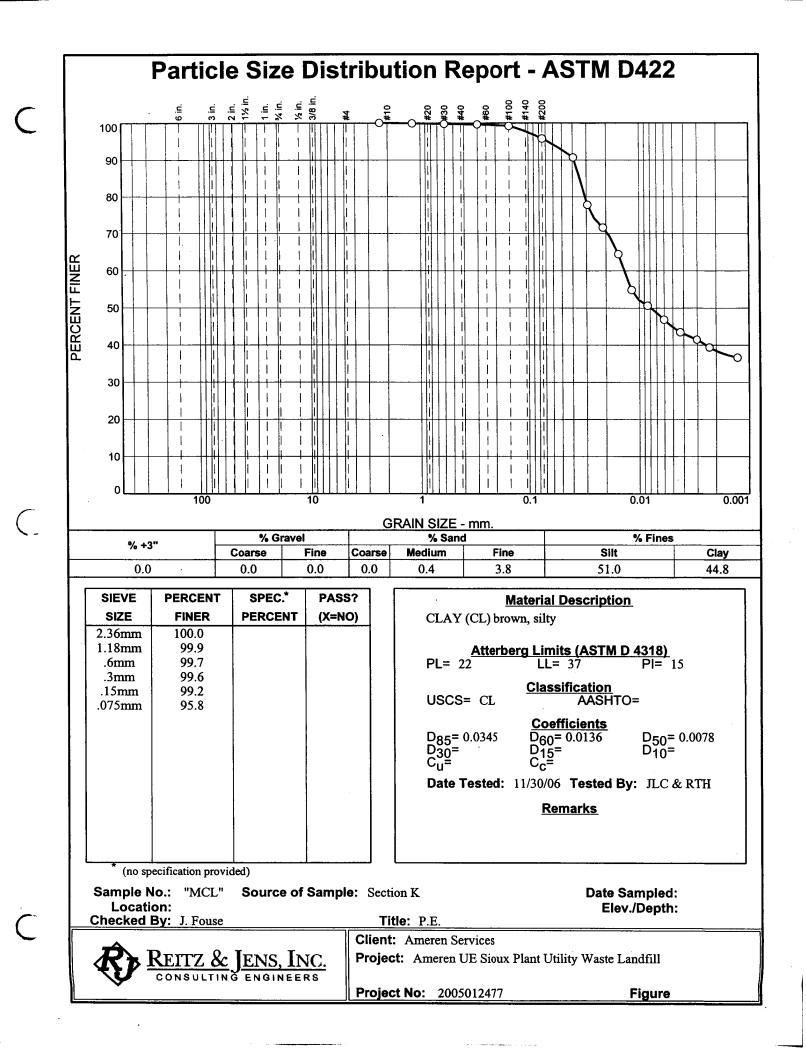
Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	22.1	47.7	48.1	0.0132	46.7	8.6	0.0274	95.6
4.00	22.1	46.5	46.9	0.0132	45.5	8.8	0.0196	93.3
8.00	22.1	43.2	43.6	0.0132	42.2	9.4	0.0143	86.7
15.00	22.1	40.3	40.7	0.0132	39.3	9.9	0.0107	80.9
30.00	22.1	37.0	37.4	0.0132	36.0	10.4	0.0078	74.4
60.00	22.1	34.6	35.0	0.0132	33.6	10.8	0.0056	69.6
120.00	22.3	31.3	31.8	0.0131	30.3	11.3	0.0040	63.2
261.00	22.8	29.8	30.4	0.0131	28.8	11.6	0.0028	60.4
464.00	23.0	27.7	28.4	0.0130	26.7	11.9	0.0021	56.4
1477.00	20.6	25.9	26.0	0.0134	24.9	12.2	0.0012	51.7

_____ REITZ & JENS, INC. __

1/11/2007

				•						
Cobbles		Gravel			Sa	nd			Fines	
Connies	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	1.8	1.9	30.8	67.3	98.1


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
L					0.0026	0.0102	0.0131	0.0165	0.0234

Fineness Modulus 0.01

C

C

REITZ & JENS, INC.

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Ameren Services Project: Ameren UE Sioux Plant Utility Waste Landfill Project Number: 2005012477 Location: Section K Sample Number: "MCL" Material Description: CLAY (CL) brown, silty PL: 22 LL: 37 USCS Classification: CL Tested By: JLC & RTH Checked By: J. Fouse

PI: 15

Test Date: 11/30/06 **Title:** P.E.

Sieve opening list: (Default opening sizes)

Post #200 Wa	sh Test Weig		ample and Tare Wt. = 40.50 s #200 from was		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
50.00	0.00	0.00	2.36mm	0.00	100.0
			1.18mm	0.07	99.9
			.6mm	0.14	99.7
			.3mm	0.21	99.6
			.15mm	0.42	99.2
			.075mm	2.09	95.8

Hydrometer test uses material passing#4

Percent passing #4 based upon complete sample =100.0

Weight of hydrometer sample = 0

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C =01352Meniscus correction only =-1.0

Specific gravity of solids =2.68

Hydrometer type =152H

P

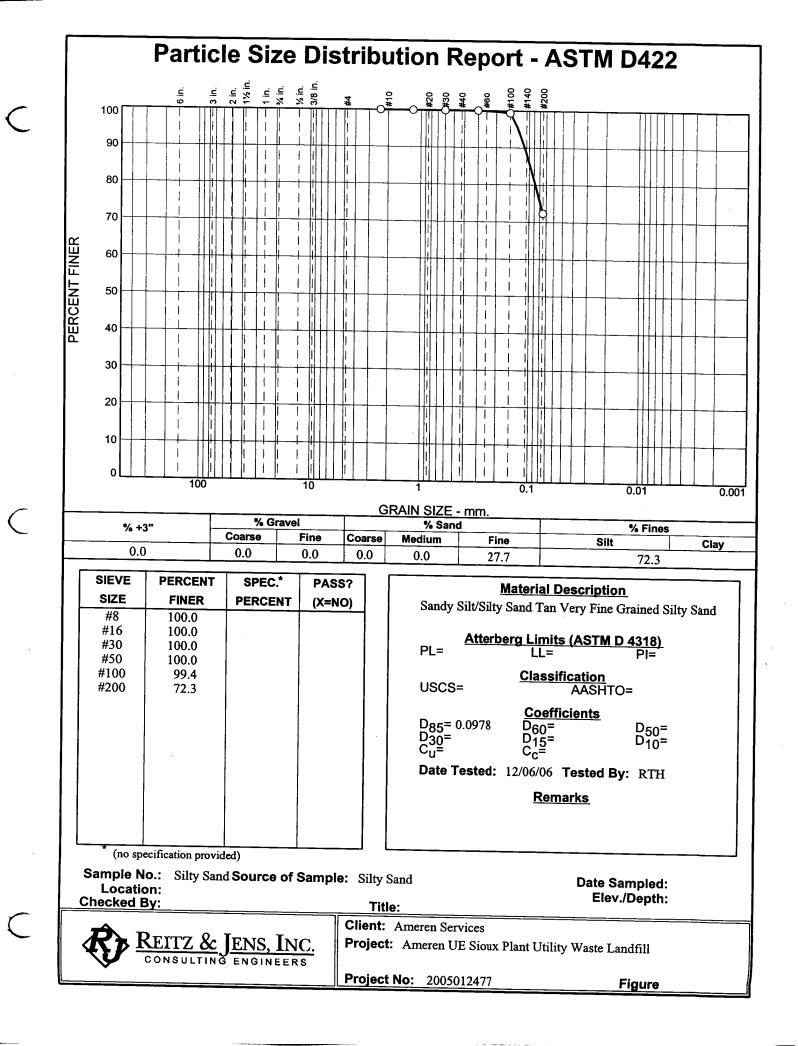
Hydrometer effective depth equation: L =16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	23.0	45,0	45.7	0.0130	44.0	9.1	0.0393	90.7
2.00	23.0	38.5	39.2	0.0130	37.5	10.1	0.0294	77.8
4.00	23.3	35.3	36.1	0.0130	34.3	10.7	0.0212	71.6
8.00	23.3	31.7	32.5	0.0130	30.7	11.3	0.0154	64.5
15.00	22.8	27.0	27.6	0.0131	26.0	12.0	0.0117	54.9
30.00	22.7	24.9	25.5	0.0131	23.9	12.4	0.0084	50.7
60.00	22.7	23.0	23.6	0.0131	22.0	12.7	0.0060	46.9
120.00	23.0	21.2	21.9	0.0130	20.2	13.0	0.0043	43.5
240.00	23.7	20.0	20.9	0.0129	19.0	13.2	0.0030	41.5
418.00	23.5	19.0	19.8	0.0130	18.0	13.3	0.0023	39.4
1440.00	22.1	18.0	18.4	0.0132	17.0	13.5	0.0013	36.6

1/11/2007

				: •						
Cobbles		Gravel			Sai	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.4	3.8	4.2	51.0	44.8	95.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0078	0.0136	0.0310	0.0345	0.0385	0.0663


Fineness Modulus 0.02

 \mathcal{C}

C

C

REITZ & JENS, INC.

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Ameren Services

Project: Ameren UE Sioux Plant Utility Waste Landfill

Project Number: 2005012477

Location: Silty Sand

Sample Number: Silty Sand

Material Description: Sandy Silt/Silty Sand Tan Very Fine Grained Silty Sand

Tested By: RTH

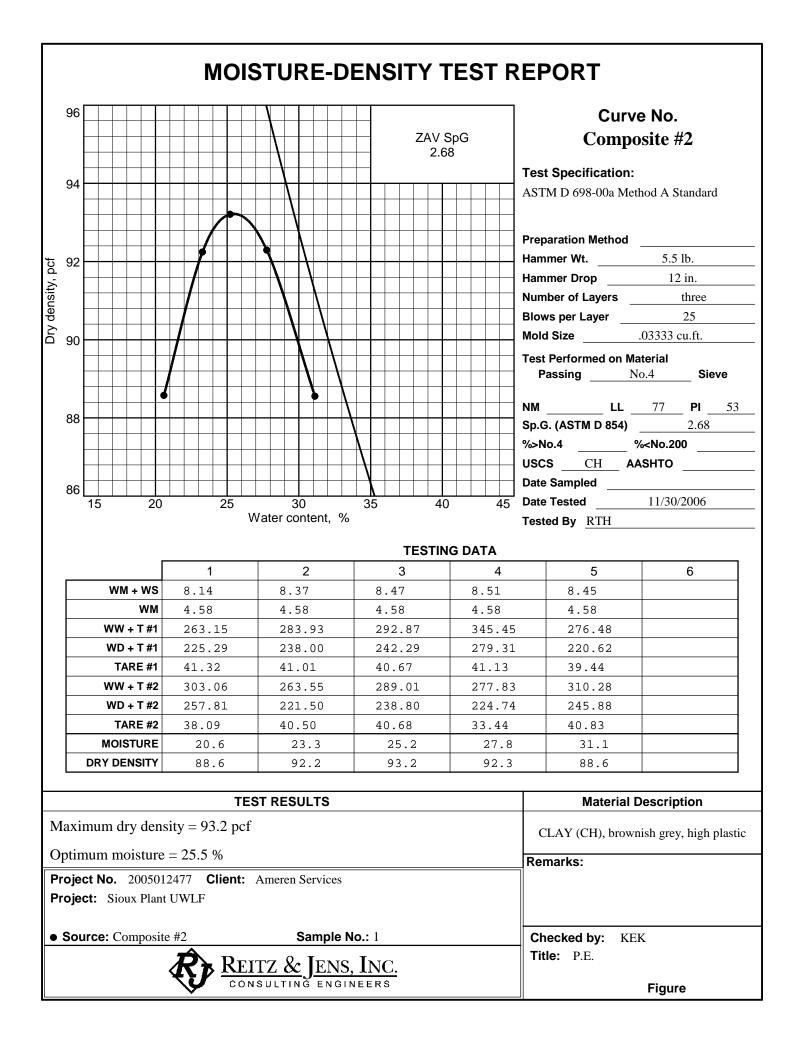
Test Date: 12/06/06

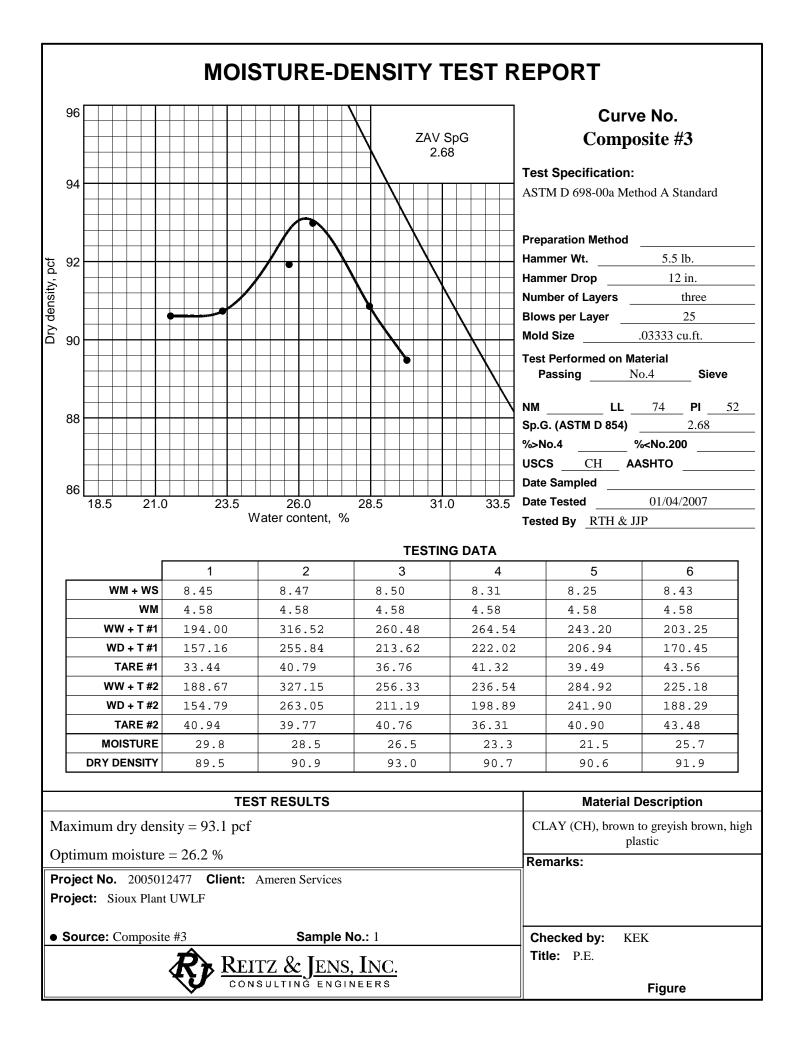
Sieve opening list: (Default opening sizes)

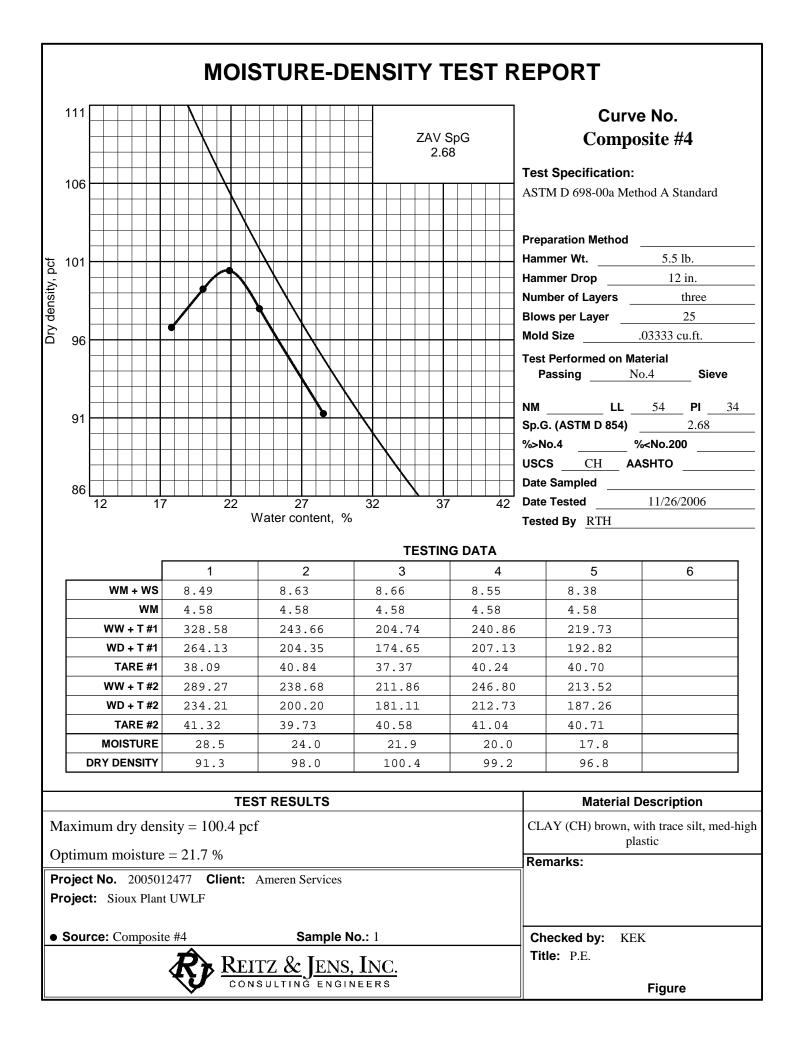
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer
1138.25	0.00	0.00	#8	0.00	100.0
			#16	0.00	100.0
			#30	0.10	100.0
			#50	0.22	100.0
			#100	6.95	99.4
			#200	315.12	72.3

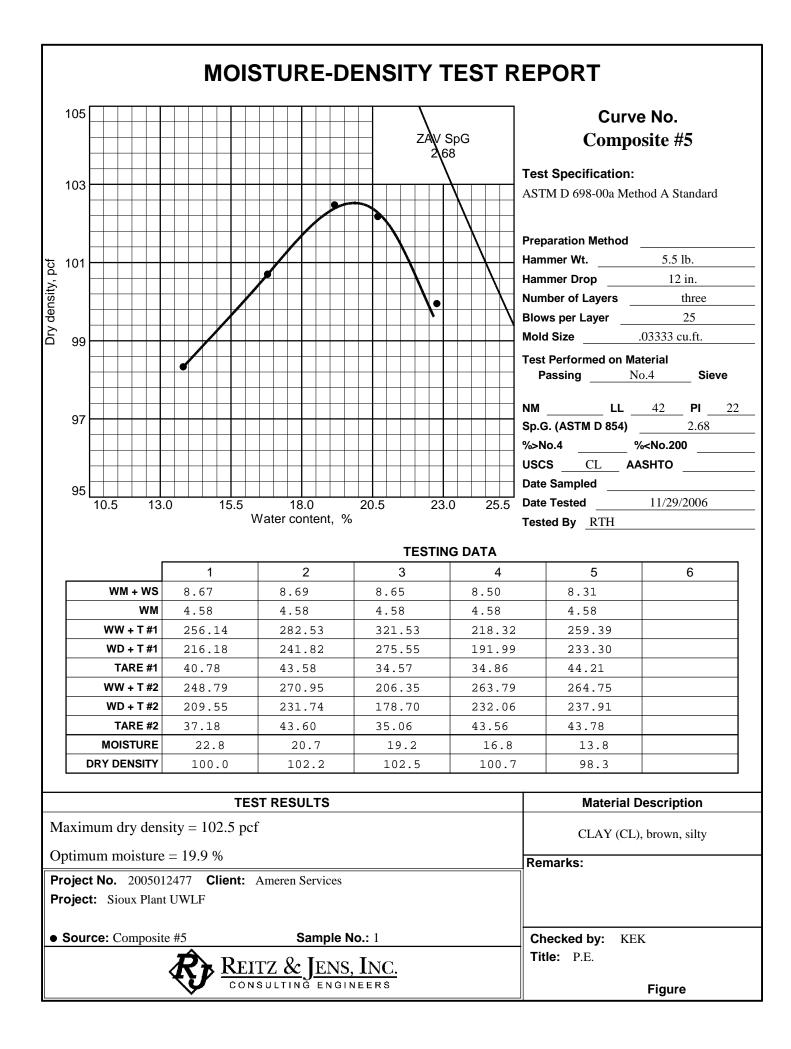
Cobbles		Gravel		· · · · · ·	Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Fines Clay	Tatal	
0.0	0.0	0.0	0.0	0.0	0.0	27.7	27.7	JII		Total	
						=	21.1			72.3	

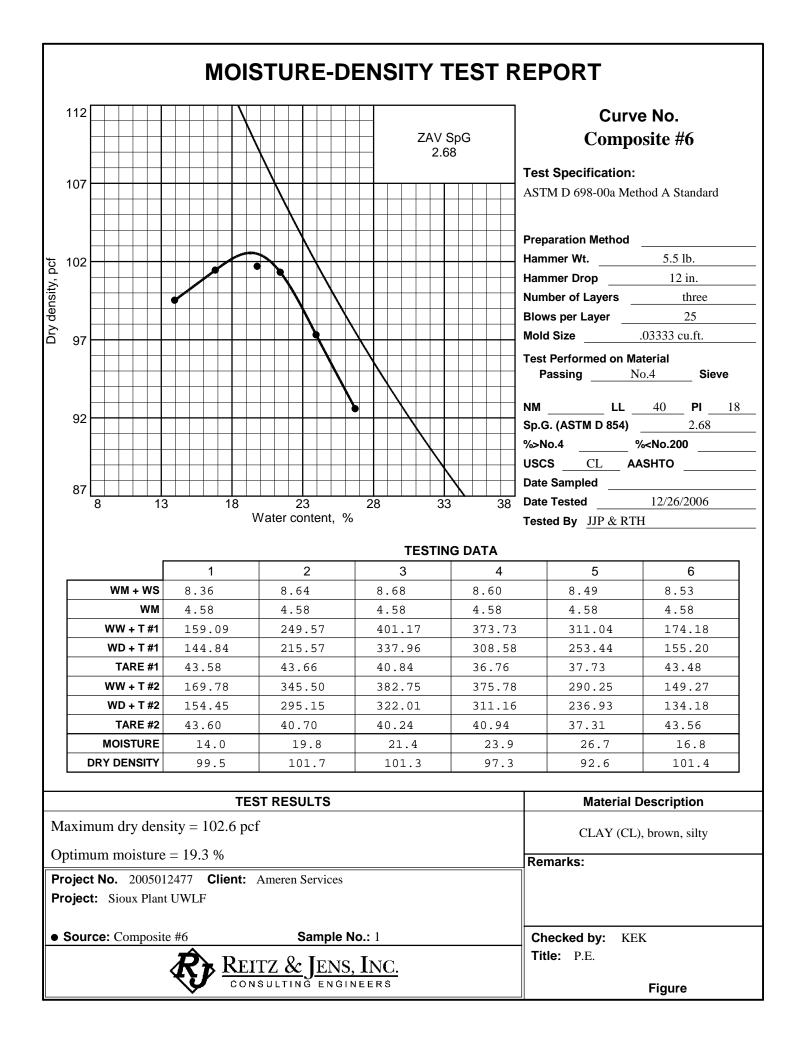
				· · · · · · · · · · · · · · · · · · ·					
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			·			0.0878	0.0978	0.1100	0.1264

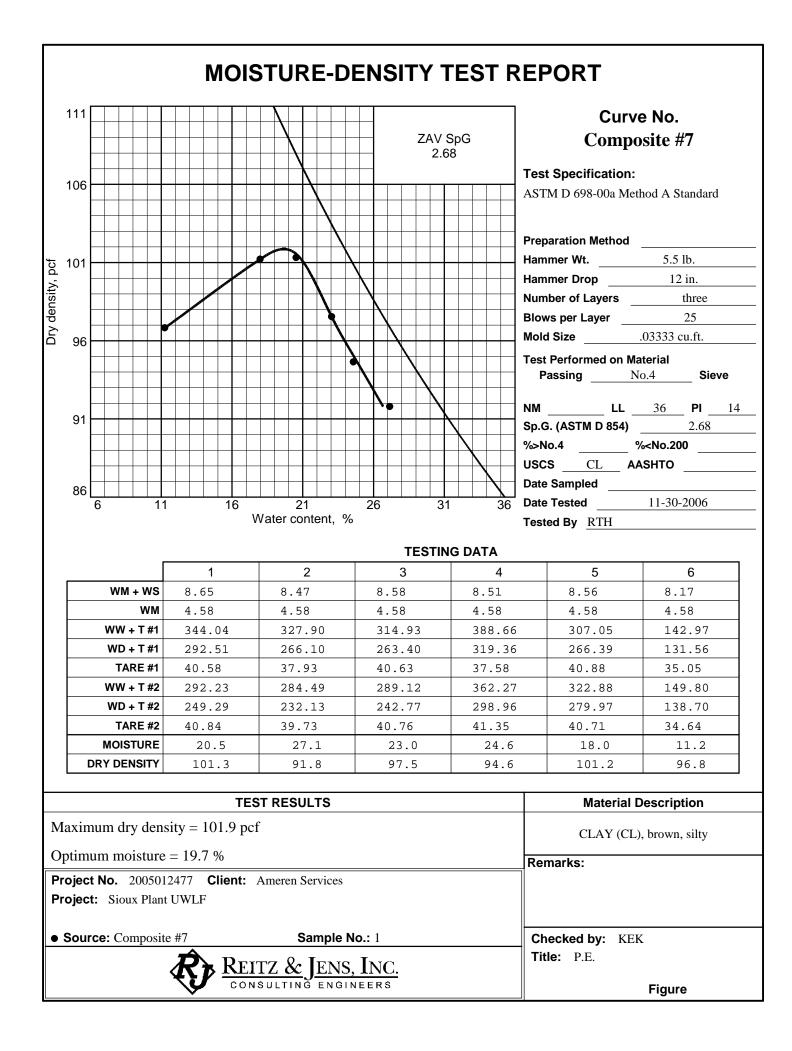

Fineness Modulus 0.01 1/11/2007

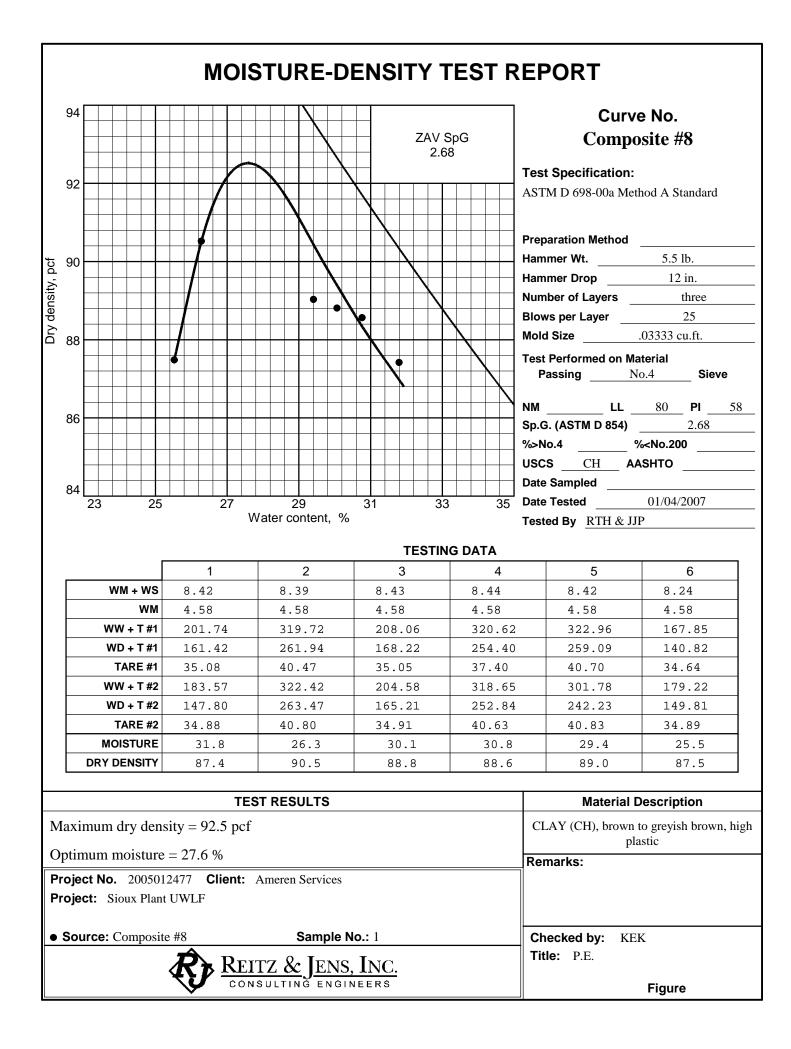

<u>Appendix 4</u>

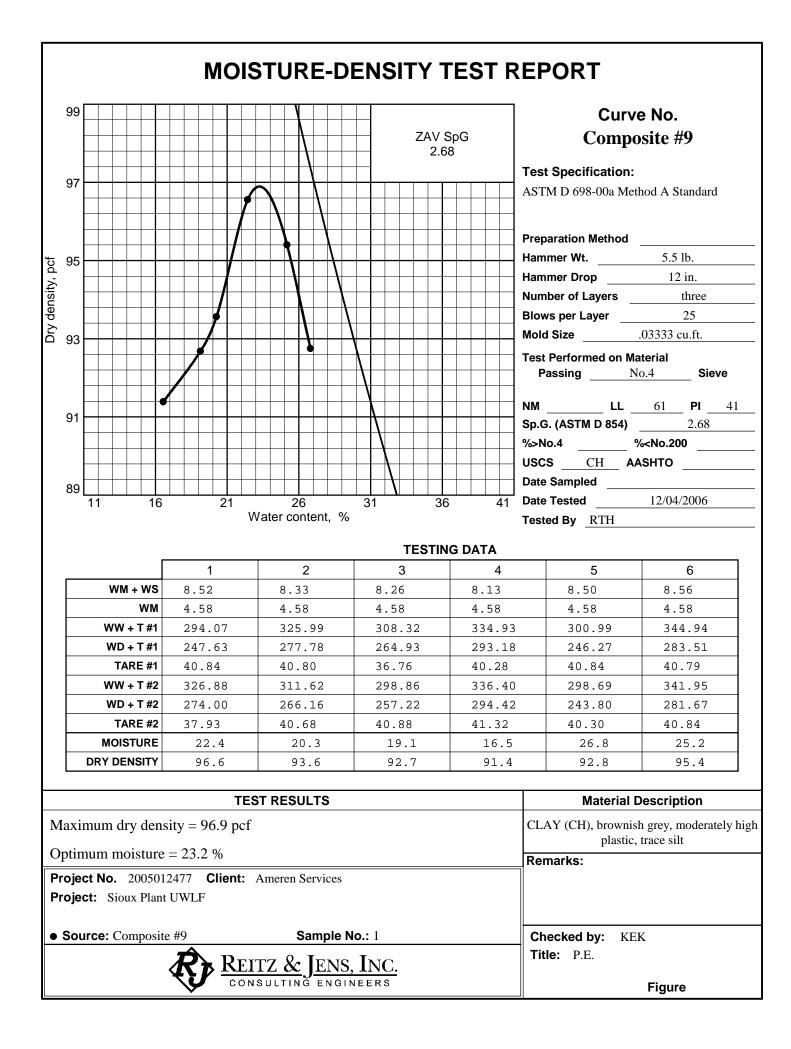

RESULTS OF STANDARD PROCTOR MOISTURE-DENSITY COMPACTION TESTS ON COMPOSITE SAMPLES

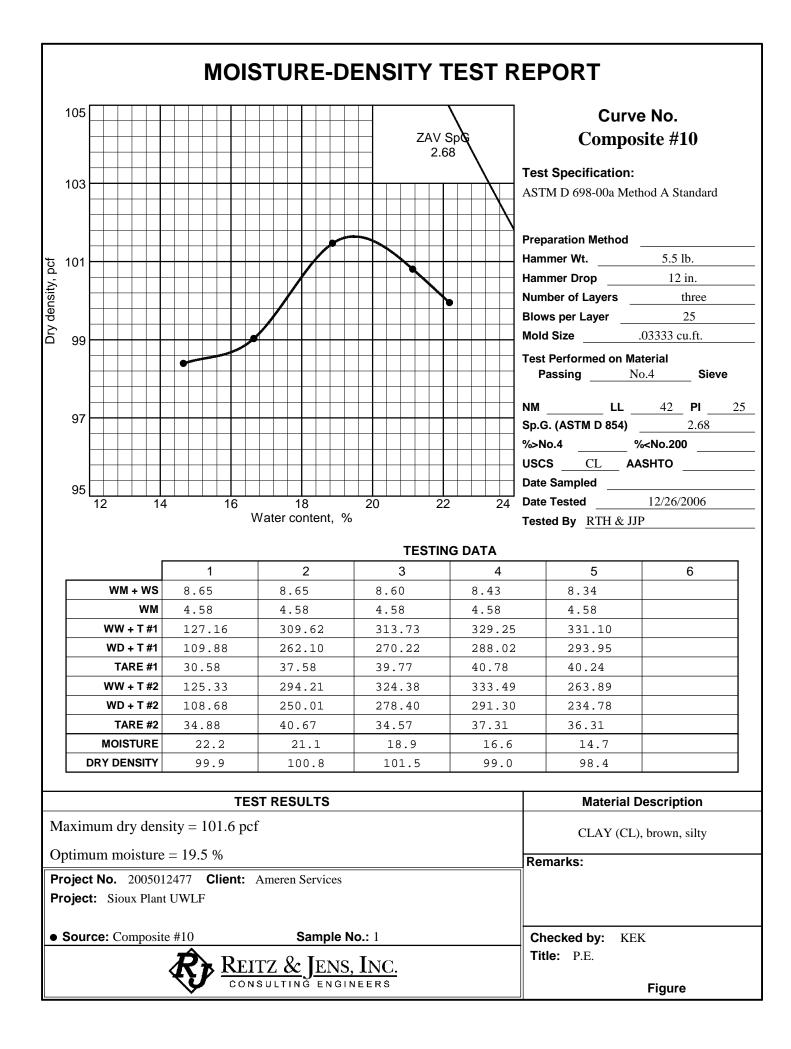

REITZ & JENS, INC.

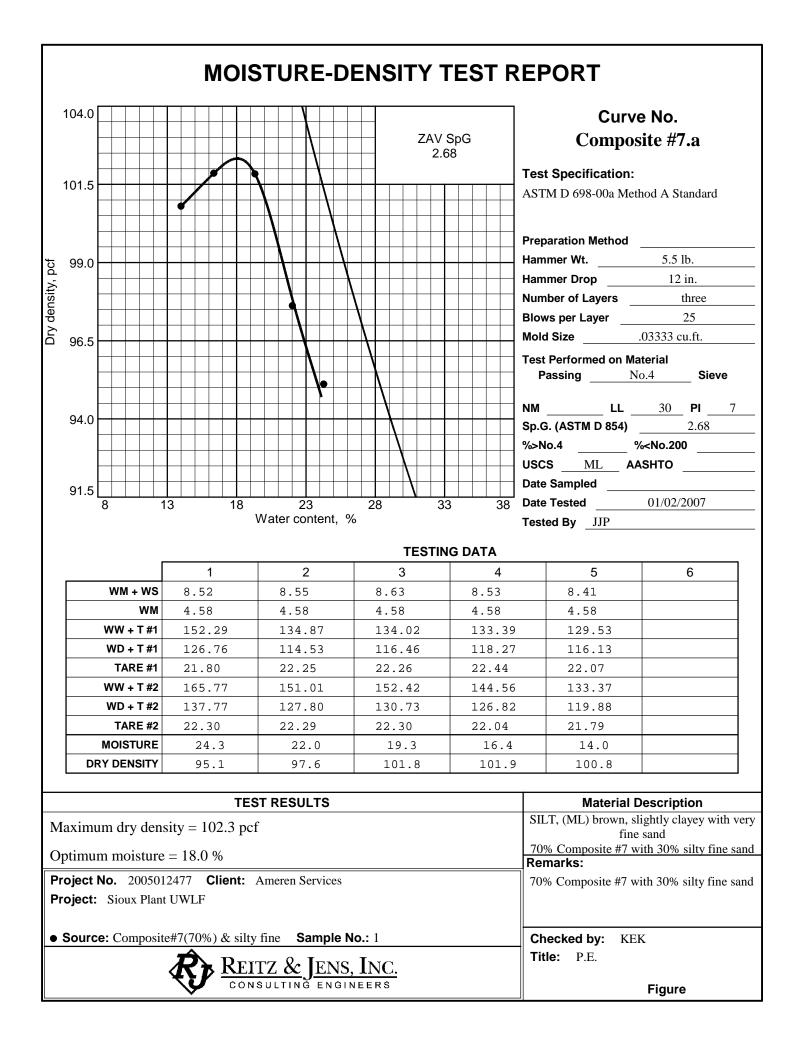


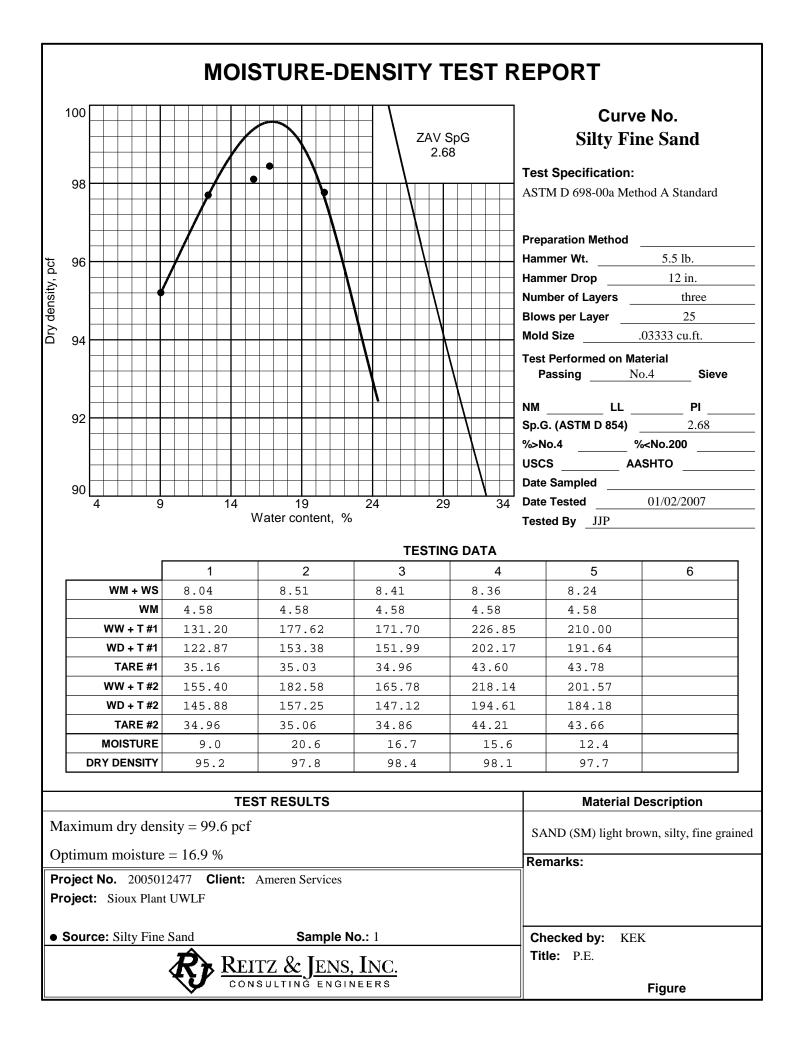












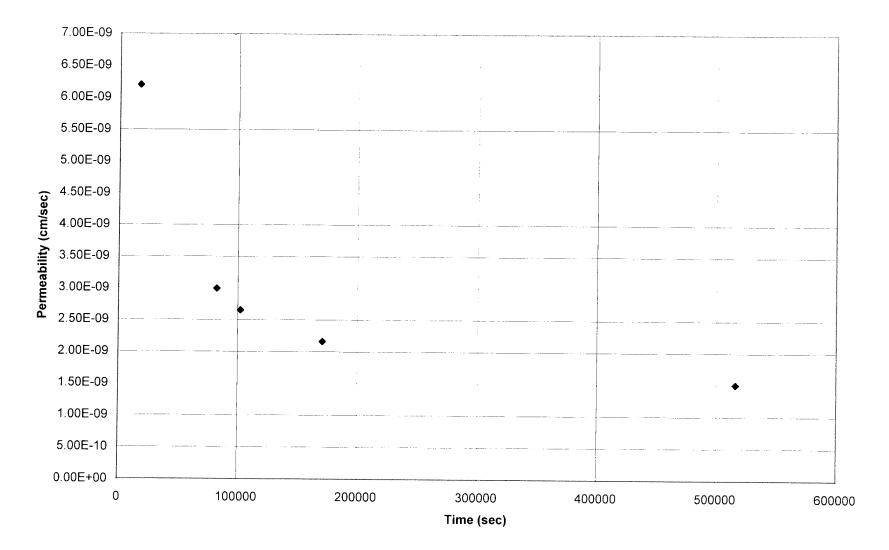
<u>Appendix 5</u>

RESULTS OF FLEXIBLE-WALL HYDRAULIC CONDUCTIVITY TESTS ON COMPACTED COMPOSITE SAMPLES

REITZ & JENS, INC.

Ameren - Si Power Plant Utility Waste Disposal Area

Test Pit Summary Table


	·····	·····		Standard		[Permeabilit	ty Sample
Composite #	USCS Class	Liquid Limit	Plastic Index	Maximum Dry Density (ASTM D-698) pcf	Optimum Moisture (ASTM D-698)	Dry Density (pcf)	Moisture Content	k (cm/sec)
1	СН	85	62	89.9	27.9%	90.7	29.3%	1.5E-09
2	СН	77	53	93.2	25.5%	93.7	27.1%	2.2E-09
3	СН	74	52	93.0	26.3%	92.7	28.2%	1.9E-09
4	СН	54	34	100.4	21.7%	100.5	23.8%	3.0E-09
5	CL	42	22	102.5	19.6%	103.7	20.6%	2.7E-08
6	CL	40	18	101.7	20.2%	94.2	26.5%	1.7E-08
7	CL	36	14	101.7	19.5%	96.1	25.0%	2.3E-07
8	СН	80	58	90.6	26.5%	91.3	27.8%	3.6E-09
9	СН	61	41	96.9	23.2%	95.2	26.5%	2.8E-09
10	CL	42	25	101.6	19.4%	99.2	22.3%	1.6E-08
70% Composite #7 plus 30% fine sand	CL	30	23	102.3	18.0%	98.1	23.6%	4 .5E-07
Silty Fine Sand	ML			99.6	16.9%	99.7	19.1%	2.5E-05

Ameren, Soiux UWLF Project # 2005012477 Compostite #1 Hydraulic Conductivity

Soil Co	T	est Info	rmation	
Pre-test conditions	Post-test Conditions	а	(cm^2)=	0.19685
Wet Density = 117.3 (lbs/ft^3)	Wet Density = 116.8 (lbs/ft^3)		L (cm)=	8.359563
% Moisture = 29.3%	% Moisture = 35.0%		. ,	20.662032
Dry Density = 90.7 (lbs/ft^3)	Dry Density = 86.5 (lbs/ft^3)			

				Base	Burette	Тор І	Burette						
Date	-		Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/27/2006	9:05	0	10.7	10.00	27.200	0.00	78,000	240,770	20.9				(0111000)
	13:50	17100	10.8	9.93	27.556	0.06	77.695	240.110	21.7	21.30	6.40E-09	0.9693013	6.20E-09
12/28/2006	8:00	82500	11.0	9.81	28.165	0.11	77,441	239.246	20.1	20.98		0.9766988	
· · · · · · · · · · · · · · · · · · ·	13:30	102300	10.9	9.81	28.165	0.14	77.289	239.094	22.7	21.06		0.9748066	
12/29/2006	8:30	170700	11.2	9.73	28.572	0.18	77.086	238,484	20.2	21.22		0.9711948	
1/2/2007	8:30	516300	11.7	9.56	29.435	0.48	75.562	236.096	19.7	20.37		0.9912832	

Composite #1

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- Ameror Sivux UWLF Location-Sample--- Composite # 1 Depth-----

a= A= L=

f

Cell No. 3

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
92.7	85.0	87.7

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-27-176	9:05	6	10.7	10.00	0.00		Olvi		20,9	Gradient
1001110	13:50	2.85	10.75	9.93	O.O.				21,7	
12-28-06	3:00	1375	11.00	9,81	0.11				20.1	
	13:30	1705	10.35	9,81	0,14				22,7	
12-29-06	8:30	2845	11.20	9.73	0.18				20.2	
1-2-07	3:30	3605	11.65	9.56	0.48				19.7	
								· · · · · · · · · · · · · · · · · · ·		
							<u> </u>			
· ·		· · ·					· ·	• •	· · ·	
	· · · · · · · · · · · · · · · · · · ·									
[
	•						·			
								Temp.		Hyd.
axL	t (sec)	2xAxt	aL/2At	h1	h2	ln(h1/h2)	K	Cor.	K -Cor.	Gradient
									-	
	-									
			<u></u>					· · · · ·		
									· ·	

roject 1 Medded 2000 + 10 methods + 10 met	roject	Amonon 3	#1	Depth Stan	HAND Proctor	+12% Moustne	Date _//	-20706
ype of Test Hyp. Cond. Confining Pressure Differential iell Number 3 Saturate #6000 ofter Consolidation iumber of Membrones 2 Filter Strips Yes No MolSTURE CONTENT Immodel for the setup at saturation start MolSTURE CONTENT Immodel for the setup at saturation start MolSTURE CONTENT Immodel for the setup at saturation start Immodel for the setup for the setup at saturation start Immodel for the setup for the setup at axial load start Immodel for the setup for the setup at axial load start Immodel for the setup for the setup at axial load start Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Immodel for the setup for the setup for the setup Start for the	ample escript	tion_CLAY (C	H), Brow,	J & Green, 1	4.24 Plastre			
Seturate χ solurate χ								
LINTRAL LENGTH CHANGE LENGTH CHANGE MOISTURE CONTENT LENGTH CHANGE MOISTURE CONTENT Immake and the seturation start Tare No. May 475 Dry Soil WL: Tare WL 22.37 LINTAL MASS PROPERTIES MASS PROPERTIES Wit. Tube + Soil gr Sample Length in Imm. MA GRUE MA GRUE Sample Length in Time M MA GRUE Mar. 790.7 2.01637 Tin	ype of	Test Hyd. C	7 Z	_Confining Pres	ssure Differentic)		
MOISTURE CONTENT INITIAL FINAL Tore No. M34/ Wet WL + Tore 77.42 Dry WL + Tore 77.42 Tore WL + Tore 77.42 Strain Could to start at consolidation start Tore WL + Tore 77.42 Dry Soil WL 22.37 Dry Soil WL 22.37 Avg. w Z 24.3264 Avg. w Z 24.3264 MASS PROPERTIES Wt. Tube + Soil 99 Tube Diometer 100 SPECIMEN DIMENSIONS in. // mm. HEIGHT DIAMETER Somple Length in total trim in 1 3.2210 2.2425 3 3.2170 2.2425 3 3.2170 2.7425 Arg. 3.2390 1.4910 2.0145 Bloot fitm 5.12007 Bloot 3.22120 2.7425 Arg. 3.22100 2.7425 M. 19900 2.0145 Bloot 3.22120 2.7425 Bloot 3.22120 1.4104 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
MOISTURE CONTENT at saturation start Tare No. M34 43 Wet Wt. + Tare 77.42 84.64 Dry Wit. + Tare 77.42 84.64 Dry Soil Wt. 22.37 21.35 Moisture % 22.173 MASS PROPERTIES Wt. Water 23.126 24.3264 MASS PROPERTIES Wt. Tube + Soil 99 Moisture % 23.173 24.3264 MASS PROPERTIES Wt. Tube + Soil 99 Wt. Tube + Soil 99 MASS PROPERTIES Wt. Tube + Soil 99 SPECIMEN DIMENSIONS in. / mm. Initial Final Initial Final 10 1 3.2210 2.2925 M 2.0125 2 3.2170 2.2925 M 2.0125 Arge 32240 2.999 T 2.0125 3 3.2170 2.999 M 2.0125 Arge 32210 2.9925 M 1.9910 2.0125 Bescription After Test V:1044 Final M:14 : 323.05 V:1045 Description After Test V:1044 Final M:14 : 323.05 M:170.25 Remarks Soild = 117.2 Final Trimmed By 122 Setup By	lumber	of Memoranes.						
INITIALFINALTare No. $M'34'$ $4'3$ Wet Wt. + Tare $2'3'4''$ Dry Wt. + Tare $2'1''_{2''}$ Dry Wt. Voter $2''_{2''}$ Tare Wt. $22 3''_{2''}$ Dry Soil Wt. $2''_{2''}$ Moisture % $2a_{1''}$ Moisture % $2a_{1''}$ Zano Soil Wt. $2''_{2''}$ Moisture % $2a_{1''}$ Moisture % $2a_{1''}$ Zano Soil Wt. $2''_{2''}$ Moisture % $2a_{1''}$ Zano Soil Wt. $2''_{2''}$ Moisture % $2a_{1''}$ Moisture % $2a_{1''}$ Zano Soil Wt. $2''_{2''}$ Mass PROPERTIESWt. Tube + Soil $g''_{3''}$ Mass PropertiesSemple LengthinInitialFinalInitialFinalInitialFinalSemple LengthinInitialFinalSalue Constant $2''_{2'''''''''''''''''''''''''''''''''$								
Tare No.M34 $\frac{43}{2}$ Wet Wt. + Tore $\frac{73.42}{23.44}$ $\frac{10.344}{10.344}$ Dry Wt. + Tore $\frac{77.42}{23.23}$ $\frac{10.344}{23.23}$ $\frac{37.42}{23.23}$ Dry Soll Wt. $\frac{10.344}{23.23}$ Moisture % 22.37 27.423 $\frac{27.423}{24.43}$ MASS PROPERTIESMass Properties <tr< td=""><td>·</td><td>M(</td><td></td><td></td><td>EDNIAL</td><td>at satur</td><td>ation start</td><td></td></tr<>	·	M(EDNIAL	at satur	ation start	
Wet Wt. + Tare Dry Wt. + Tare Tore Wt. Water Tore Wt. 2237 103144 3146 at axial load startWt. Water Tore Wt. 2237 2192 2192 3146 	<u> </u>	Tare No	MRU	43	FINAL	at consolic	lation start	
Wt. Water Tare Wt.22.32 $2/.93$ Dry Soil Wt. Moisture % Avg. w %29.17329.484Moisture % Avg. w %29.3265Wt. Tube + Soil Wt. Tube99SPECIMEN DIMENSIONS in. / mm. HEIGHTDIAMETER DIAMETERWt. Soil Tube Diameter307.04Initial 13.22353.2090 3.22100T. 2.000 2.016572.0165733.21703.29590 3.22100T. 2.000 2.016572.01657Avg. y 2.2959B. 1.9910 2.019372.01657Bildeo? Bildeo?B. 1.9910 2.019372.01657Bildeo? Bildeo? ConstrictFindl Mr. 323.404Mass PROPERTIESWet DensityDescription After TestJumptFailure SketchTrimmed By Trimmed DateTrimmed By Setup DateFailure SketchTrimmed By Setup DateLing Setup DateLing Setup DateLing Setup DateLing Setup DateLing Setup DateLing Setup DateLing Setup DateLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing LingLing Ling <t< td=""><td></td><td>t Wt. + Tare</td><td>93.48</td><td>103.14</td><td></td><td></td><td></td><td></td></t<>		t Wt. + Tare	93.48	103.14				
Tare Wt. 22.3721.93Dry Soil Wt.29.17327.92Moisture %29.17327.92Avg. w %29.326Wt. Tube + SoilSPECIMEN DIMENSIONS in. / mm./ mm.HEIGHTDIAMETERInitialFinalInitial13.22353.200033.21703.292533.21703.297533.21703.297533.21703.2975Avg. g 32501.498023.5171033.217033.217033.217033.217033.217033.217032.017533.217033.217032.0175Construct5.12107Wet DensityPBibo?A.12013*Construct5.12107Bibo?A.12013*Construct4.35/0*Construct5.12107Bibo?A.12013*Construct5.12107Bibo?A.12013*Bibo?A.12013*Bibo?A.12013*Construct7.0.7Bibo?A.12013*ConstructTrimmed ByJumaTrimmed ByJumaTrimmed ByJumaJumaSetup ByL/2Setup ByL/2Setup Date11.24	Dry		77.42	84.66		at axia		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Tare Wt.	22.37	21.93		MASS	PROPERTIES	
Avg. w % $24,326$ Wt. 100e 302.64 SPECIMEN DIMENSIONS in./HEIGHTDIAMETERInitialFinalInitialFinal1 $3,2235$ 3 32170 2.2235 3.2000 T 2.0200 2.3210 2.2725 3.32170 2.2740 2.3210 2.2740 2.3210 2.2740 3.32170 2.2740 2.3210 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 3.32170 2.7925 $M.7900$ 2.01633 5.122102 $Wet Density$ Description After Test -7700 1.6407 $M_{\odot} - 27.3$ 2.0697 $N_{\odot} - 36.5$ 2.0697 $N_{\odot} - 36.5$ $N_{04} = -70.7$ $N_{\odot} - 36.5$ $N_{04} = -70.7$ $N_{\odot} - 36.5$ $N_{04} = -27.3$ $N_{\odot} - 35.0$ Failure SketchTrimmed By Li2eSetup By Li2eSetup By Li2eSetup Date III-24		Dry Soil Wt. Moisture %	29.173	29,480		Wt. Tube +	Soil	a
SPECIMEN DIMENSIONS in. / mm. HEIGHT DIAMETER Sample Length in Initial Final Initial Final initial 1 3.2235 3.2000 T 2.000 2.002 2 3.2100 3.2725 M. 1.2000 2.0125 3 3.2100 3.2725 M. 1.2000 2.0125 Avg. 3.2100 3.2725 M. 1.2000 2.0125 Avg. 3.2100 3.27107 L.0010 2.0125 B. 1.001 2.01335 5.12107 Wet Density P Avg. 3.2100 3.27107 L.00135 Density Constant 4.85/(0*2 * L) B. 1.001 2.01335 5.12107 Wet Density P Avg. 3.2100 X.2013 5.12107 Density Constant 4.85/(0*2 * L) B. 1.007 X.2013 5.12107 Density Constant 4.85/(0*2 * L) P B. 1.007 X.2013 Y.2014 H.1210 Density Constant 1.001 B. 1.007 X.2014 Y.2014 Y.2014		Avg. w %				Wt.	Tube	gi
SPECIMEN DIMENSIONS in. / mm.Somple LengthHEIGHTDIAMETERInitialFinalInitialFinal1 3.2235 3.2000 2.0125 3 3.2170 3.2775 M. 1.9003 3.2170 3.2775 M. 1.9003 3.2170 3.2775 M. 1.9003 3.2170 3.2775 M. 1.900 2.0125 3.2775 M. 1.900 2.0125 3.2170 3.2775 3.2170 3.2775 M. 1.900 2.0125 3.2775 M. 1.900 2.0125 3.2775 3.2170 3.2775 3.2070 7.2775 3.2070 7.2775 3.2070 7.27757 3.2070 7.27								
SPECIMEN DIMENSIONS in. / mm. HEIGHT DIAMETER Initial Final Initial Final 1 3.2235 3.2210 3.2295 3.2170 3.2795 M 1.900 2.3210 3.2795 M 1.900 2.3210 3.2795 M 1.900 2.3210 3.2795 M. 1.900 2.0165 Avg. 3.2710 3.2170 3.2710 3.2170 3.2710 3.2170 3.2710 3.2170 3.2710 M.4933 2.01735 May 3.2100 3.2170 3.2710 May 1.9935 J.12010 1.9935 B.16007 1.9935 May 1.9935 J.12101 Frant M. = 323.09 May 1.9935 J.12101 Frant M. = 323.09 May 2.0.9735 J.12101 May Setup By 1.122								
Content of the termHEIGHTDIAMETERInitialFinalInitialFinal13.22353.2000T2.012523.21003.2000T2.012533.21003.2930B/.91012.0240Avg.3.2205B/.91012.0240B1.99332.01933S.12001B1.99332.01935Dry Densityg.16007A=20195S.12001B1.9014FinalH = 723.05V=1044Y=1044FinalMaxMaxFinalMaxMaxSetup ByV=20135S.0Failure SketchTrimmed ByImage: Setup DateII220Setup DateII220	CDEC	WEN DIMENS	IONS '	in /	mm.	tube le	ength	in
Initial Final Initial Final 1 3,2235 3,2000 2,0125 2 3,21/20 3,2925 M 1,9900 2,0125 3 3,21/20 3,2940 B 1,910 2,0125 Avg. 3,2210 3,2910 B 1,910 2,0125 Avg. 3,2217 3,2910 B 1,910 2,0125 Avg. 3,2217 3,2910 B 1,910 2,0125 Avg. 3,2217 3,2910 B 1,913 2,01433 Avg. 3,2217 3,2910 Wet Density P Bescription After Test V=11414 Fridd U4 = 323.05 1:141.05 Description After Test V=11/7,3 Fridd U4 = 323.05 1:141.05 Remarks Bosist = 117,3 Fridd <u4 36.5<="" =="" td=""> 2:0.84337 Description After Sketch Image: Sketch Trimmed By Image: Sketch Failure Sketch Setup By Ket Setup Date Image: Sket Setup Date Image: Sket</u4>	SFLU							- 1
Initial Find Initial Initial Initial Initial Initial 1 3,2235 3.2000 2.0125 M. 1.900 2.0125 Density constant 4.85/(D^2 2 ± L) P 3 3.2170 3.2930 B. 1.900 2.0125 Wet Density P Avg. 3.2170 3.2930 B. 1.900 2.01453 Wet Density P Avg. 3.2170 3.2930 S.2013 5.129107 Wet Density P Avg. 3.2170 3.2930 S.2013 5.129107 Wet Density P Avg. 3.2170 3.2930 S.2013 S.129107 Wet Density P 0.16007 A.20138 S.129107 Find Let : 323.05 K:104.05 Description After Test V=1040 Find Let : 323.05 K:104.05 Description After Test V=107 Setup 37 Remarks Mo: 231402 M: 70.2 Description After Test V=0.7 Setup 37 Setup 37 Setup 35.0 Setup 35.0 Foilure Sketch Trimme		1 1			·····	the second se		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Initial	Final	Initial	Final			······································
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	32235 3	2000	T 2.000	2.0175			
Avg. $3.2^{20/17}$ 1.9953 2.0173^{55} Dry Density p $g.1600^7$ $A=20133^{55}$ 5.12910^7 Dry Density p Description After Test $V=10410^7$ $F_{104}/M + = 323.06$ $V_{-1041.07}$ Description After Test $V=10410^7$ $F_{104}/M + = 323.06$ $V_{-1041.07}$ Description After Test $V=10410^7$ $F_{104}/M + = 323.06$ $V_{-1041.07}$ $Remarks$ $V_{1001} + = 117.3$ F_{1000} $F_{100} = 116.76$ Remarks $V_{1001} = 70.7$ $V_{200} = 36.5$ $S_{200} = 36.5$ $Y_{201} = 27.3$ $9.0^{-10} = 35.0$ $Trimmed By$ $II.22$ Setup By $II.22$ Setup By $II.22$			2925					
Avg. 3.2205 8.3575(3 5.129101 Dry Density p 9.1607 $A = 20132^{45}$ B.16007 $A = 20132^{45}$ $F_{124}/44$ $F_{124}/44$ $F_{124}/44$ $F_{124}/44$ $M_{1} = 723.05$ $V_{1} = 104.05$ Description After Test $V = 1/4/44$ $F_{124}/44$ $F_{124}/44$ $M_{1} = 239.402$ $m_{0} = 70.2$ $A = 20.132^{45}$ $V = 1/4/44$ $F_{124}/44$ $F_{124}/44$ $M_{1} = 239.402$ $m_{0} = 70.2$ $A = 20.132^{45}$ $V = 1/4.26$ $M_{1} = 239.402$ $m_{0} = 70.2$ $A = 0.0.84726377$ $M_{10} = 70.7$ $M_{10} = 36.5$ $M_{10} = 36.5$ $M_{10} = 70.7$ $M_{20} = 36.5$ $M_{10} = 35.0$ $M_{10} = 116.76$ Failure Sketch $F_{10} = 70.7$ $M_{10} = 36.5$ $M_{10} = 11.21$ Trimmed By Trimmed By Trimmed Date Trimmed By Setup Date Setup By K0 Setup Date			2930		2019333		And a state of the	
Description After Test V://4/4 $V_{AM} = V_{AT} = V_{T} $	Avg	3.2205 8	358563	5,0431		Dry De		<u>[p</u>
Description ritid $M_{1} = 231.402$ $M_{1} = 70.7$ \mathcal{D}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{R}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{R}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{H}_{rhul} \mathcal{R}_{rhul} \mathcal{H}_{rhul} $\mathcal{H}_$	Dee	-	et .	A=20.132	Final wt	: 323.09		
$ArithmFindY_{mist} = 116.76RemarksY_{mist} = 90.7V_{mist} = 36.5Y_{mist} = 29.3Y_{mist} = 29.3Y_{mist} = 116.76Failure SketchFailure SketchTrimmed By Y_{Trimmed DateSetup By Y_{Cl}Setup By Y_{Cl}Setup Date$	Desi		ət	<u> </u>		· · · · · · · · · · · · · · · · · · ·		Mu. 70.2
Remarks $\underbrace{V_{noist} = 117, 3}_{V_{noist}}$ $\underbrace{V_{noist} = 116, 76}_{V_{noist}}$ $V_{noist} = 90.7$ $v_{noist} = 36.5$ $2.n = 29.3$ $9.m 35.0$ Failure Sketch Trimmed By III2 Kell Setup By Kell Setup By Kell Setup Date							e=0.8436397	
$Y_{04} = 90.7$ $y_{04} = 36.5$ $2\Lambda = 29.3$ $g_{0M} = 35.0$ Failure Sketch Trimmed By Ket Image: Setup By Setup Date Velocity Setup By Ket Setup Date			=1173		T-INAT V.	at =116.76		
Failure Sketch Trimmed By Kell Trimmed Date 11-2: Setup By Kell Setup Date 11-2:	Rem	narks	= 90.7		N.S.	36.5	· · · · · · · · · · · · · · · · · · ·	
Trimmed By Trimmed Date J/-2: Setup By Setup Date J/-2:		?n =	29.3		%	m 35.0		<u> </u>
Trimmed By Trimmed Date J/-2: Setup By Setup Date J/-2:								
Trimmed By Trimmed Date J/-2: Setup By Setup Date J/-2:								
Trimmed Date <u>11-2</u> Setup By <u>KO</u> Setup Date <u>11-2</u>		Fo	silure Sketc	h	-			·
Trimmed Date <u>11-2</u> Setup By <u>KØ</u> Setup Date <u>11-2</u>]	· ·				Vor
Setup By Setup Date							Irimmed By Trimmed Date	11-2:
Setup Date								KD
							-tion Down Di	

REITZ & JENS, INC. Consulting Engineers Sheet _____ of ___

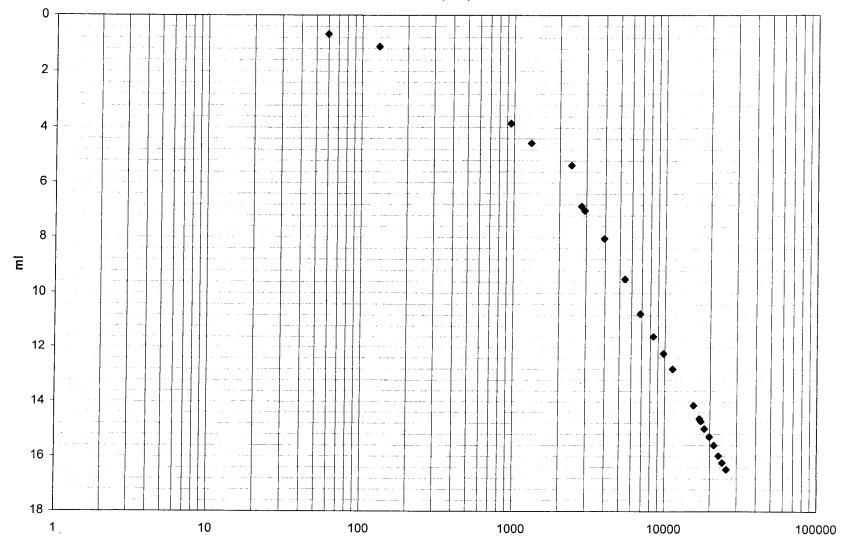
trixsTUP.dwg rovi. /12/98

TRIAXIAL CELL SATURATION & BETA FACTOR
PROJECT American Sider UNIF
SAMPLE Composite #1 DEPTH
INITIAL CELL PRESSURE 71.0 START DATE 11-28-06
INITIAL PORE PRESSURE CELL NUMBER
INITIAL TRANSDUCER READINGTRANSDUCER NUMBER

₹,

						CHANGE IN	PRESSURE	
					T	ransducer Co	onstant	
TRIAL DATE	TRIAL TIME	BASE BURETTE READING	CELL PRESSURE	TRANS- DUCER READING	CELL DELTA (1)		DUCER PRESSURE CHANGE (2)	BETA FACTOR (2/1)
12-5-06	0	2.04	710	70.7				
	Z		760	75.3	50		4.6	0.92
	2		76.0	75.3	5.0		4.6	0.92
	4		76.0	75.3	5.0		4.6	092
	8		76.0	75.3	5,0		4.6	0.92
		Con	TWUE to	Saturates				
			'					
	<u> </u>							
12-3-06	0	4.07	76.0	.76,1	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
			81.0	80.6	5.0	ļ	4.5	0,90
	2		81.0	80.7	5.0		4.6	0.92
	4		310	80,7	5,0		4.6	0.92
	8		81.0	80,7	5.0		4.6	092
		6	Partine to	SAF,			ļ	
					,			
12-10-06	0	2.33	81.0	81.5				
			86.0	86.2	5.0		4.7	0.94
	2			. 86.2	5.0		4.7	0.94
	_4			86.2	5.0		4.7	0.94
	8			36.2	50	<u> </u>	4.7	0.94
12-26-06	0	8,90	. 90.0	84.7				
	1		95.0	89.2	5.0		4.5	0.90
	2		95.0	89.3	5.0		416	0.92
	4		45.0	84.3	5.0		4.6	0.92
	8		45.0	84.3	5.0]	4,6	0.92
]		

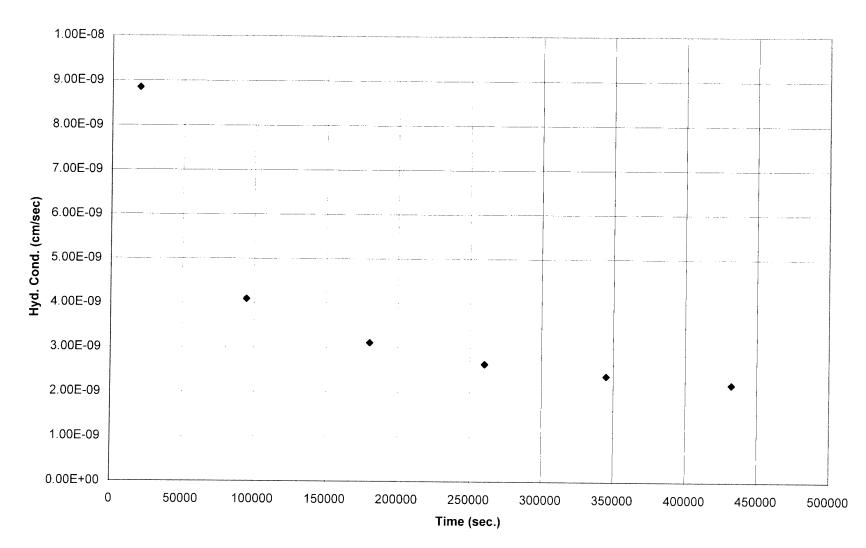
REITZ & JENS, INC. Consulting Engineers


Sheet _____ of ___

۰ بود د			-					:	
				TRIAX	IAL CI	ELL CO	NSOLI	DATIO	N TEST
	PR	OJEC-		on Sour		NLF			
		MPLE	1	205.75-1-1			DEPTH_		······································
				CELL PRES)	CELL NU	MBER 3
	CO	NSOLI	IDATION F	PORE PRE	SSURE	<u>35.)</u>			
iah	D.	ATE	ТІМЕ	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	TEMP	REMARKS
ish to	12.	19-06	10:40	10.00	0.14		0		Cal 8100
$\langle \mathcal{N} \rangle$			·	9.86	0.14	0.14	.1		
-				7.85	0.01	0.14	25		
W ard			10:41	9,85	0.00	0:15			
in as	(h		10:42	9.84	0.01	0.16	Z	· · · · · · · · · · · · · · · · · · ·	Call 8.70
ŀ	- 12		10:44	9,83	0.01	0.17	4		
			10:48	1, 87	0.01	0.18	8		
			10:55	9.80 1,78	0.02	0.20	15		Cull 8.75
			12:10	9.72	0.02	0.22	30		
	-		13:50	9.68	0.06	0.20	80 140		
			16:25	7,58	0.10	0.42	345		
-43	127	206	7:53	9.32	8.26	0.68	1273		Ciell 9.10
12 12 10 11 10 11 10 10 10 10 10 10 10 10 10			13:15	9,24	0.06	0,74	1595		
13 11			16:30	9.24	0.02	0.76	1790		
		2-66	8:20	9,11	0.13	0.89	2740		
	12-	22-06	7:30	9.00	0.11	1.00	4130		Cell 9.7
			1508	8.95	0.05		4588		all 9.5
	12	13	2240 1339	8.94	0.01	1.06	5040		
		124	14:22	8,88	0.08	1.04	5939 7422		Cel 10.0
	· · · · · ·	26	7:40		-0.11	1.01	9900		cell 10.0
		27	9:00	3,98	0.01	0.02	4100		<u> </u>
					- <u>e</u> .e				-
		}					·····		
									<u></u>
					····				
l					·				
Ľ						• • • • • • • • • • • • •	·		

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _____

Composite #1


Time (min)

Ameren, Soiux UWLF Project # 2005012477 Compostite #2 Hydraulic Conductivity

Soil Co	Test Info	ormation	
Pre-test conditions	Post-test Conditions	a (cm^2)=	0.19685
Wet Density = 119.0 (lbs/ft^3)	Wet Density = 119.1 (lbs/ft^3)	1 1 1 1	9,7176167
% Moisture = 27.1%	% Moisture = 31.7%		20.468077
Dry Density = 93.7 (lbs/ft^3)	Dry Density = 90.4 (lbs/ft^3)	<u> </u>	

				Base Burette		Top Burette							
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time		Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.		Factor	Conductivity
		(seconds)	(ml)	<u>(ml)</u>	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
1/5/2007	7:40	0	1.4	10.00	27.200	0.00	78.000	290.017	21.3		<u></u>		
	13:05	19500	1.5	9.84	28.013	0.06	77.695	288.900	22.4	21.85	9.25E-09	0.9566877	8.85E-09
1/6/2007	10:00	94800	1.8	9.63	29.080	0.12	77.390	287.528	20.7	21.61	4.25E-09	0.9621193	4.09E-09
1/7/2007	9:50	180600	1.9	9.50	29.740	0.20	76.984	286.461	20.4	21.11	3,19E-09	0.9737855	3.11E-09
1/8/2007	8:00	260400	2.0	9.43	30.096	0.28	76.578	285.699	20,5	20.91	2.69E-09	0.9785101	2.63E-09
1/9/2007	7:30	345000	2.1	9.35	30.502	0.36	76.171	284.886	20,8	20.84	2.42E-09	0.9799897	2.37E-09
1/10/2007	7:45	432300	2.2	9.29	30.807	0.45	75.714	284.124	20	20.75	2.22E-09	0.9821063	2.18E-09

Composite #2

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- Ammon UWLF Locationa= Sample --- Composites # 2 A= Depth-----L=

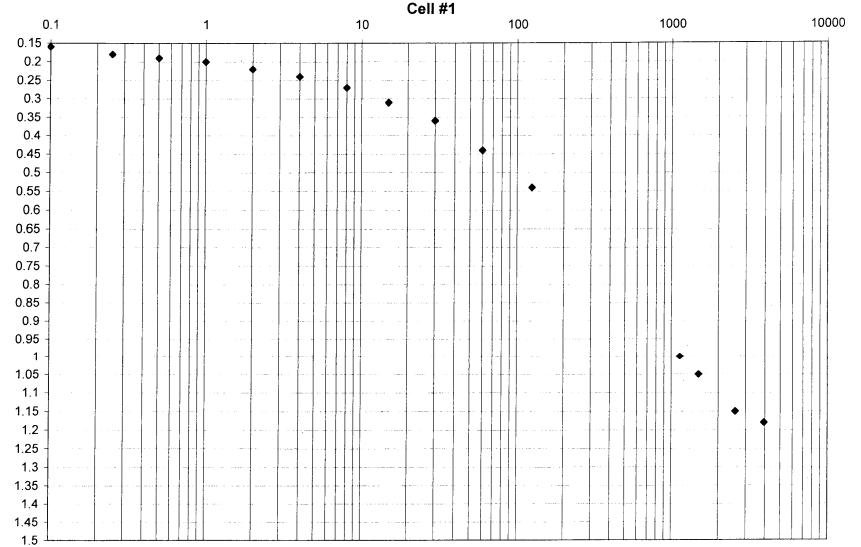
Cell No. /

		Cell Pressure (p.s.i.) 83.4	Base Pressure (p.s.i.) 75 D	Top Pressure (p.s.i.) 78.4							
Date Time		Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient	
1-5-07	7:40	0	1.35	10-00	0.00				21.3		
	13:05	325	1.50	9.84	0.06				22.4		
1-6-09	10:00	1580	1.80	9.63	0.12				20.7		
1-7-07	9:50	3010	1.90	9.50	0.20				20.4		
1-3-07	8:00	4340	2.00	9.43	0.28				20.5		
1-9-07	7:30	5750	2.10	9,35	0.36				20.3		
1-10-07	1:45	72.05	2.15	9.29	0,45				20.0		
		· · ·		ļ							
·							<u> </u>				
······································				ļ				· · · · · · · · · · · · · · · · · · ·			
·		ļ									
		ļ	· .					Temp.		Hyd.	
axL	t (sec)	2xAxt	aL/2At	h1	h2	ln(h1/h2)	К	Cor.	K -Cor.	Gradient	
	ļ	ļ	·					<u> </u>		ļ]	
			-					ļ			
			<u> </u>					ļ			
										ļ	
			ļ		ļ		·	ļ		ļ	
					<u> </u>						
		<u> </u>	·							<u> </u> {	
L	.l		<u> </u>	<u> </u>	l	1					

	TRIAXIAL CELL SETUP						
	Project Amarca Sidex Sample Composition # 2 Depth @+ 12% W Description CLAY(CH), Brown	Date_12-26-2					
	Sample Compositio # 2 Depth @+ 12% W	westhad Stand Hock					
	Description GLAY(CH), Brown						
	Type of Test Hudr. Cont. Confining Pressure Differentia	al <u> </u>					
	Cell NumberSaturate before after Cons						
	Number of Membranes	LENGTH CHANGE					
		STRAIN GAUGE at setup 500					
	MOISTURE CONTENT	at saturation start 500					
	INITIAL FINAL	Ut suturition start					
	Tare No. YIU Y8 R-100	at consolidation start <u>445</u>					
	Wet Wt. + Tare 14.76 148.08 Dry Wt. + Tare 101.72 123.94	at axial load start 458					
	Wt. Water						
	Tare Wt. 34.92 34.92 33.44 Dry Soil Wt.	MASS PROPERTIES					
	Moisture % 27.01 27.12	Wt. Tube + Soil gr					
	Avg. w % 27.06	Wt. Tube gr Wt. Soil gr					
		Tube Diameter in					
		Sample Length in tube length in					
	SPECIMEN DIMENSIONS ' in. / mm.	tube length in top trim in					
	HEIGHT DIAMETER	bottom trim in					
	Initial Final Initial Final	total trim in sample length in					
	1 3806 3,8285 T 1.9855 2.025	Density constant					
	2 38055 3.8270 M 19785 1.9995 3 38060 3.8220 B 19760 2.0175	4.85/(D^2 * L) Wet Density					
	Ava 3.6060 3.825833 1.976733 in 2.0048733	Dry Density P					
	Avg. 9. 4124 9.71761667 5. 6275007cm 5.1049762	Equil 4.4 = 379.35					
	Description After Test	Figul WA: = 379.35					
		<u> </u>					
	Remarks Institut In = 119,0	Fing In = 119,1					
1	You = 13.7						
	/6M = 21.1						
8							
2	Failure Sketch	· · · · · ·					
~							
ğ		Trimmed By					
R		Trimmed Date 12:20					
p		Setup By					
659		Setup Date 12-20					
(8)9		Taken Down By					
\sim		Take Down Date					

PFITZ & IFNS INC. Consulting Engineers Sheet _____ of ____

PROJECT	Ameran	Sions 1 to #2	n W L Te	<u></u>				
SAMPLE	Composi	お井と		DEP	TH		<u>-</u>	
INITIAL C	ELL PRES	SURE	71.0	<u></u>	START (DATE	2-23-0	6
INITIAL P	ORE PRES	SURE	START DATE <u>12-23-06</u> CELL NUMBER <u></u> TRANSDUCER_NUMBER <u></u>					
INITIAL T	RANSDUC	ER READIN						
						NODOCEN		
						CHANGE IN	PRESSURE	
7751.4.1			0511		T		onstant	
TRIAL DATE	TRIAL TIME	BASE BURETTE	CELL PRESSURE		CELL		DUCER PRESSURE	BE FAC
		READING		READING	DELTA	CHANGE	CHANGE	(2,
1-2-07	0	436	71.0	70.5	· · · · ·			
	1		76.0	75,4	5.0		4.9	0.
	4		76.0	75.4	5.0		4,9	D.
	2		76.0 76.0	15.4	5.0	-	4.9	0.
	00				,	· ·		0.
			·					
	· · · · · · · · · · · · · · · · · · ·							
						1		
				·				
				······································				····
								[
				ļ		<u> </u>		
				<u> </u>			:	
		-}				1	· · ·	
								
						<u> </u>	 	<u> </u>
		1				1		
								1

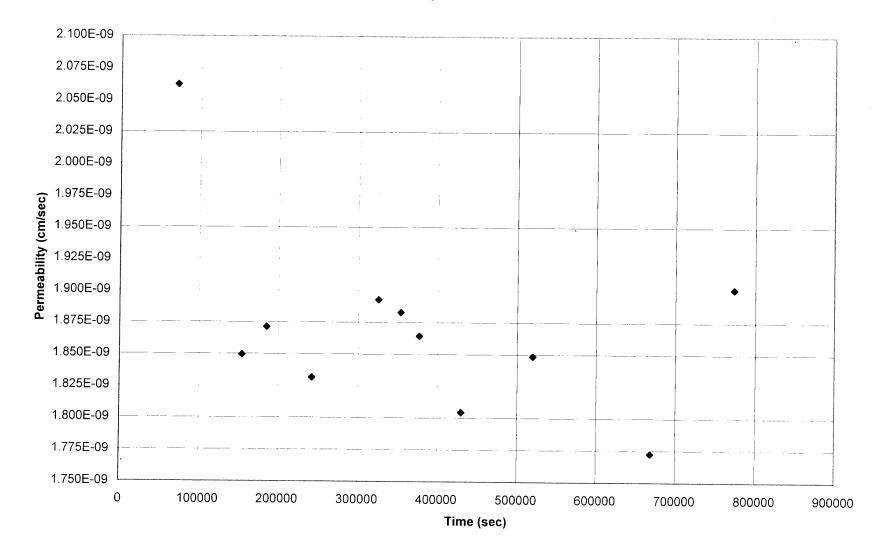

REITZ & JENS, INC. Consulting Engineers Sheet _____ of ____

SAMPLE	\sim	a <u>l Sionx</u> scrite #	2			×		<u>_</u>
						CELL NUI	MBER	
CONSOLI	IDATION	PORE PRE	SSURE _	75.0)			
DATE	ТІМЕ	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	ТЕМР	REMARKS	<u></u>
1=2-07	13:35	10.00			0.			
		9.84 9.82		0.16	•1			
		9.82	i	0.18	,25			
	13:36	9.80		0.19	15			
	13:37	9.78		0.20				
	13:39	9.76		0.24	4			
	13:43	9.73		0.27	8	·	· · · · · · · · · · · · · · · · · · ·	
	13:50	9.69		0.31	15			
·	14:05 14:35	9.64		0.36	30	[]	· · · · · · · · · · · · · · · · · · ·	
	13:40	7.56		0.44	60			
1-3-07	8.30	9.00		0.54	125.			<u> </u>
	14:30	3.95		1.05	1495			
1-4-09	8:30	8.85		1.15	2575	· · · ·		
1-5-07	7:30	8,32		4,18	3955			
				· · · · ·				<u> </u>
·					· · · · · ·			
							* .	
}			- ALV					
[]			\mathcal{H}^{N}					
· · · · · · · · · · · · · · · · · · ·	:							
<u>├</u> }								
							· · · · · · · · · · · · · · · · · · ·	

REITZ & JENS, INC. Consulting Engineers s

Sheet _____ of _

Composite #2 Cell#1



Ameren, Soiux UWLF Project # 2005012477 Compostite #3 Hydraulic Conductivity

Soil Co	nditions	Test	t Info	rmation
Pre-test conditions	Post-test Conditions	a (cm	1^2)=	0.19685
Wet Density = 118.8 (lbs/ft^3)	Wet Density = 118.4(lbs/ft^3)	l Lia	cm)=	8,541597
% Moisture = 28.2%	% Moisture = 32.8%		,	22.395469
Dry Density = 92.7 (lbs/ft^3)	Dry Density = 89.2 (lbs/ft^3)		/	

			(Base	Burette	Top I	Burette						
Data			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.		Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/18/2006	13:00	0	3.1	10.00	27.200	0.00	78.000	156.337	21.8				
12/19/2006	8:50	71400	3.0	9.95	27.454	0.07	77.644	155.727	17.9	19.85	2.05E-09	1.0039204	2.06E-09
12/20/2006	7:55	154500	3.1	9.94	27.505	0.17	77.136	155,169	20,2	19.42	1.82E-09	1.0146012	1.85E-09
	16:30	185400	3.2	9.93	27.556	0.21	76.933	154.915	20.3	19.56	1.85E-09	1.0111449	1.87E-09
12/21/2006	8:20	242400	3.3	9.90	27.708	0.26	76.679	154,508	20.9	19.80	1.82E-09	1.0050753	
12/22/2006	7:20	325200	3.3	9.84	28.013	0.34	76.273	153,797	20	19.97		1.0010300	
12/22/2006	15:08	353280	3.5	9.86	27.911	0.40	75.968	153,594	20	19.97	1.88E-09	1.0009674	1.88E-09
12/22/2006	22:40	376800	3.4	9.83	28.064	0.40	75.968	153.441	20	19.97	1.86E-09	1.0009221	1.86E-09
12/23/2006	13:30	430200	3.5	9.83	28.064	0.46	75.663	153.137	20.7	20.02		0.9997757	1.80E-09
12/24/2006	14:22	519720	3.5	9.80	28.216	0.58	75.054	152.375	20.7	20.14		0.9969184	1.85E-09
12/26/2006	7:20	668400	3.4	9.76	28.419	0.72	74.342	151,460	20	20,18		0.9957647	1.77E-09
12/27/2006	12:50	773400	3.6	9.72	28.622	0.83	73.784	150.698	21.2	17,44	1.78E-09	1.0663389	1.90E-09

Composite #3

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job ----- Awillin Siow WHILF

Location-Sample---*Compositus* #3 Depth-----

. . .

a= A= L=

Cell No. Z

V		Cell Pressure (p.s.i.) <i>80, O</i>	Base Pressure (p.s.i.) 75,0	Top Pressure (p.s.i.) 75,5						·
Det New	Prosens 121500	81.5	75.0	76.5						
Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-18-06	13:00	0	3.05	10.00	0.00				21.8	
12-19-06	8:D	1190	300	9.95	0.07				17.9	
12-20-06	7:55	2595	3.10	9.94	0.17				20.2	
	16:30	3090	3.20	9.93	0.21				21.3	
12-21-06	3:20	4040	3.30	9.90	0.26				20.8	
12-22-06	7:20	5420	3.30	9:84	0.34				20.0	
	1508	5888	3,45	9.86	0.40					
	2240	6280	3,40	4.83	0,40					
12/23	1330	7170	3.50	9.83					20.7	
12/24	1422	866Z	3.50	9,80	0.46 0,58					
12/26	740	11140	3.40	9.76	0.72			-	20.0	
12-27-06	12:50	12890	3.55	9.92	0,83				21.2	
							· · · · · · · · · · · · · · · · · · ·			
								Temp.		Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	ln(h1/h2)	ĸ	Cor.	K -Cor.	Gradient
							· <u> </u>		+	
								ļ	1	1
									<u> </u>	
	-								1	

		TRIAXIA	L CELL	SETUP	& TAKEDOWN
	Auger)	5	MITE		Dote 1/-28-1 tor #129 monstree
Project	Conside	<u>1000</u>	40021	tala A Provi	the # 17.9 Monstree
Sample	Composite	WINH R	Depth7	Arace 1000	
Descrip	tion	$\frac{1}{(U'')}$	(OWN)		
Type of	f Test	Cand	Confining Pres	ssure Different	iol
					solidation
Numbe	r of Membra	nes <u>2</u>	Filter Strips	Yes NO	LENGTH CHANGE
					STRAIN GAUGE at setup
[MOISTURE	CONTENT		500
·			NITIAL	FINAL	at saturation start
	Tare N		S4		at consolidation start461
We	t Wt. + Ta	re /2/ 3 4	108,83		472
Dr	y Wt. + Ta	re 99,33			at axial load start <u>472</u>
	Wt. Wat Tare_V		21.57		r
	Dry Soil V	Vt.			MASS PROPERTIES
	Moisture	% 28.3174	1 28,0223		Wt. Tube + Soil
	Avg. w	%	28.170	LJ	Wt. Tube Wt. Soil 350,28
					Tube Diameter
					Sample Length
SPEC	IMEN DIME	ENSIONS	in. /	mm.	tube length top trim
	HEIG	HT	DIAME	IER	bottom trim
	Initial	Final	Initial	Final	total trim
		1		2.1085	sample length Density constant
2	<u>3,3195</u> 3,3155	3.3695 3.3590	T Z.0770 M Z.0795	2.0985	4.85/(D^2 * L)
3	3.3000	3.3600	B 2.0765	2.1000	Wet Density
Avg.	3.31166 in 8.4116 cm	3.36283 Tw 8.541597cm			Dry Density
L	1.0.1119				Final Morat WH = 362.8
Des	cription After	r Test			`
	,				
<u> </u>					
Rem	arks	ich On =	118,8	·	Final 8m = 118 -
		Kory =	= 92.7		$\frac{8_{\text{pry}}}{2} = \frac{94.2}{32.8}$
<u> </u>		%m =	. 28.2		2 m = 32.8
			-1-	1	
		Failure Sket	cn	· 1	
					Trimmed By Trimmed Date
					Trimmed Date
					Setup By
		i			Setup Date <u> </u>
					Taken Down By Take Down Date

REITZ & JENS, INC. Consulting Engineers Sheet _____ of ___

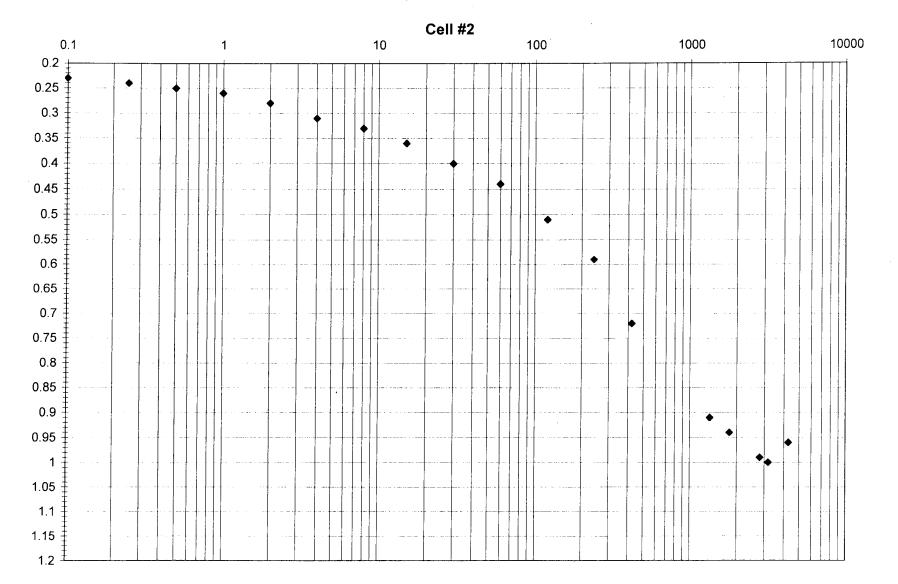
12/98

thissiup.dwg rev

t.	TRIAXIAL	CELL	SATUR	ATION	&	BETA	FACTOR
PROJE	T <u>Ameren</u> Composite	UWF					
SAMPL	- Composite	#3		_ DEPTH _			
INITIAL	CELL PRESSUR	e7/,	0		fart i	DATE	
INITIAL	PORE PRESSUR	E. <u>70</u>	.0		CEL	L NUMBER	2
INITIAL	TRANSDUCER F	READING _	71.2		TRA	NSDUCER	NUMBER

TRIAL DATE	TRIAL TIME	BASE						
			CELL	TRANS		TRANS	DUCER	BETA
		BURETTE	PRESSURE	DUCER	CELL		PRESSURE	FACTOR
4		READING		READING	DELTA	CHANGE	CHANGE	
					(1)	01111102	(2)	(2/1)
12-5-06	0	2.05	71.0	70.3				
	1		76.0	15.2	5.0		4.9	0.98
	2		76.0	75.2	5.0		4.9	0.98
	4		76.0	75.2	5,0		4.9	0.98
	8		76.0	75,2	5.0		4.9	8,98
	<i>U</i>	- <u></u>		·····			I · · ·	
·		· · · · · · · · · · · · · · · · · · ·	'					
					· ·			
				16 /				
							· · · · · · · · · · · · · · · · · · ·	
						ż		
				·		•		
					·• <u> </u>	·		
		·····	<u>.</u>			·		
						,,,,,,,,		
		·····						
L[l	l		[·	l	l

REITZ & JENS, INC. Consulting Engineers

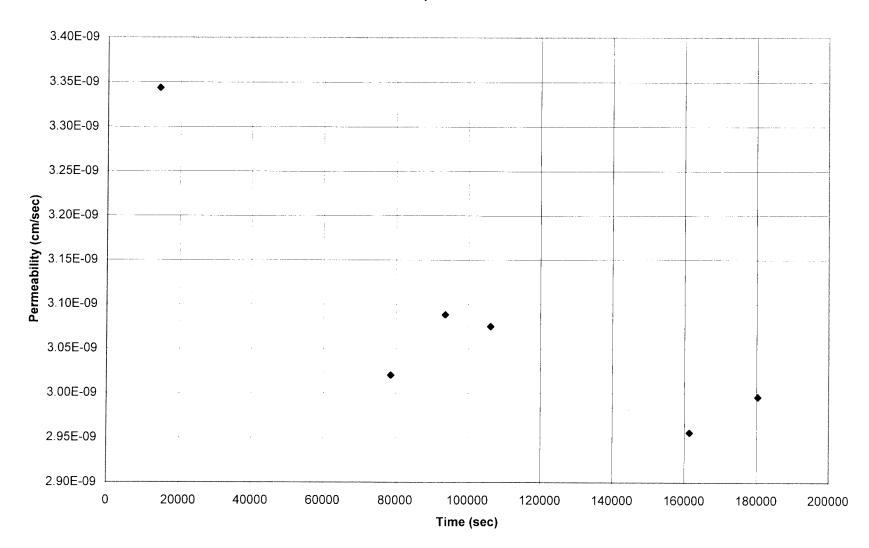

Sheet _____ of _

SAMPLE	Ca	N 5. Julie Mosthe f	¥3	<u>.</u>	. DEPTH _		
							MBER _ 2 .
		PORE PRE					
DATE	ТІМЕ	BURETTE READING	DELTA VOLUME	SUM DELTA	DELTA	ТЕМР	REMARKS
2-5-00	9:57	10.00	VOLUME		TIME		· · · · · · · · · · · · · · · · · · ·
e M		1,77	0.23	0.23	0.		
		9.76	0.01	0.24	.25		· · · · · · · · · · · · · · · · · · ·
		1.75	0.01	6.25	.5		
	9:58	9,74	0.01	0.26	1		······································
	9:59	9.72	6.02	0.28	Z		· · ·
	10:01	9.69	0.03	0.31	4		
	10:05	9.67	0.02	0.33	8		
	10:12	9.64	0.03	0.36	15		· · · · · · · · · · · · · · · · · · ·
	10:27	9.60	0.04	0.40	30		
	10:57	9.56	0,04	0.44	60		
	·	* 9.49	0.07	0.51	120.		
	13:57	9.41	0.03	0.59	240		-
	16:59	9,28	0.13	0.72	422		
2-6-00	8:22	9.09	0,19	0.91	1345		
	15:37	·	0.03	0.94	1300		
17	0848	9.01	0.05	0.99	2811		
2.0	15:00	9.00	0.01	1.00	3183		
2-8-06	9:22	9.04	-0.04	0.96	4285		
		· · · · · · · · · · · · · · · · · · ·	· · ·				
		· · ·					
							́х.
}							
							······
			· · · · · · · · · · · · · · · · · · ·				
(

REITZ & JENS, INC. Consulting Engineers

Sheet _____ of ___

Composite # 3


.

·

Ameren, Soiux UWLF Project # 2005012477 Compostite #4 Hydraulic Conductivity

Soil Co	nditions		Test Info	rmation
Pre-test conditions	Post-test Conditions	ſ	a (cm^2)=	0.19685
Wet Density = 124.4 (lbs/ft^3)	Wet Density = 123.8 (lbs/ft^3)		L (cm)=	10.620587
% Moisture = 23.8%	% Moisture = 25.8%		A (cm^2)=	21.996012
Dry Density = 100.5 (lbs/ft^3)	Dry Density = 98.4 (lbs/ft^3)			

				Base	Burette	Тор В	Burette						
			Cell Burette		Distance		Distance	Total Head	1	Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/18/2006	11:00	0	19.5	10.00	27.200	0.00	78.000	191.516	21.5				
	15:00	14400	19.6	9.99	27.251	0.03	77.848	191.313	22.4	21.95	3.50E-09	0.9544233	3.34E-09
12/19/2006	8:50	78600	19.6	9.93	27.556	0.12	77.390	190.551	17.9	20.48	3.05E-09	0.9886321	3.02E-09
	13:00	93600	19.7	9.92	27.606	0.15	77.238	190.348	20.3	20.26	3.11E-09	0.9939545	3.09E-09
	16:30	106200	19.7	9.91	27.657	0.17	77.136	190.195	20.9	20.30	3.10E-09	0.9929760	3.08E-09
12/20/2006	7:50	161400	19.7	9.86	27.911	0.24	76.781	189.586	20.2	20.38	2.98E-09	0.9909087	2.96E-09
1	13:05	180300	19.7	9.84	28.013	0.27	76.628	189.332	20.7	20.39	3.02E-09	0.9907446	3.00E-09

Composite #4

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

a=

A=

L=

Job----- Amena Sing WWIF Location-Sample --- Composite #4 Depth-----

Cell No.

۰.

·..、

	[Cell Pressure (p.s.i.)	Base Pressure (p.s.i.) 75:อ	Top Pressure (p.s.i.) 75.5						
Rese	+ TO 12.15-00	32.0	75.0	77.0						
Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-11-06	8:15	0	17.7	10.00	0.00				20.0	
	14:30		17.7	10.00	0.04				21,8	
	16:45		17.7	10.00	0.04				22.1	
12-12-06	9:15		17.95	10.00	0.12				21.5	
	15:55		17,90	9.98	0.13				23.5	
12-13-06	8:15		13,10	9.96	0.19				20.8	
12-14-06	8:05		18,20	9.93	0.24				21.4	
12-15-06	3:05	·	13.30	9.93	0.34				20.8	
			AFTE	R PRE	suresl	Verelke	set			
12-18-06	11:00	6	19.45	10.00	0.00		· · · · · · · · · · · · · · · · · · ·		21.5	
	15:00	240	19.60	9.91	0.03				22.4	
12-19.06	8:50	1310	19.55	9.93	0.12				17.9	
	13:00	1540	19.70	9.92	0.15				20.3	
	16:30	1770	19,70	9.91	0.17				209	
12-20-06	7:50	2690	19.70	9,86	0.24				20.2	
	13:05	3005	19.70	9.84	0.27		_	Temp.	20.7	Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	ln(h1/h2)	К	Cor.	K -Cor.	Gradient
ļ										
								ļ		
		···- ,						 		
·										· · · · ·
L	I		<u> </u>	l	I	l		1	<u> </u>	

TRIAXIAL CELL SETUP	& TAKEDOWN
Project <u>AMOREN Signa UWLF</u> Sample <u>Composite FF4</u> Depth <u>+10% M ON</u> Description <u>CLAY(CL)</u> , BIDWW, With TEACE Silta	Date 11-28-00
Project Thropped FL Depth +10% M ON T	Rater
Description CLAY(CL), BIDWW, With TEACE Silta	
Type of Test Hydr. Cond Confining Pressure Differenti	ial <u>5 P97</u>
Cell Number Saturate before after Cons	solidation
Number of Membranes Filter Strips Yes No	LENGTH CHANGE
	STRAIN GAUGE at setup
MOISTURE CONTENT	
INITIAL FINAL	at saturation start <u>500</u>
	at consolidation start <u>499</u>
Tare M 36 M 16 Wet Wt. + Tare 99.32 89.52	at axial load start
Dry Wt. + Tare <u>34,39</u> 74,66 Wt. Water	
Tare Wt. 22.14 22.38	MASS PROPERTIES
Dry Soil Wt. Moisture % 23.9839 Z3.6920	Wt. Tube + Soil gr
Avg. w % 23.84	Wt. Tube gr
	Wt. Soil <u>455.87</u> gr Tube Diameter in
	Sample Length in
SPECIMEN DIMENSIONS ' in. / mm.	tube length in in in
HEIGHT DIAMETER	top trim in
Initial Final Initial Final	total trim in
1 4,1570 41775 T 2,0710 2.0875	sample length in Density constant
2 411010 41910 MZ035 20780	4.85/(D^2 * L)
3 41760 41855 BZ0720 2.0350 Avo 4.1647 - 4.181333 2 2.055 in 2.0835 in	Wet Density po Dry Density po
AVG. 10.5783 10.620587 cm 5, 24637 cm 5, 29 20 cm	
Description After Test	Dy Sol wt = 368.11 Post wt 463.3
·	
Remorks Instint &= 124.4 Filled	8 = 123.8
y = 100.5	- 98.4
2M = 23.8	6M= 25.0
Failure Sketch	
	Trimmed By
	Trimmed Date
	Setup By
	Setup Date
	Taken Down By
	Take Down Date 12-20
	Take Down Date

REITZ & JENS, INC. Consulting Engineers Sheet _____ of ____

trixSTUP.dwg rev '12/98

19 19

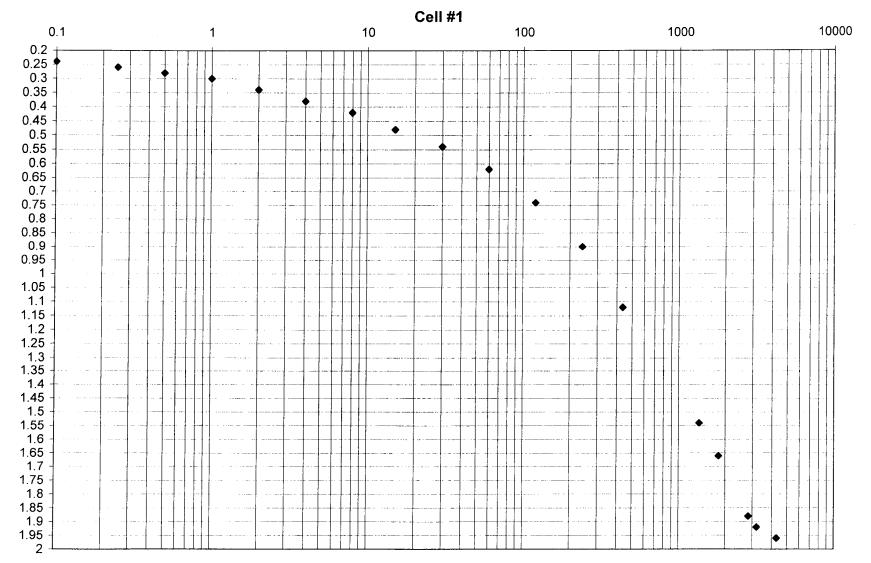
• •

· .

. . . .

INITIAL P		· · · · · ·			IH			
		SURE	T1.0				1-23.06	
INITIAL T	ORE PRES	SURE	10.0		CEL	L NUMBER	1	<u></u>
	RANSDUCE	R READIN	с <u>_71.4</u>		TRA	NSDUCER	NUMBER	1
				·····-		CHANGE IN	PRESSURE	
					ТТ		onstant	
TRIAL DATE	TRIAL TIME	BASE BURETTE	CELL PRESSURE	TRANS DUCER	CELL		DUCER PRESSURE	BETA
		READING	FRESSURE	READING	DELTA	CHANGE	CHANGE (2)	FACTOR (2/1)
2-5-06	6	1.08	71.0	70.6				
	<i>I</i>	И	76.0	75,5	5.0		4,9	0.98
	2	<u> </u>	76.0	75,5 75,5	5.0		4.9	0.98 0.98
	<u>4</u> 8	<u> </u>	76.0 76.0	75,5	5.0		4.9 4.9	0,90
			1		, ,			
					•	· · · · · · · · · · · · · · · · · · ·		
				\overline{V}				
·····		(f ()	K)			
	·					2		
				·	·····			
			·					
]		
		1	1			ł	1	

REITZ & JENS, INC. Consulting Engineers

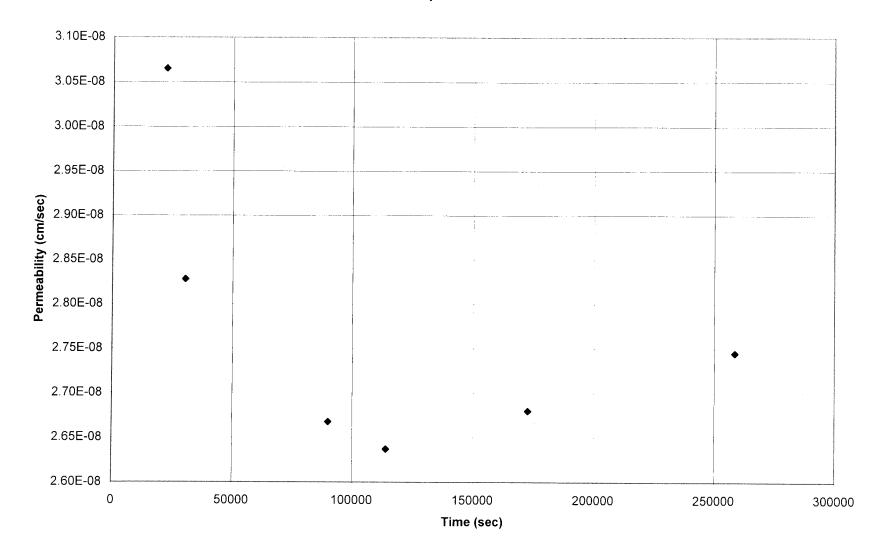

. • .

Sheet _____ of __

CONSOLIDA DATE T 12-5-06 9: 9: 9: 9: 9: 9: 10: 10: 10: 10: 10: 10: 10: 10	ATION CELL ATION PORE TIME BUF TIME BUF 140 10 9.40 10 9.7 <th>PRESS E PRESS RETTE ADING 70 76 74 72 70 66 62 58 52 52 58 52 52 76 62 58 52 76 74 72 70 66 62 52 76 74 72 70 66 62 52 76 74 72 70 76 74 72 70 66 67 74 74 72 70 76 74 74 72 70 76 74 74 72 70 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 76 74 74 76 74 74 76 76 74 74 76 76 74 74 76 76 74 74 76 76 74 74 76 76 74 76 76 74 76 76 74 74 76 76 76 76 76 76 76 76 76 76 76 76 76</th> <th>SURE SURE DELTA VOLUME 0.02 0.02 0.02 0.02 0.04 0.12 0.12 0.12</th> <th>80.0 75.0 DEI TA</th> <th>)</th> <th></th> <th>MBER /</th> <th></th>	PRESS E PRESS RETTE ADING 70 76 74 72 70 66 62 58 52 52 58 52 52 76 62 58 52 76 74 72 70 66 62 52 76 74 72 70 66 62 52 76 74 72 70 76 74 72 70 66 67 74 74 72 70 76 74 74 72 70 76 74 74 72 70 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 74 74 72 76 76 74 74 76 74 74 76 76 74 74 76 76 74 74 76 76 74 74 76 76 74 74 76 76 74 76 76 74 76 76 74 74 76 76 76 76 76 76 76 76 76 76 76 76 76	SURE SURE DELTA VOLUME 0.02 0.02 0.02 0.02 0.04 0.12 0.12 0.12	80.0 75.0 DEI TA)		MBER /	
CONSOLIDA DATE T 12-5-00 9: 12-5-00 9: 9: 9: 9: 9: 10: 10: 10: 10: 10: 10: 10: 10	TION PORE TIME BUF REA 1.40 10 , 9.7 100 9.7 100 9.7 100 9.7 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000000000000000000000000000000000000	E PRESS RETTE ADING 70 76 72 70 66 62 52 76 62 52 76 72 70 76 76 76 77 70 76 76 76 77 70 76 76 76 76 76 76 76 76 76 76	SURE DELTA VOLUME 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04	75.0 SUM DELTA VOLUME 0.24 0.26 0.26 0.28 0.26 0.28 0.28 0.26 0.28 0.26 0.28 0.26 0.24 0.26 0.39 0.39 0.39 0.48 0.54 0.55 0.54 0.54 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.56 0.57 0.54 0.55 0.54 0.55 0.54 0.57 0.54 0.56 0.57 0.54 0.56 0.54 0.56 0.57 0.54 0.57	DELTA TIME 0 , 1 , 25 , 5 1 2 4 8 , 5 30 60 120 240	<u>.</u>		
CONSOLIDA DATE T 12-5-00 9: 12-5-00 9: 9: 9: 9: 9: 10: 10: 10: 10: 10: 10: 10: 10	TION PORE TIME BUF REA 1.40 10 , 9.7 100 9.7 100 9.7 100 9.7 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000000000000000000000000000000000000	E PRESS RETTE ADING 70 76 72 70 66 62 52 76 62 52 76 72 70 76 76 76 77 70 76 76 76 77 70 76 76 76 76 76 76 76 76 76 76	SURE DELTA VOLUME 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04	75.0 SUM DELTA VOLUME 0.24 0.26 0.26 0.28 0.26 0.28 0.28 0.26 0.28 0.26 0.28 0.26 0.24 0.26 0.39 0.39 0.39 0.48 0.54 0.55 0.54 0.54 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.56 0.57 0.54 0.55 0.54 0.55 0.54 0.57 0.54 0.56 0.57 0.54 0.56 0.54 0.56 0.57 0.54 0.57	DELTA TIME 0 , 1 , 25 , 5 1 2 4 8 , 5 30 60 120 240	<u>.</u>		
DATE T 12-5-00 9: 9: 9: 9: 9: 9: 10: 10: 10: 10: 10: 10: 10: 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RETTE ADING 76 776 776 776 76 76 76 76 76 76 76 76	DELTA VOLUME 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04	SUM DELTA VOLUME 0.24 0.26 0.28 0.28 0.28 0.28 0.30 0.34 0.33 0.39 0.34 0.39 0.42 0.48 0.54 0.54 0.62 0.74 0.74 0.90	DELTA TIME 0 ,1 ,25 ,5 1 2 4 8 15 30 60 120 240	TEMP	REMARKS	
12-5-06 9: 9: 9: 9: 9: 9: 10: 10: 10: 10: 10: 10: 10: 10	REA 1:40 10, 9,1 9,1 9,1 9,7 9,1 9,7 9,1 9,7 9,1 9,7 9,1 9,7 9,1 7,6 9,1 7,6 9,1 9,1 1,40 9,1 1,40 9,1 1,40 9,1 1,57 8,1 5,58 8,1	ADING 	VOLUME 0.24 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.04	DELTA VOLUME 0.24 0.26 0.28 0.28 0.28 0.28 0.28 0.30 0.30 0.39 0.39 0.42 0.48 0.48 0.54 0.54 0.62 0.74 0.74 0.90	TIME <i>O</i> , 1 , 25 , 5 1 2 4 8 15 30 60 120 240	TEMP	REMARKS	
9: 9: 9: 9: 9: 9: 9: 9: 10. 10. 10. 10. 10. 10. 10. 10. 11. 13. 16. 12. 17. 0 15. 12. 17. 0	91 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 7. 7. 7. 7. 7. 7. 7. 9. 7. 7. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 9. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	176 74 72 70 66 62 62 62 62 63 64 64 76 76 76 76 76 76 76 76 76 72 72 72 72 72 72 72 72 72 72 72 72 72	0,02 0,02 0,02 0,04 0,04 0,04 0,04 0,04	0.26 0.28 0.30 0.34 0.38 0.42 0.48 0.54 0.54 0.62 0.74 0.90	, 1 , 25 , 5 1 2 4 8 15 30 60 120 240			
9. 9. 9. 9. 10. 10. 10. 10. 10. 10. 10. 10	9.1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7	74 72 70 66 62 58 52 88 88 88 98 88 98 80 98 80 98 90 	0,02 0,02 0,02 0,04 0,04 0,04 0,04 0,04	0.26 0.28 0.30 0.34 0.38 0.42 0.48 0.54 0.54 0.62 0.74 0.90	.25 ,5 1 2 4 8 15 30 6 0 120 240			
9. 9. 9. 9. 10. 10. 10. 10. 10. 10. 10. 10	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	72 70 66 67 72 78 72 76 76 76 76 76 76 76 76 76 76 76 76 76	0.02 0.02 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06	6.28 0.30 0.34 0.38 0.42 0.48 0.54 0.54 0.62 0.74 0.90	, 5 1 2 4 8 15 30 6 0 120 240			
9. 9. 9. 9. 10. 10. 10. 10. 10. 10. 10. 10	4/2 9.7 4/2 7.6 144 7.6 148 7.5 155 7.5 10 9.4 140 9.1 140 9.1 140 9.1 157 8. 20 8. 5.58 8.	10 66 62 62 62 62 66 78 78 76 76 76 70 76 70 76 70 76 70 76 76 76 76 76 76 76 76 76 76 76 77 77	0.02 0.04 0.04 0.04 0.06 0.06 0.06 0.08 0.12 0.16 0.22	0.30 0.34 0.38 0.42 0.48 0.54 0.54 0.62 0.74 0.74 0.90	1 2 4 8 15 30 60 120 240			
9. 9. 9. 9. 10. 10. 10. 10. 10. 10. 10. 10	42 9.6 44 7.6 48 7.5 55 7.5 10 9.4 140 9.1 140 9.1 140 9.1 157 8. 20 8. 5:58 8.	66 62 58 52 16 8 10 10 10 10 10 10 10 10 10 10 10 10 10	0.04 0.04 0.04 0.06 0.06 0.06 0.12 0.16 0.22	0.34 0.38 0.42 0.48 0.54 0.62 0.74 0.74 0.90	2 4 15 30 60 120 240			
9: 9: 9: 9: 10. 10. 10. 10. 11. 13. 16. 12. 13. 16. 12. 17. 0 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	144 7.6 148 7.5 155 7.5 10 9.4 10 9.4 140 9.7 140 9.7 140 9.7 140 9.7 157 8. 20 8. 5.58 8.	62 58 52 16 8 26 10 10 10 10 10 10 10 10 10 10 10 10 10	0.04 0.04 0.06 0.06 0.06 0.08 0.12 0.16 0.22	0.38 0.42 0.48 0.54 0.62 0.74 0.90	4 8 15 30 60 120 240			
9:1 9: 10 10 10 11 13 16 12 12 17 0 15	48 1.5 :55 7.5 :10 9.4 :40 9.3 :40 9.3 :40 9.1 :57 8. 20 8. 5:58 8.	58 52 16 8 26 10 10 46	0,04 0,06 0,06 0,08 0,12 0,12 0,16 0,22	0.42 0.48 0.54 0.62 0.74 0.90	8 15 30 60 120 240			
9. 10. 10. 11. 13. 14. 14. 12. 12. 17. 0 15. 10. 15. 10. 15. 10. 15. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	55 7.5 10 9,4 140 9,4 140 9,1 140 9,1 157 8. 20 8. 5:58 8.	52 16 8 26 10 10 10 10 10 10 10 10 10 10	0,06 0,06 0,08 0.12 0,16 0,22	0.48 0.54 0.62 0.74 0.90	15 30 60 120 · 240			
10. 10. 10. 10. 13. 13. 14. 13. 14. 15. 10. 10. 10. 10. 10. 10. 10. 10	1.10 9,4 1.40 9,1 1.40 9,1 1.40 9,1 1.57 8,1 20 8,1 5:58 8,1 1.58 8,1	16 8 26 10 .88 46	0,06 0,08 0,12 0,16 0,22	0.54 0.62 0.74 0.90	30 60 120 · 240			
10 11 13 16 16 16 16 16 16 16 16 16 16 16 16 16	1.40 1.30 1.40 9.1 1.40 9.1 1.57 8. 20 8. 5:58 8.	8 26 10 .88 46	0.12 0.12 0.16 0.22	0.62 0.74 0.90	60 120 · 240			
11. 3 6 6 6 6 6 7 16 16 16 12 7 15	1:40 * 9.3 1:40 9.1 1:57 8. 20 8. 5:58 8.	26 10 88 46	0.12 0,16 0,22	0.74 0.90	120 · 240			
3 6 <u> 2-6-05</u> 6 12 7 12 7 15	140 9.1 157 8. 20 8. 5:58 8.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0,16 0,22	0.90	240			
16 12-6-05 12-17 12-17 15	7.57 8. 20 8. 5:38 8.	88 0	0.22					
R-6-05 8 19 12/7 0 15	20 8. 5:58 Bi	46		116			•	
12/7 0 12/7 15	5:58 8.		8.42	1.54	1360			
12/7 0 15	~~~~		0.12	1.66	1813			
15	852 8		114	1.38	2832			
			0.04	1,92	3200			
• • • • • • • • • • • • • • • • • • • •			0.04	1.96	4300			
				·				
				. <u></u>				
							<i>x</i> .	
								<u> </u>
						·		
					<u>-</u>			
- <u>-</u>					······			
			· · · ·					

REITZ & JENS, INC. Consulting Engineers Sheet _____ of ___

Compex, h= #4


•

, •

Ameren, Soiux UWLF Project # 2005012477 Compostite #5 Hydraulic Conductivity

Soil Co	nditions	Test Info	rmation
Pre-test conditions	Post-test Conditions	a (cm^2)=	0.19685
Wet Density = 125.1 (lbs/ft^3)	Wet Density = 127.3 (lbs/ft^3)	L (cm)=	10.6172
% Moisture = 20.6%	% Moisture = 23.0%	A (cm^2)=	20.288555
Dry Density = 103.7 (lbs/ft^3)	Dry Density = 103.5 (lbs/ft^3)		

				Base	Burette	Тор І	Burette						
		1	Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/11/2006	8:15	0	9.9	10.00	27.200	0.00	78.000	85.979	20				
	14:30	22500	9.8	9.89	27.759	0.12	77.390	84.811	21.8	20.90	3.13E-08	0.9786485	3.07E-08
	16:45	30600	9.7	9.85	27.962	0.14	77.289	84.506	22.1	21.18	2.91E-08	0.9721378	2.83E-08
12/12/2006	9:15	90000	10.1	9.63	29.080	0.43	75.816	81.915	21.5	21.59	2.77E-08	0.9626510	2.67E-08
	15:55	114000	9.7	9.52	29.638	0.52	75.358	80.899	23.5	21.78	2.75E-08	0.9582691	2.64E-08
12/13/2006	8:15	172800	10.2	9.30	30.756	0.82	73.834	78.257	20.8	21.91	2.80E-08	0.9554149	2.68E-08
12/14/2006	8:05	258600	10.2	8.95	32.534	1.21	71.853	74.498	21.4	21.64	2.85E-08	0.9615018	2.74E-08

Composite #5

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- American Siers UWUF Sample--- Composito # 5 Depth----Location-

1

a= A= L=

Cell No. 4

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
80.0	75.0	75,5

Suite 710	Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
, ž	12-11-06	8:15	6	4.85	10.00	0.00				20.0	
•		14:30		9. 80	9.89	0.12				21.8	
Ŋ		16:45		9,70	9.85	0.14				22.1	
Nac	12-12-06	9:15		10,05	9.63	0.413				21.5	
Č		15:55		9.70	9.52	0.52				23.5	_
\leftarrow	12-13-00	8:15		10.20	9.30	0.82				20.8	
	12-14-06	8:05		10.20	8.95	1.21				21.4	
]						
									1		
									Temp.	-	Hyd.
	axL	t (sec)	2 x A x t	aL/2At	h1	h2	In(h1/h2)	ĸ	Cor.	K -Cor.	Gradient
								-			
								· · · · · · · · · · · · · · · · · · ·			

TRIAXIAL CELL SETUP & TAKEDOWN Augren Sidux UWLF _____ Dote 11-29-06 Project __ Sample Composite #5 Depth the Standard Plater But +89 Mughues Description CLAY (CL), Brown, 5.74 _Confining Pressure Differential ____ Type of Test_ ____Saturate Gefore after Consolidation__ Cell Number. Ζ __Filter Strips Yes (No) Number of Membranes ... LENGTH CHANGE STRAIN GAUGE at setup _ MOISTURE CONTENT at saturation start _ FINAL INITIAL at consolidation start ____ M14 113,52 MO Tare No. 121.26 Wet Wt. + Tare at axial load start --Dry Wt. + Tare Wt. Water 101.99 104.34 Tare Wt. Dry Soil Wt. 22.10 21.72 MASS PROPERTIES Wt. Tube + Soil Wt. Tube 20.48 20,69 gm. Moisture % Avg. w % 20.59 gm. 430.80 Wt. Soil gm. Tube Diameter in. Sample Length in tube length in. SPECIMEN DIMENSIONS in. mm. top trim in. DIAMETER HEIGHT bottom trim in. total trim in. Final Final Initial Initial sample length in. 1,9930 1.9900 Density constant Т 4 1825 4.1820 1 1.9910 4.85/(D^2 * L) M 1,9955 41880 111705 2 20190 4,1875 B 2.0050 Wet Density 125.13 pcf. 3 4.1925 2.0010 4 19767 10 pcf. 4.1800 1,99683:~ Dry Density 103.7 Avg. 10.63407 cm 5.071950-Final B== 127.3 In=125.1 Description After Test JuitiA 8014-103.5 8.5= 103.7 9,4-23.0 24=20.6 Remarks Final wet Wt 439.24 Failure Sketch Trimmed By Trimmed Date Setup By Setup Date KCK-Taken Down By 12-14.06 Take Down Date

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _____

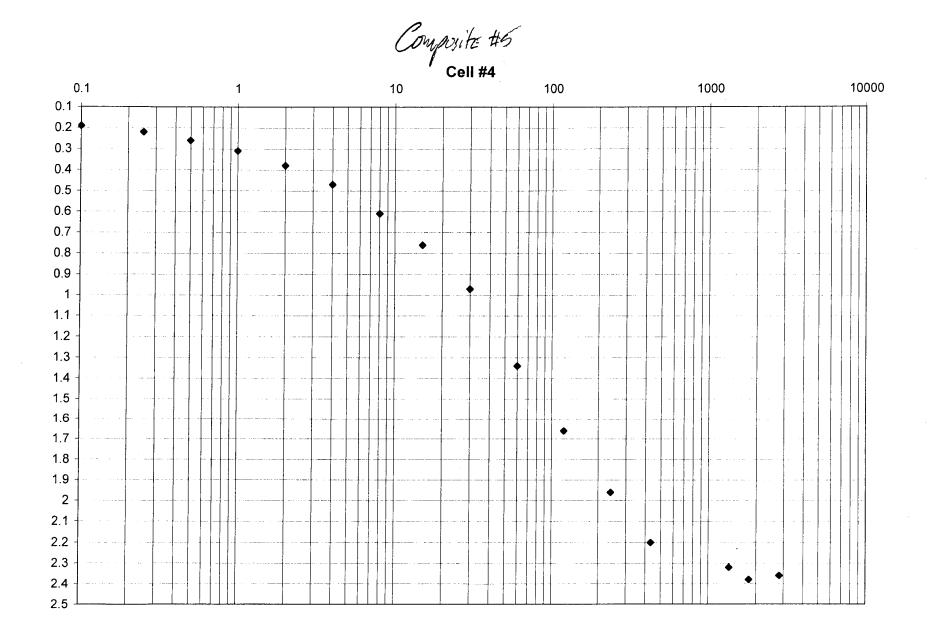
LAXSTUP.dwg row. _/12/98

e te e

يعدي الم

 T	RIAXIA	AL CELL	. SATI	JRATIO	N & V	BETA	FACTO	R
	America	Source	HIJE					
PRUJECI	- FIRE LIG	15,00x 1 HS				·		
		SURE						
INITIAL P	DRE PRES	SURE	70.0		CELI	_ NUMBER	4	
INITIAL TE	RANSDUC	ER READIN(g <u>71.0</u>		TRA	NSDUCER	NUMBER	4
	<u></u>					CHANGE IN		
		BASE	CELL	TRANS-	T	ransducer Co	DUCER	1
TRIAL DATE	TRIAL TIME	BASE BURETTE READING	PRESSURE		CELL DELTA (1)	READING	PRESSURE CHANGE (2)	BETA FACTOR (2/1)
12-5-06	0	1.33	71.0	71.2				
	1		76.0	76,2	5.0		5.0	1.0
			76.0	76.2	5.0		5,0	1.0
	4 8		76,0	76.2	5.0		5.0	1.0
	ອ	-	76.0	76.2	5.0		5.0	0,1
	· ·					· · · · · · · · · · · · · · · · · · ·		
				m/				
					··· ·· ·· ·· · · · · · · · · · · · · ·			-
				<u> </u>				
								-
			-			*		-
				<u>}</u>				
								-
			ļ				 	
	1	1	1	1	· ·	1	1	1
					}	*		· · · · · · · · · · · · · · · · · · ·
								-

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _



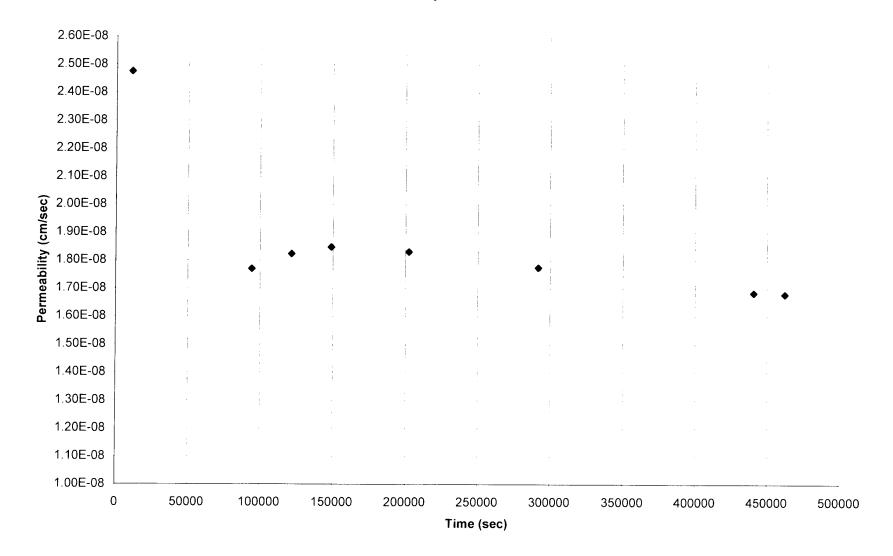
PROJEC ⁻	Amer						N TEST	
SAMPLE	Con	OSVIE #	5		. DEPTH _			
CONSOLI	, DATION (CELL PRES	SURF	80.0	0	CELL NU		4
		PORE PRE				OLLE NO		
DATE	TIME	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	ТЕМР	REMARKS	
12-5-06	9:46	10.00			0			
		9.81	0.19	0.19	· · · /			
		9,78	0.03	0.22	,25			
	Second	1,74	0.04	0.26	.5			· · · · · · · · · · · · · · · · · · ·
}	9:47	9.69	0.05	0.31				
	9:48	9.62	0.07	0.38	2			······
	9:50	9.53	0.09	0.47	4			
	9:54	9.39	0.14	0.61	8			
	10:01	9.24	0.15	0.76	15			
·	10:16	9.03	0.19	0.97	30		· .	······
	10:46	8.76	0.27	1.34	60		,	
	11:46	× 8.44	0.32	1.66	120 .			·
	13:46	8.14	0,30	1,96	240			
12 / /	16:58	7.90	0.24	2.20	432		······································	·
12-6-06	8.22	7.78	0.12	2.32	1356	-		
	15:57	7.72	0.06	Z.38	1811			
12/7	0851	7,74	-0.02	2.36	28.25			
							<u></u>	
								·
			· · ·				·	
		· .						
							•	
····								
								·
					<u>.</u>			
	· · · · · · · · · · · · · · · · · · ·	1		- A. A.				<u> </u>

REITZ & JENS, INC. Consulting Engineers

Sheet _____ of _

of _____

.


• •

Ameren, Soiux UWLF Project # 2005012477 Compostite #6 Hydraulic Conductivity

	nditions	Test	t Infoi	mation
Pre-test conditions	Post-test Conditions	a (cm	1^2)=	0,19685
Wet Density = 119.2 (lbs/ft^3)	Wet Density = 122.6 (lbs/ft^3)	L	cm)=	9.33492
% Moisture = 26.5%	% Moisture = 26.9%	A (cm	1^2)=	19,218163
Dry Density = 94.2 (lbs/ft^3)	Dry Density = 96.6 (lbs/ft^3)	<u> </u>	'	

				Base	Burette	Тор Б	Burette	1					
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/21/2006	10:25	0	7.5	10.00	27.200	0.00	78.000	156.337	21.4		· · · · · · · · · · · · · · · · · · ·		
12/21/2006	13:25	10800	7.5	9.90	27.708	0.08	77.594	155.423	22.6	22.00	2.60E-08	0.9532943	2.48E-08
12/22/2006	7:30	94200	8.6	9.43	30.096	0.52	75.358	150.800	20	21.38		0.9674437	1.77E-08
12/22/2006	15:06	121560	7.6	9.25	31.010	0.68	74.546	149.073	20	21.07	1.87E-08	0.9746672	1.82E-08
12/22/2006	22:40	148800	7.6	9.08	31.874	0.84	73.733	147.396	21.3	20.99	1.89E-08	0.9764671	1.85E-08
12/23/2006	13:29	202140	8.0	8.81	33.245	1.16	72.107	144.399	21.3	21.07	1.88E-08	0.9745676	1.83E-08
12/24/2006	14:21	291660	8.2	8.38	35.430	1.62	69.770	139.878	21.3	21.14		0.9729462	1.77E-08
12/26/2006	7:45	440700	8.7	7,76	38.579	2.28	66.418	133.375	20	20.98		0.9768505	1.68E-08
12/26/2006	13:45	462300	8.7	7.68	38.986	2.39	65.859	132.410	21.2	20.96	1.72E-08	0.9772637	1.68E-08

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- America Sibn * Mali Location-Sample--- Composite #6

Depth-----

a= A= L=

Cell No. 4

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
80.5	75.0	75,5

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-21-06	10:25	0	7,58	10.00	0.00		10-10-		21.4	
	13:25	180	7.50	9.90	0.08				22.6	
12-22-06		1570	8.60	4.43	0.52				20.0	
	1506	2026	7,6	9,25	0.68				1	
	ZZ 40	2480	7.6	9.08	0.84				21.3	
12/23	1329	3369	8.0	8.81	1.16				-	
12/24	14-21	4861	8.2	8.38						
12/26	1329 1421 745	7345	8.7	7.76	z.28				20.0	
	13:45	7705	8.7	7.68	Z.39				21.2	
							<u> </u>			
									-	
								Temp.		Hyd.
axL	t (sec)	2xAxt	aL/2At	h1	h2	ln(h1/h2)	к	Cor.	K -Cor.	Gradient
	-									
L										

TRIAXIAL CELL SETUP	
Project <u>Amure</u> Sizny Sample <u>Composite #6</u> Depth @+ 122 Moust Description Security 5.1th Brann G144(CC)	Date 1617-06
Sample Comparing Depth Depth	
Type of Test <u>Hydr. Card.</u> Confining Pressure Differenti Cell Number <u>4</u> Saturate before after Cons Number of Membranes <u>2</u> Filter Strips Yes No	al <u>5psi</u>
Cell Number Saturate Cefore) after Cons	olidation
Number of MembranesFilter Strips Yes 🔊	LENGTH CHANGE
	STRAIN GAUGE at setup
MOISTURE CONTENT	at saturation start
INITIAL FINAL	
Tare No. M2 M43 Wet Wt. + Tare 12335 119.92	at consolidation start
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at axial load start
	MASS PROPERTIES
Dry Soil Wt. 80, 14 77.01	
Moisture % 26.52 26.54 Avg. w % 26.53	Wt. Tube + Soil gm. Wt. Tube gm.
· · · · · · · · · · · · · · · · · · ·	Wt. Soil <u>357.73</u> gm.
	Tube Diameter in. Sample Length in
SPECIMEN DIMENSIONS / in. / mm.	tube length in.
HEIGHT DIAMETER	top trim in. bottom trim in.
Initial Final Initial Final	total trim in. sample length in.
1 37520 36295 T 1.9620 1.9575	Density constant
2 37465 3722 M 1.9500 1.9510 3 37450 3.6740 B 1.9465 1.934	4.85/(D^2 * L) Wet Density pcf.
3.7450 3.6740 B/.9465 / 434 Avg. 3.7478304 3.6740 I,45283 1.9475 in 9.51447 9.33192cm 4.9602 4.74665ch	Dry Density pcf.
Description After Test $W_{Final} = 352.29$	
T.41 & - 1169	Finat 1/22.6
Remarks 4 4 4 4 4 4 4 4 4 4	1 WAT - 96.6
97M = 26.5	2m = 263
Failure Sketch	
	Trimmed By <u>HEL</u> Trimmed Date <u>12 Mar</u>
	Setup By
	Setup Date 12-19-16
	Taken Down By Take Down Date

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _

. . .

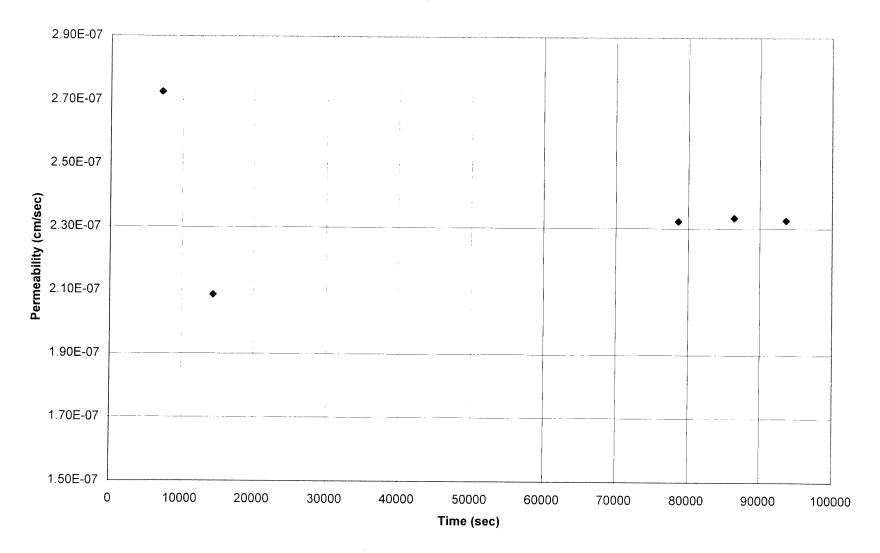
•

٠.

SAMPLE	Composit) <u>S</u> дик 2#6		DFP1				
	•	SURE						
		SURE	70.0	·			4	
INITIAL PO	JRE PRES	R READIN	91	n				И
INITIAL TH	RANSDUCE	R READING	3 <u> </u>		1RA	NSDUCER	NUMBER	_/
		T	[CHANGE IN	PRESSURF	
						ransducer Co		
TRIAL DATE	TRIAL TIME	BASE	CELL PRESSURE	TRANS- DUCER	CELL		DUCER PRESSURE	BETA
DAIL	12:5 5	READING	I RESSORE	READING	DELTA (1)	CHANGE	CHANGE	(2/1)
12-20-04	0	4.64	71.0	71.2				
	1		76.0	74.1	5.0		4.9	0.98
	2 4		76.0	76.1	5.0		4.9	0.98
	8		16.0	74.1	5.0		4,9	0.98
			·····		,			
				·	•			
			Cott				· · · ·	
		(100					
			-					
						* .		
		-	· · · · ·	<u> </u>		-		
							:	
			<u> </u>			-		
							1	
							<u> </u>	
					1	-	-	1

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _

	Λ						N TEST	
PROJECT	Huner	EN Side	ix Vl	ULF				
SAMPLE	Comp	oste #le	2	·····	. DEPTH -			
				75.0	· · · · · · · · · · · · ·	CELL NU	MBER	4
JUNSULI	DATION	PORE PRE	SSURE	- 770				
DATE	ТІМЕ	BURETTE READING	DELTA VOLUME	SUM DELTA	DELTA	TEMP	REMARKS	
12-20-06	13:60	10.00	VOLUME	VOLUME	TIME	·	Cell	3.86
·		9.68	0.32	0,32	0.		Cen	J. 03
		1.63	0.05	0.37	,25			
		9.58	0.05	0.42	15		· · · · · · · · · · · · · · · · · · ·	
·····	13:11	9.51	0.07	0.49	1			
	13:12	9.42	0.09	0.58	2			
	13:14	9.32	0,10	0.68	<u> </u>			
	13:25	3.99	0.13	0.83	8			
	13:40	8.73	0.26	1.27	30			
	14:10	3.42	0.31	1.58	69			
	1530	8.05	0.37	1.95	140.			· · ·
	16:30	7.83	0.22	2.17	200			
2-21-06	8:20	8.24						
								· · · · · · · · · · · · · · · · · · ·
			· · · · · ·	·				
		$\leq +$	2 F					
			MC					
		<u>C'</u>	<u> </u> -	de la			*	
			A bearly	<u>a</u>				
		10	1 Ore					
		- 11						
		· · ·						
·								
					·····			
							····	
							· · · · · · · · · · · · · · · · · · ·	
1								


REITZ & JENS, INC. Consulting Engineers Sheet _____ of _

Ameren, Soiux UWLF Project # 2005012477 Compostite #7 Hydraulic Conductivity

Soil Co	nditions] [Test Info	rmation
Pre-test conditions	Post-test Conditions	1 1	a (cm^2)=	0.1968
Net Density = 120.2 (lbs/ft^3)	Wet Density = 124.6 (lbs/ft^3)		L (cm)=	9.715
% Moisture = 25.0%	% Moisture = 25.6%		A (cm^2)=	19.65813
Dry Density = 96.1 (lbs/ft^3)	Dry Density = 99.2 (lbs/ft^3)			

				Base	Burette	Тор І	Burette						
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/18/2006	11:00	0	10.4	10.00	27.200	0.14	77.289	85.269	21.5				
	13:00	7200	10.4	9.61	29.181	0.44	75.765	81.764	21.8	21.65	2.84E-07	0.9612431	2.73E-07
	15:00	14400	10.4	9.33	30.604	0.52	75.358	79.935	22.4	21.88	2.18E-07	0.9561208	2.09E-07
12/19/2006	8:50	78600	10.8	7.32	40.814	2.76	63.979	58.345	17.9	20.47	2.35E-07	0.9889614	2.32E-07
	11:00	86400	10.8	7.11	41.881	2.98	62.862	56.160	19.7	20.32	2.35E-07	0.9925785	2.33E-07
	13:00	93600	10.7	6.92	42.846	3.15	61.998	54.332	20.3	20.29	2.34E-07	0.9931645	2.33E-07

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

American Stone Job-----Locationa= Sample--- Corposite # 7 Depth-----A= L=

Cell No. 4

è

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
80.5	75.0	75.5

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-18-06	11:00	0	10.35	10.00	0.14				21.5	
	13:00	no	10.35	9.61	0.44				z 1.8	
	15:00	240	10.40	9.33	0.52				22,4	
12-19.06	8:50	1310	10.75	7.32	2.76				17.9	
	11:00	1440	10.80	1.11	2.98				19.7	
	13:00	1560	10.70	6.92	3.15				20.3	
					ļ					
			<u> </u>		ļ				ļ	
		ļ								
ļ			· ·	<u> </u>				Temp.		Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	ln(h1/h2)	К	Cor.	K -Cor.	Gradient
	<u> </u>									
					<u> </u>					
				-						
	<u> </u>								<u></u>	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·					ļ		<u> </u>
		ļ						<u> </u>		
-								· · ·		┼───┤
				1				1		1

TRIAXIAL CELL SETUP of Project American Sions WWLF Sample Composite # 7 Depth Standard Proctor Description Bian 5.14 CLAY	& TAKEDOWN
Type of Test Hud. Codud Confining Pressure Differential Cell Number 4 Saturate before after Consol Number of Membranes Z Filter Strips Yes No MOISTURE CONTENT INITIAL FINAL Tare No. 2 45 Wet Wt. + Tare 95.30 /08.50 Dry Wt. + Tare 80.71 11.11 Wt. Water 72.06 72.06 Tare Wt. 72.06 72.06 Dry Soil Wt. 74.876 75.185 Avg. w % 75.03 75.03	
SPECIMEN DIMENSIONS in. / mm. HEIGHT DIAMETER Initial Final Initial Final 1 3.8915 38055 T 1.9955 1.9490 2 3.8980 3.8350 M 1.9770 1.7440 3 3.8985 3.8746 B 1.9755 1.9490 Avg. 3.8960 3.82510 1.9827 1.94900	Wt. Soil 379.62 gm.Tube Diameterin.Sample Lengthintube lengthin.top trimin.in.in.total trimin.sample lengthin.total trimin.sample lengthin.Density constantin.4.85/(D^2 * L)pcf.Wet Densitypcf.Dry Densitypcf.303,62Past Tlest wt = 381.34
Remorks Initial 8 = 120.2	Find Sport = 124.6 Kry = 99.2 2 Marstore = 25,6
Failure Sketch	Trimmed By Trimmed Date Setup By Setup Date Taken Down By Take Down Date

°Э ,

trixSIUP.dwg rovia /12/98

- . . .

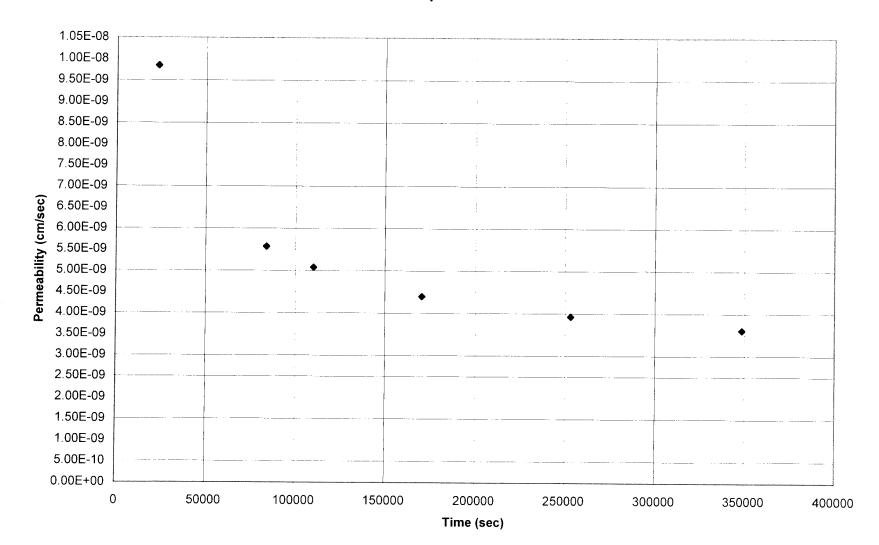
RFIT7 & JENS. INC. Consulting Engineers Sheet _____ of _

-	TRIAXIA	L CELL	- SATI	JRATIO	N &	BETA	FACTO	\prec
PROJECT	Hineson	5: and 1	UWLF					
SAMPLE	Hureson Compasi	HO HO		DEP	TH			
	ELL PRESS							
INITIAL P	ORE PRES	SURE	0.0		CEL	L NUMBER		
INITIAL T	RANSDUCE	R READIN	G72.4	<u></u>	TRA	NSDUCER	NUMBER	4
<u>-</u> -			[CHANGE IN	PRESSURE	
					Т	ransducer Co	onstant	
TRIAL	TRIAL	BASE	CELL	TRANS-	CELL		DUCER	BETA
DATE	ТІМЕ	BURETTE READING	PRESSURE	DUCER READING	DELTA	READING CHANGE	PRESSURE CHANGE (2)	FACTOF (2/1)
12-15-06	0	2.98	71.0	717			<u> </u>	
	1		76.0	76.6	5.0		4.9	0.98
	2		76.0	76.6	5.0		4.9	0198
	4		76.0	76.6	5.0		4.9	0.98
	8		76.0	76.6	5.0		4.9	0.98
					,			
		1	1					
				. 				
				· · · · · ·			1	
		1						
			<u> </u>					
	<u>}</u>						1	
					}			
<u> </u>								
		·i		<u> </u>				
	·							
				<u>'</u>		-		
						-		
	 			l				
				 	·}			
					}			
	 			<u> </u>			<u> </u>	
		 	<u> </u>					
	 	l			 			
		·						}
	1	1			1	1	1	L

REITZ & JENS, INC. Consulting Engineers s

Sheet _____ of _

	Λ				JNSOLI	DATIO	N TEST
PROJEC	T Amer	UN S.au	y U	WLF			· · · · · · · · · · · · · · · · · · ·
SAMPLE	Com	acetis #	2		DFPTH		
CONSOL				80 ;	7 (6.7)	MBER 4
						CELL NU	MBER/
CONSOL	IDATION	PORE PRE	SSURE _	15.0			
DATE	ТІМЕ	BURETTE	DELTA	SUM	DELTA		
BAIL		READING	VOLUME	DELTA VOLUME	DELTA TIME	TEMP	REMARKS
12-15-06	11:00	10.00			0.		
		9,69	0.31	0.31	0.1		
		9.63	0.06		0.25		
		9.57	0.04	0.43	.5		
	11:01 11:02	9,33	0.08	0,51	2		3.10 Cell
	11:04	1.17	0.16	0.67	4		
	11:08	8.92	0.25	1.68	8		8.60 ccy
	11:15	8.66	0.26	1,34	15		
<u>,</u>	11:38	8.36	6.30	1.64	38		
	12:00	8.24	0.10	1.74	60		
	13:00	8.17	0.09	1.83	120.		9.20 Cell
12-16	15:02 10:55	8.11	0.04	1,89	242 1435		
	101-1	0.20			172)		· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·			
	· ······						
			····				· · · · · · · · · · · · · · · · · · ·
		· .					
							÷ .
							•
							·
	÷						
[
		1					


REITZ & JENS, INC. Consulting Engineers

Sheet _____ of _____

Ameren, Soiux UWLF Project # 2005012477 Compostite #8 Hydraulic Conductivity

Soil Co	nditions	Test Info	rmation
Pre-test conditions	Post-test Conditions	a (cm^2)=	0.19685
Wet Density = 116.7 (lbs/ft^3)	Wet Density = 120.0 (lbs/ft^3)	L (cm)=	8,9983733
% Moisture = 27.8%	% Moisture = 34.6%	A (cm^2)=	20.315602
Dry Density = 91.3 (lbs/ft^3)	Dry Density = 89.1 (lbs/ft^3)	 	

	1			Base	Burette	Тор І	Burette						
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
1/2/2007	9:10	0	3.5	10.00	27.200	0.00	78.000	261.874	19.7			· · · · · · · · · · · · · · · · · · ·	······································
_	15:40	23400	3.4	9.82	28.114	0.10	77.492	260.452	22.8	21.25	1.01E-08	0.9704616	9.85E-09
1/3/2007	8:30	84000	3.8	9.67	28.876	0.24	76.781	258.978	20.3	21.47	5.77E-09	0.9654557	5.57E-09
	15:45	110100	3.6	9.62	29.130	0.30	76.476	258.420	22.5	21.45	5.26E-09	0.9658185	
1/4/2007	8:30	170400	3.8	9.53	29.588	0.44	75.765	257.251	20.8	21,52	4.56E-09	0.9641953	
1/5/2007	7:30	253200	3.9	9.43	30.096	0.63	74.800	255.778	21.3	21.37		0.9677473	
1/6/2007	10:00	348600	4.0	9.32	30.654	0.83	73.784	254.203	20.7	21.27	3.72E-09	0.9700749	

Composite #8

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- Ameren Simk WWLF Location-Sample--- Compa^{id}e #8 Depth-----

a= A= L=

Cell No. \mathcal{H}

÷

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
83.0	75,0	78.0

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
1-2-07	9:10	0	3.45	10.00	0.00				19,7	
	15:40	390	3,35	9,82	0,10				22.8	
1-3-07	8:30	1400	3.75	9.67	0.24				20,3	
	15:45	1835	3.55	9.62	0,30				22.5	
1-4-07	8:30	23410	3.80	9,53	0.44				20.8	
1-5-07.	7:30	4220	3.90	9.43	0.63				21.3	
1-6-07	10:00	5310	4.00	9.32	0.83				20,7	
					· · · · ·					
	,									
								Temp.		Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	ln(h1/h2)	K	Cor.	K -Cor.	Gradient
								-		
	-								ļ	
		-								
								_		
						ļ		<u> </u>		
L]							

Avg. w $\%$ 27.85 $34,644$ Wt. TubeNumber No.	
DescriptionCHType of TestImplementationType of TestImplementationCell NumberYSoturate beforeNumberLENGTH CHANGEStrain GAUGE at setupat saturation startINITIALTare No. IZ Tore Wt. ZI_2 Avg. w $\%$ SPECIMEN DIMENSIONS in.Imple Lengthtube lengthtube lengthtube lengthTore Wt. $ZI_2O24EMASS PROPERTIESWt. TubeMASS PROPERTIESWt. TubeMASS PROPERTIESWt. TubeMASS PROPERTIESWt. TubeMASS PROPERTIESWt. TubeSate SAvg. S. 55/65ZI = 20.205ZI = 20.205$	-06
DescriptionCHType of TestImplementationType of TestImplementationCell NumberYes topMOISTURE CONTENTImplementationMOISTURE CONTENTImplementationMOISTURE CONTENTImplementationMOISTURE CONTENTImplementationMOISTURE CONTENTImplementationImplementationMOISTURE CONTENTImplementationImplementationImplementationImplementationMOISTURE CONTENTImplementation	
Cell Number Gaturate fetter consolidation Number of Membranes Z Filter Strips Yes Filter Strips Yes Filter Strips Yes MOISTURE CONTENT Initial Final STRAIN GAUGE at setup at saturation start Moisture Yes Yes Moisture Strain start at consolidation start Wet Wt. + Tare Yes Yes Moisture Strain start at consolidation start Tare Wt. Zi.90 Zi.55 Moisture Moisture Arg. Moisture M	
Cell Number Gaturate fetter consolidation Number of Membranes Z Filter Strips Yes Filter Strips Yes Filter Strips Yes MOISTURE CONTENT Initial Final STRAIN GAUGE at setup at saturation start Moisture Yes Yes Moisture Strain start at consolidation start Wet Wt. + Tare Yes Yes Moisture Strain start at consolidation start Tare Wt. Zi.90 Zi.55 Moisture Moisture Arg. Moisture M	
Number of MembranesZFilter StripsYesHDLENGTH CHANGEMOISTURE CONTENTat saturation startTare No.127-0 $\mathcal{R}//3$ Wet Wt. + Tare $\mathcal{P}_2/2$ \mathcal{P}_2 $\mathcal{R}_2/3$ Dry Wt. + Tare $\mathcal{P}_2/2$ \mathcal{P}_2 $\mathcal{R}_2/3$ Wt. WaterTare Wt. $\mathcal{Z}/.90$ Dry Soil Wt.Moisture $\mathcal{R}_2/2$ $\mathcal{P}_2/2$ $\mathcal{H}_2/3$ Moisture $\mathcal{R}_2/2$ $\mathcal{P}_2/2$ $\mathcal{H}_2/3$ $\mathcal{H}_2/3$ Moisture $\mathcal{R}_2/2$ $\mathcal{P}_2/2$ $\mathcal{H}_2/3$ $\mathcal{H}_2/3$ Moisture $\mathcal{R}_2/2$ $\mathcal{P}_2/2$ $\mathcal{H}_2/3$ $\mathcal{H}_2/3$ MASS PROPERTIESWt. TubeWt. TubeWt. TubeWt. TubeMillerInitialFinalInitialFinalInitialFinal1 $\mathcal{J}_3.5265$ \mathcal{J}_3706 T2 \mathcal{J}_5265 \mathcal{J}_5706 T2 \mathcal{J}_5265 \mathcal{J}_5706 T3 \mathcal{J}_5910 \mathcal{J}_19815 3 \mathcal{J}_5920 \mathcal{J}_2020 3 \mathcal	
MOISTURE CONTENTINITIALINITIALTare No./Z $7 - O$ $R/13$ Wet Wt. + Tare 93.12 103.82 17.35 Dry Wt. + Tare 72.67 85.85 61.43 Wt. Water 21.90 21.55 40.80 Dry Soil Wt. 21.90 21.55 40.80 Moisture % 27.721 27.947 Avg. w % 27.83 341.647 Wt. Tube + SoilMoisture % 27.721 27.947 Avg. w % 27.83 341.647 Wt. TubeWit. TubeMoisture % 27.721 27.947 Multi SoilTube DiameterSepecimen Dimensions in./InitialFinalInitialFinalInitialFinalInitialFinalInitial $1.3.5365$ 2.9506 T 1.9812 2.9405 $2.3.5265$ 3.5400 3.5510 3.5376 B. (1805 2.9405 3.5510 3.5736 B. (1805 2.9405 3.5315 3.9782667 3.9275 5.98782427 Description After Test 1.98125	
MOISTURE CONTENTat saturation startat saturati	
INITIALFINALTare No.//Z \mathcal{FO} \mathcal{R} //3Wet Wt. + Tare \mathcal{Q}_3 //Z//03.82 \mathcal{R} //3Dry Wt. + Tare \mathcal{Q}_3 //Z//03.82 \mathcal{R} //3Dry Wt. + Tare \mathcal{Q}_7 / 67 \mathcal{B} / \mathcal{B} / \mathcal{B} \mathcal{A} / \mathcal{A} / \mathcal{A} Wt. WaterTare Wt. $Z/.90$ $Z/.55$ \mathcal{A} / \mathcal{A} Moisture % 27.721 29.947 \mathcal{A} Moisture % 27.721 27.947 \mathcal{A} Avg. w % 27.83 34.649 SPECIMEN DIMENSIONS in./mm.HEIGHTDIAMETER \mathcal{M} / \mathcal{B} InitialFinalInitial1 3.5265 3.5400 2 3.5265 3.5400 3 3.5315 5.572667 2 3.5315 5.572667 3 3.5315 5.572667 Avg. 3.5315 5.572667 Avg. 3.5315 5.572667 Avg. 3.7378 B $Avg.$ 3.7378 B 1.9829 2.00255 2.0100 Wet Density $Density$ Description After Test $Final$	
Wet Wt. + Tare $93,13$ $103,82$ $71,35$ Dry Wt. + Tare $77,67$ 85.85 61.43 Tare Wt. $21,55$ $40,80$ Dry Soil Wt. $27,721$ $27,947$ Avg. w % 27.721 $27,947$ Avg. w % 27.83 $34,644$ Wt. Tube + Soil Wt. Tube Wt. Soil Wt. Soil Tube Diameter Sample Length SPECIMEN DIMENSIONS in. / mm. HEIGHT DIAMETER Initial Final 1 3.5365 79506 2 3.5265 3.5400 Avg. 3.5315 3.5400 M. 1.9815 Avg. 3.5315 3.5400 M. 1.9815 Avg. 3.5315 3.5400 M. 1.9815 Avg. 3.5315 3.5402667 1.9805 2.0100 Avg. 3.5315 3.6483733 5.0872647 Description After Test Final $4.85/1022$	
Image: bry wt. + 10re 77.67 85.85 (7.45)	
Tare Wt. $Z/.90$ $Z/.55$ 40.30 Dry Soil Wt. 27.721 29.947 Avg. w % 27.721 29.947 Avg. w % 27.83 34.649 Wt. Tube + SoilWt. TubeWt. TubeWt. SoilTube DiameterSample LengthSPECIMEN DIMENSIONS in./ mm.HEIGHTDIAMETERInitialFinalInitialFinal1 3.5365 2 3.5265 3 3.5510 3 3.5510 3 3.5510 3 3.5712667 Avg. 3.5715 8.19227 2.0103 8.19227 5.087127 Description After TestFinal]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·
Avg. W %27.83 $34,644$ Avg. W %27.83 $34,644$ Wt. TubeSPECIMEN DIMENSIONS in. / mm.HEIGHTDIAMETERInitialFinalInitialFinal1 3.5365 2 3.5265 3 5.5265 3 5.5265 3 5.5265 3 5.5265 3 5.5210 3 5.02241 5.0297242 Description After TestFinal W = 351.48	jm.
Tube DiameterSPECIMEN DIMENSIONSin./mm.HEIGHTDIAMETERSample LengthInitialFinalInitialFinal1 3.5365 3.5506 T 1.982 2 3.5265 3.5400 M 1.9815 2.0206 3 3.5510 3.57266 B 1.9815 2.0206 Avg. 3.5315 3.5972667 1.981533 2.001333 8.10857 8.94837333 5.0897267 DensityDescription After TestFinalFinalFinal	jm. jm.
SPECIMEN DIMENSIONS in./mm.HEIGHTDIAMETERInitialFinalInitialFinal1 3.5365 2 3.5265 3 3.5310 3 5.5365 3 3.5310 Avg. 3.5315 3.7315 3.542667 1.981333 2.0005 Avg. 3.9483733 5.9267 1.981533 2.001333 Description After Test	n.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	n n. ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n. n.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n. n.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
Avg. 8.94837 8.9483733 $51,03254$ 5.08972427 Dry Density Description After Test If null Wt = 357.48	ocf.
Description After Test	ocf.
$D_{11} = 2/103$	
Remarks Initial Vn = 116.7 Final 8. = 120.0	
$\frac{1}{9} \frac{1.3}{1.3} = \frac{91.3}{9} \frac{1.3}{1.5} = \frac{1.3}{9} \frac{1.3}{1.5} = \frac{1.3}{1.5}$	
BIVI - 21.8 9411 - 51.6	——
Failure Sketch	
rimmed By JDF Trimmed Date 12-2	o-06
Setup By JDC Setup Date 12-2	
Taken Down By	
Take Down Date	<u></u>

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _____

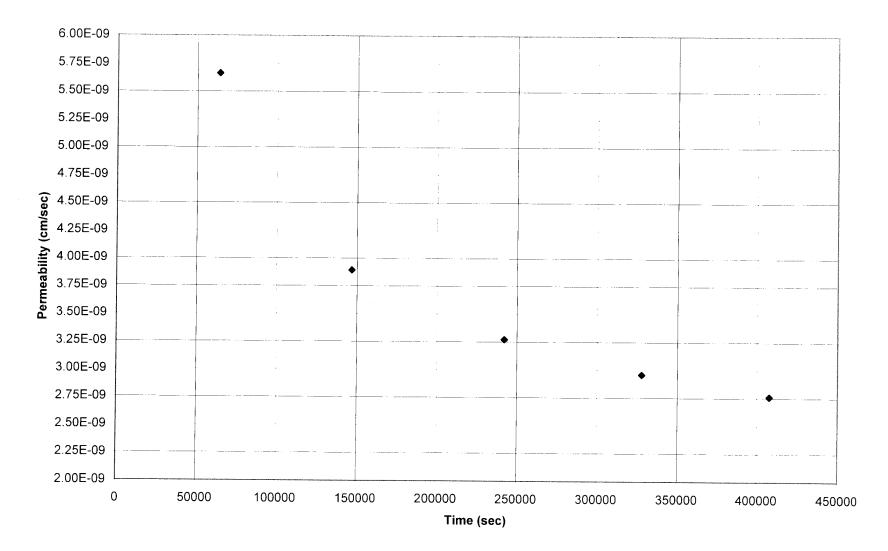
	Compo.	sitz #8	ny Uli		 ГЦ		 	
			MID		111	17	27 7	
INITIAL CE	ILL PRESS	SURE		1	START (DATE	- <u>L-1-06</u> (1	······
INITIAL PO	DRE PRES	SURE	10.0		CEL	L NUMBER		
INITIAL TR	ANSDUCE	R READIN	71.0 70.0	10.9	TRA	NSDUCER	NUMBER _	9
-	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·				CHANGE IN		
TRIAL DATE	TRIAL TIME	BURETTE	CELL PRESSURE		CELL DELTA	TRANS READING	DUCER PRESSURE	BETA
0.00.00		READING	77/ -	READING	(1)		CHANGE	(2/1)
2-79-06		3.54	71.0 16.0	70.9 757	5.0	-	4.8	0.96
	2		4	75.7	5.0		4.8	0.96
	4		• (75,9 75,7	5.0		4.8	096
	0		ι /	· m, /	5.0		7.0	0.96
		· · · · · · · · · · · · · · · · · · ·				· 		·
				\leq				
	·····	(PK-					
					··			
							· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·								
						_	_	
							-	
			-			-		
				· · · · · · · · · · · · · · · · · · ·				
		·					-	
						-		
					·	· [
						.	- <u> </u>	
								

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _

ge S

•

							N TEST
PROJECT	r <u> </u>	meren S	ioux	UWL	F		
SAMPLE	C	omposite	# 8 (.	<u>} +12%</u>	DEPTH _		
							MBER
		PORE PRE					
DATE				SUM		·	
	ТІМЕ	BURETTE READING	DELTA VOLUME	DELTA	DELTA TIME	TEMP	REMARKS
2-29-06	9:20	10.00			0		
	·	9.84	0,16	0.16	<u> </u>		
		9.82		0.18	.25		
	0.01	9.80	0.02	0.20	.5		
	9:21	9.78	0.02	0.22	ļ/		
	9:22	9.75 9.72	003	0.25	2		
	9:24 9:28	9.68	0.03		<u>4</u>		
	9:20	9,64	0,001	0.32			
	9:50		0.04	0.36	15		
	10:20	9.59	0.05	0.41	30 60		
	11:20	9.46	0.06	0.47	120.		· · · · · · · · · · · · · · · · · · ·
	* 4 15	*9,30	0.01	0.51	100.		· · · · · · · · · · · · · · · · · · ·
	8:45	9.66					
		1100					
							· ·
					<u></u> 2		
							· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	R	10th				
		¥	-14	θ			· · · · · · · · · · · · · · · · · · ·
		·	110-				<i>x</i> '.
							•
					ł		· · · · · · · · · · · · · · · · · · ·
		· .					
							· · · · · · · · · · · · · · · · · · ·
	:	Ì	· ·				· · · · · · · · · · · · · · · · · · ·
			·				· · · · · · · · · · · · · · · · · · ·


REITZ & JENS, INC. Consulting Engineers Sheet _____ of __

Ameren, Soiux UWLF Project # 2005012477 Compostite #9 Hydraulic Conductivity

Soil Co	nditions	Те	st Info	rmation
Pre-test conditions	Post-test Conditions	a (0	cm^2)=	0.19685
Wet Density = 120.4 (lbs/ft^3)	Wet Density = 121.4 (lbs/ft^3)	i	. (cm)=	9.1025133
% Moisture = 26.5%	% Moisture = 29.2%	A (0	cm^2)=	20.312218
Dry Density = 95.2 (lbs/ft^3)	Dry Density = 94.0 (lbs/ft^3)	L	/	

				Base	Burette	Тор І	Burette	1					
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.		Factor	Conductivity
		(seconds)	(ml)	(mi)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
1/3/2007	14:45	0	14.7	10.00	27.200	0.00	78.000	191,516	22.4		· · · · · · · · · · · · · · · · · · ·		
1/4/2007	8:30	63900	<u>15.</u> 0	9.72	28.622	0.04	77.797	189.890	20.8	21.60	5.88E-09	0.9623875	5.66E-09
1/5/2007	7:30	146700	15.3	9.60	29.232	0.10	77.492	188.976	21.3	21,29	4,01E-09	0.9695431	3.89E-09
1/6/2007	10:00	242100	15.5	9.50	29.740	0.19	77.035	188.011	20.7	21.18	3.37E-09	0.9721955	3.27E-09
1/7/2007	9:50	327900	15.6	9.44	30.045	0.28	76.578	187.249	20.4	21.01	3.03E-09	0.9760209	2.96E-09
1/8/2007	8:00	407700	15.7	9.38	30.350	0.35	76.222	186.588	20.3	20.88	2.82E-09	0.9790664	2.76E-09

Composite #9

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

a=

A=

L=

Job----- Ameron Services UWLF Location-Sample --- Comparists #9 Depth-----

(.

Cell No. 2

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
82.0	75.0	77.0

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
1-3-07	14:45	0	14.7	10.00	0.00				22.4	
1-4-07	8:30	1065	15.0	9,72	0.04				20.8	
1-5-07	7:30	2445	15,3 15,5	9,60	0.10				21.3	
1-6-07	10:00	4035	15,5	9.50	0.19		<u> </u>		20.7	
1-7-07	9:50	5465 6795	15,6	9.44	0.28				20,4	
1-8-01	8:00	6795.	1517	9.38	0.35				20,3	
		ана (тр. 1997) 1997 — Прила Парадон, 1997 — Прила (тр. 1997) 1997 — Прила Парадон, 1997 — Прила (тр. 1997)								
P										
									_	1
								Temp.		Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	ln(h1/h2)	К	Cor.	K -Cor.	Gradient
ļ										
			L							
·	ļ									
	<u> </u>									

	T	RIAXIAL	CELL	SETUP	& TAKEDOWN
	America	6	· .		au Stadi Casie
Project		4a	a ii @+	18 9. Martin	as that Card
Sample	Composite	H-1 1((1-(H)	_ Depth7	O IG MARINE	
Descript	ion CL		Doca		
			<u>.</u>	•	Eul
Type of	Test Hud.	Cond	_Confining Pre	ssure Differenti	ial 5.05.'
Cell Nu	mber	2	_Saturate lefa	ore after Cons	solidation
Number	of Membran	es Z	_Filter Strips	Yes No	LENGTH CHANGE
					STRAIN GAUGE at setup _500
ſ					STRAIN GAUGE OF Setup
		MOISTURE	CONTENT		at saturation start
			NITIAL	FINAL	at consolidation start <u>472</u>
	Tare No	D. M5	M19		at consolidation start
<u>Wet</u>	<u>Wt. + Tar</u>	e <u>110.34</u> e <u>91, 76</u>	<i>M19</i> 111.55 92.79		at axial load start
	Wt. + Tar Wt. Wate	<u>e //· · e</u>			
	Tare W	t. 22.12	21.66		MASS PROPERTIES
	Dry Soil W	t. % 26.630			
	Avg. w		210 53		Wt. Tube + Soil gr Wt. Tube gr
L	////	<u> </u>		┹╾╍╼╼╼╼╼┹	Wt. Soil 352.24 gr
					Tube Diameter in
		<u> </u>			Sample Length in
SPEC	IMEN DIME	NSIONS	in. /	mm.	tube length in top trim in
	HEIGH	IT	DIAME	TER	bottom trim in
	Initial	Final	Initial	Final	total trim in
	<u> </u>			2.0105	sample length in
	35675	3.5805	T 1.9940 M 1.9925	1.9905	Density constant 4.85/(D^2 * L)
2	3,5725	2 5985	B (.9980	2.0055	Wet Density
Avg.	3,5645	3.583667	1.99483	2.002167 5.085503	Dry Density P
	9 05383	9.1025133	5.06187	1.00520	
Desi	cription After	Test			Final wt = 359.67
000					
	r				Final
Rem	arks	TAT		/	(m) = 121.4
	<u> </u>	0m = 1	20,4		1 44.0 1 m = 94.0
<u> </u>		Ony -	19,6		2 m = 29,2
		ZPIS	6,9		*
			- 1-		
		Failure Sket			<i>(</i>
					- Kat
					Trimmed By 12-28
					Setup By Kal
					Setup Date _/2-28
	1	1	1		1/198
				1	Talian Down Dy I-KA
					Taken Down By <u>FEF</u> Take Down Date <u>7-8</u> -2

RFIT7 & JENS, INC. Consulting Engineers Sheet _____ of ____

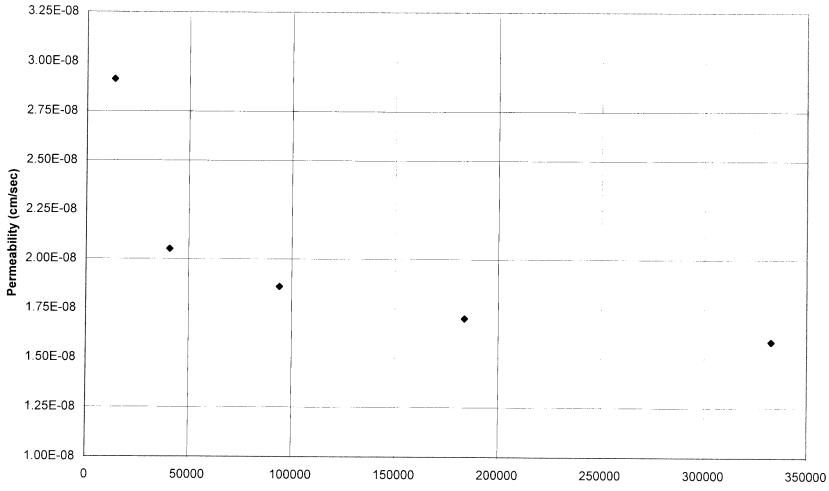
trixSTUP.dwg revised 2/12/98

NITIAL CELL PRESSURE 71.0 START DATE 12-28-0 NITIAL PORE PRESSURE 70.0 CELL NUMBER 2 INITIAL TRANSDUCER READING 71.1 TRANSDUCER NUMBER 2 TRIAL TRANSDUCER READING 71.1 TRANSDUCER NUMBER 1 TRIAL TRANSDUCER READING CELL TRANS- CHANGE IN PRESSURE Transducer Constant TRIAL TIME BASE BURETTE READING CELL PRESSURE TRANS- CELL TRANSDUCER CELL TIME BURETTE READING CELL READING CELL READING CHANGE CHANGE CELTA CHANGE CHANGE CHANGE CHANGE CHANGE			U Sioux site#9						
TRIAL DATETRIAL TIMEBASE BURETTE 									
INITIAL TRANSDUCER READING 71.1 TRIAL TRIAL BASE BURETTE READING CELL PRESSURE TRANS-DUCER READING PRESSURE READING (1) 1 76.0 75.7 (1) 2 1.2.00 5.40 71.0 70.3 1 76.0 75.7 41.7 2 11 75.7 41.7 9 1.2 11 75.7 41.7 1 76.0 75.7 41.7 1 77.7 41.7 1 77	NITIAL F	ORE PRES	SSURE	70.0		CEL	L NUMBER		
TRIAL DATETRIAL TRIAL TIMEBASE BURETTE READINGCELL PRESSURETRANS- DUCER READINGCHANGE IN PRESSUR Transducer Constant CELL DELTA (1)1 \mathcal{O} $\mathcal{5}.40$ $\mathcal{7}1.0$ $\mathcal{7}0.3$ \mathcal{O} 2 \mathcal{O} $\mathcal{5}.40$ $\mathcal{7}1.0$ $\mathcal{7}0.3$ \mathcal{O} 2 \mathcal{O} $\mathcal{5}.40$ $\mathcal{7}1.0$ $\mathcal{7}0.3$ \mathcal{O} 2 \mathcal{O} $\mathcal{7}.40$ $\mathcal{7}5.2$ $\mathcal{4}.7$ \mathcal{Q} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{I} \mathcal{Q} \mathcal{O} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{O} \mathcal{I} \mathcal									
TRIAL DATETRIAL TIMEBASE BURETTE READINGCELL PRESSURETRANS- DUCER READINGTransducer Constant TRANSDUCER $OutcomediateDELTA(1)2 - 005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0005.4071.070.30.31 - 2-0000.30.00.31 - 2-0000.075.241.72 - 2000.00.00000.00.00000.00.000000.00000.00.00000.00.0000.00.00.000.00.00.00.000.00.00.0<$									
TRIAL DATE TRAL TIME BASE BURETTE READING CELL PRESSURE TRANS- DUCER READING CELL DELTA (1) TRANSDUCER READING 1 71.0 70.3		1		[CHANGE IN	PRESSURE	
DATE TIME BURETTE READING PRESSURE DUCER READING CELL DELTA (1) READING CHANGE PRESSUR (1) 1 76.0 75.2 47.9 2 11 76.2 47.7 4 11 75.2 47.7 9 1 75.2 47.9 2 11 75.2 47.9 4 11 75.2 47.9 9 1 1 1 1 1 1 1 1 1 1 1 2 11 75.2 47.9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						T			
READING READING DELTA (1) CHANGE CHANGE (2) 2 5.40 71.0 70.3 4.7 2 11 75.2 4.7 41 75.2 4.7 9 1 75.2 9 1 75.2 9 1 75.2 9 1 75.2 9 1 75.2 9 1 1 10 1 11 75.2 1 11 1 1 11 1 1 11 75.2 1 11 1 1 12 1 1 13 1 1 14 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 <tr< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>BETA</td></tr<>		1							BETA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAIL	IIME		TRESSORE					FACTOR (2/1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5110	71/0	017	(1)		(2)	(2/1)
2 11 75.2 41.7 4 11 75.2 41.7 7 19 8 10 1 10	1-2-00		5,40					49	0.98
		2							0.98
		4		L1				4.9	0.98
		8		n					
				ļ		,	·	<u> </u>	
				ļ′					
	·	<u> </u>					<u> </u>		
		-							
							-		
				· · ·					
				AV					
	- <u>.</u>			1/4-				ļ.,	
Image: series of the series			· `	/				<u> </u>	
					ļ				
							-	-	
									-
		-			<u> </u>		-		
								ļ	
	<u> </u>								
					-				
	·····				·				
					1		1	· ·	1

REITZ & JENS, INC. Consulting Engineers Sheet _____ of __

	1-	0-1-110)			· · · · · · · · · · · · · · · · · · ·	- <u>-</u>		-
SAMPLE		<u>EN Sia</u> 005ite #9			DEPTH _				-
CONSOL	IDATION	CELL PRES	SURE	80.0		CELL NU	MBER	Z	• .
		PORE PRES							
	······								
DATE	TIME	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	TEMP	REMARKS		
1-2-07	13:10	10,00			0				
	·	9.82			•/		 		
	-	1.80	·		125	<u>_</u>			
	13:11	9,79			-13	· · · · · · · · · · · · · · · · · · ·			
	13:12	9,78	· · · ·		2				
	13:14	9.76			4				
<u> </u>	13:18	9.74			8				
	13:25	9.71			15				
- <u></u>	14:10	9.62			3)				
<u> </u>	15:40	9.53			60		· · ·	,	
1-3-07	8:30	9.40					·		
	14:30	9.46						····	
									··
								······································	·
		$ 1 \rangle$	20		а				
<u></u>		-V	<u>U</u>					<u></u>	
				i					
									······
		· · · ·							
	·								
	;	¦							
		·					·····		

REITZ & JENS, INC. Consulting Engineers


Sheet _____ of ____

Ameren, Soiux UWLF Project # 2005012477 Compostite #10 Hydraulic Conductivity

Soil Co	nditions] [Test Info	rmation
Pre-test conditions	Post-test Conditions	1 1	a (cm^2)=	0.19685
Wet Density = 121.3 (lbs/ft^3)	Wet Density = 124.2 (lbs/ft^3)	Í	L (cm)=	9.8743347
% Moisture = 22.3%	% Moisture = 26.0%		A (cm^2)=	20.005651
Dry Density = 99.2 (lbs/ft^3)	Dry Density = 98.6 (lbs/ft^3)			

				Base	Burette	Top	Burette	1					
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.		Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
12/22/2006	11:20	0	9.8	10.00	27.200	0.00	78.000	121.158	21.3				······
12/22/2006	15:07	13620	10.1	9.88	27.810	0.08	77.594	120.142	21,3	21.30	3.00E-08	0.9693013	2.91E-08
12/22/2006	22:40	40800	10.8	9.72	28.622	0.14	77.289	119.024	21.3	21.30	2.12E-08	0.9693013	2.05E-08
12/23/2006	13:28	94080	12.0	9.53	29.588	0.40	75.968	116.738	21.3	21.30		0.9693013	1.86E-08
12/24/2006	14:20	183600	13.2	9.23	31.112	0.76	74.139	113.386	21.3	21.30	1.75E-08	0.9693013	1.70E-08
12/26/2006	7:45	332700	14.6	8.78	33.398	1.29	71.447	108.407	20	21.01		0.9760936	

Composite #10

Time (sec)

.

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

,

Job----- Ameon Sidne Locationa= Sample --- Composite #10 A= Depth-----L=

Cell No.

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
81.0	75.0	76.0

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
12-22-06	11:20	0	9.80	10.00	0.00				21.3	
12/22	1507	227	10.1	9.88	0.08				1	1
	2240	680	10.8	4.72	0.14				21.3	
12/23	1328	1568	12.0	9.53	0.40					
12/24	1420	3060	13.2	9.23	0.76					
12/26	745	5545	14.6	8,78	1.29				20,0	
						-		·		
							· · · · · · · · · · · · · · · · · · ·			
					1 ⁹					
										
			-					Temp.		Hyd.
axL	t (sec)	2 x A x t	aL/2At	h1	h2	In(h1/h2)	K	Cor.	K -Cor.	Gradient
		<u> </u>								

TRIAXIAL CELL SETUP & Project Autrion France Sample Composite #10 Depth @+122	
Sample Composite #10 Depth @+129 00019 Description	Product Vicitor
Type of Test <u>Hud</u> , Cond. Confining Pressure Differentia Cell Number <u>#1</u> Saturate Sefore after Conso	olidation
Number of Membranes	LENGTH CHANGE
	STRAIN GAUGE at setup
MOISTURE CONTENT	at saturation start <u>500</u>
Tare No. M 38 M47	at consolidation start
Wet Wt. + Tare 102.54 92.28 Dry Wt. + Tare 87.82 79.56 Wt. Water 14.72 12.72	at axial load start <u>530</u>
Tare Wt. 21.81 22.26 Dry Soil Wt. 66.01 57.3	MASS PROPERTIES
Moisture % 22.30 22.20 Avg. w % 22.37 22.3	Wt. Tube + Soil gm. Wt. Tube gm.
	Wt. Soil gm. Tube Diameter in.
	Sample Length in tube length in.
SPECIMEN DIMENSIONSin.mm.HEIGHTDIAMETER	top trim in. bottom trim in.
Initial Final Initial Final	total trim in. sample length in.
1 3.920 3.888 T 1.9835 1.9935 2 3.910 3.887 M 1.9790 1.9840	Density constant 4.85/(D^2 * L)
3 3.900 2.8876 B 1964 1.9835 Avg. 3.41 3.83753 1.9755 1.9070 Avg. 9.814 4.81433 5.01777 5.04.98	Wet Densitypcf.Dry Densitypcf.
Description After Test $W_{Final} = 393.08$	
Remarks Initial & = 121.3	Final 8n = 124.2
8-14 = 97, 2 9,41 = 22.3	2m = 25.972
	· · · · ·
Failure Sketch	· · · · ·
	Trimmed By <u>KFK</u> Trimmed Date <u>12-20-06</u>
	Setup By <u>Kell</u> Setup Date <u>12-20-06</u>
	Taken Down By <u>JPB</u> Take Down Date <u>12-26-06</u>
· · · · · · · · · · · · · · · · · · ·	

REITZ & JENS, INC. Consulting Engineers Sheet _____

of

trix510P.dwg rows. 2/12/98

		AL CELL						
PROJECT	Haure	a Soux	: UWL	To				
SAMPLE	Conp	a) 5:004 047= #11	2	DEP	TH	<u> </u>		
		SURE						
		SSURE						
INITIAL T	RANSDUC	ER READING	<u>, 71,7</u>		TRA	NSDUCER	NUMBER -	<u> </u>
						CHANGE IN	PRESSURE	
					T	· · · · · · · · · · · · · · · · · · ·	onstant	
TRIAL DATE	TRIAL TIME	BASE BURETTE	CELL PRESSURE	TRANS- DUCER	CELL		DUCER PRESSURE	BETA
		READING		READING	DELTA	CHANGE	CHANGE (2)	(2/1)
12-21-06	0	5.02	71.0	71.6				
	2	<u> </u>	76.0	76.5	5.0		49	0.98
	4		76.0	76.5	5.0		4.9 418	0.98
	8		760	76.4	5.0 5.0		4.8	0.96
, ,			,		,			
	. 				•			
	 		ϵI					
•		¥(\mathcal{A}					
						-		
				<u>,</u>				
					· · · · · · · · · · · · · · · · · · ·		2	
		ļ	·					
						 	<u> </u>	
						<u>}</u>	<u> </u>	
						<u></u>		
L			l			l	1	

.,

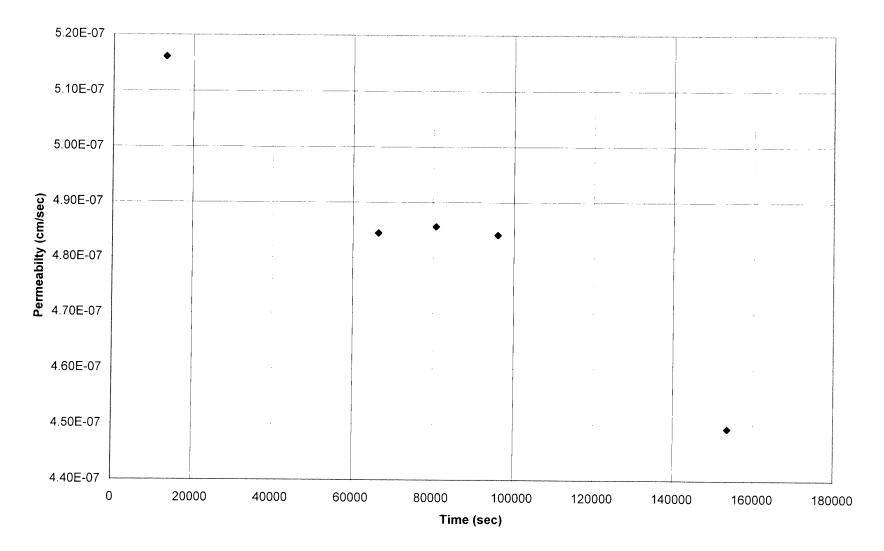
REITZ & JENS, INC. Consulting Engineers Sheet _____ of __

PROJEC	T MAUST	Wer Side	nx a	WLF				
SAMPLE		poste #	-10		DEPTH -			_
CONSOL	IDATION	CELL PRES	SSURE	80.07	25	CELL NU	MBER	
CONSOL	IDATION	PORE PRE	SSURE _	75 ps	• 		•	
DATE	TIME	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	TEMP	REMARKS	
12-21-06	9:20	10.00			0			·····
		9.72	0.28	6.28	. 1		<u> </u>	
	·	9.70	0.02	0.30	25		· · · · · · · · · · · · · · · · · · ·	
		9.67	0.03	0.33	.5			
	9:21 9:22	9.64	0.03	0.36	<u> </u>			
	9:24	9.60	0.04	0.40	2			
	9:22	9.54	0.06	6.46	4 2			
	9:35	1.39	6.07	0.53 0.61	15			
·	9:50	9.22	0.17	0.18	30		· · · · · · · · · · · · · · · · · · ·	
· · · ·	10:20	9.04	0.18	0.96	60			— <u> </u>
	11:20	8.84		1.16	120 .		· · · · · · · · · · · · · · · · · · ·	·
	12:20	8.70		1.30	180			
12-22	7:20	8,50	0.20	1.50	1560	20.0	· ·	
	· · · · · · · · · · · · · · · · · · ·							
				·				
							· · · · ·	
							·	
				·			<i>a</i> ' .	
·								
	•							
			-		·····			
			·				·	

REITZ & JENS, INC. Consulting Engineers

. . Sheet _____ of __

Ameren, Soiux UWLF Project # 2005012477 Compostite #7 plus 30% fine sand Hydraulic Conductivity



Soil Co	nditions	Τ	est Info	rmation
Pre-test conditions	Post-test Conditions	a	(cm^2)=	0.19685
Wet Density = 121.3 (lbs/ft^3)	Wet Density = 126.2 (lbs/ft^3)		L (cm)=	9.2650733
% Moisture = 23.6%	% Moisture = 24.6%		(cm^2)=	19.004949
Dry Density = 98.1 (lbs/ft^3)	Dry Density = 101.2 (lbs/ft^3)			

				Base	Burette	Тор I	Burette						
			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(ml)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
1/8/2007	13:05		19.9	10.00	27.200	0.00	78.000	85,979	21.8				
	16:45	13200	19.7	8.79	33.347	1.15	72.158	73.990	22.9	22.35	5.46E-07	0.9454520	5.16E-07
1/9/2007	7:30	66300	21.1	5.75	48.790	4.27	56.308	42.697	20.6	21.87		0.9562465	4.84E-07
	11:30	80700	20.1	5.17	51.736	4.86	53.311	36.754	20.8	21.66		0.9609966	
	15:45	96000	20.0	4.65	54.378	5.39	50.619	31.420	21.9	21.61	5.03E-07	0.9621298	4.84E-07
1/10/2007	7:45	153600	20.3	3.50	60.220	6.59	44.523	19.482	19.8	21.33		0.9687039	4.49E-07

•

Composite #7 plus 30% Fine Sand

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- Anne UWLF Sidux Locationa= Sample --- Composter #7 + 30% 5And Depth-----

A= L=

Cell No. 4

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
76.5	71.0	71.5

10 ⁵ h	Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
10520 · · · · · · · · · · · · · · · · · · ·	1-8-07	13:05	\bigcirc	19.85	10.00	0.00				20.8	
ري ا		16:45		19.70	3.79	1.15		· · · · · · · · · · · · · · · · · · ·	P	22.9	
	1-9-07	7:30	1105	20.10	5,75	4.27			//	20,6	
		11:30	1345	20.05	5,17	4.36				20,8	
		15:45	1600	20,00		5.39		· · · · · · · · · · · · · · · · · · ·		21.9	
	1-10-07	7:45	2560	20.25	3.50	6.89				19.8	
	· · · · · ·	·									
								· · ·			
	·	<u> </u>				; ·				<u> </u>	ļ
										<u> </u>	
			· · · · · · · · · · · · · · · · · · ·								
		h (a.e.a)							Temp.		Hyd.
	axL	t (sec)	2xAxt	aL/2At	h1	h2	hn(h1/h2)	K	Cor.	K -Cor.	Gradient
									+		+
		<u> </u>							+		
			+						<u> </u>		
		1	1						<u> </u>	1	
											1 1

	TRIAXIAL	_ CELL SETUP	& TAKEDOWN
Project	Composities 7 + 30% Sillis	Menth Stand Proc C-	+ 23% M
Sample	in Resul Claure 3	SICT WI FINE Sand	
Descrip	10117		
	Test Hud. Cond.	Confining Pressure Differer	ntial523;
	mber 4	_Confining Pressure Differen _Saturate before after Co	nsolidation
Number	of Membranes Z	_Filter Strips Yes No	LENGTH CHANGE
Rumber			
			STRAIN GAUGE at setup
-	MOISTURE		at saturation start
		NITIAL FINAL	l
Ma	Tare No. 13-29 Wt. + Tare 25/.13	<u>73-2(</u> 273.7/	at consolidation start
	Wt. + Tare $21/.0$		at axial load start
	Wt Water		
	Tare Wt. 40.58 Dry Soil Wt.		MASS PROPERTIES
	Moisture % 23,475	23,820	Wt. Tube + Soil
Ĺ	Avg. w % 2	23.6475	Wt. Tube Wt. Soil 352.94
			Tube Diameter
[Sample Length
SPEC	IMEN DIMENSIONS	in. / mm.	tube length top trim
	HEIGHT	DIAMETER	bottom trim
	Initial Final	Initial Final	total trim
1	3,6770 36380	т 1,9540 1,9375	
2	3 6305 3.4-170	M 1.9020 1.9370	4.85/(D^2 * L)
3	36805 3.6590	B 1,9600 1,9355 1.9586667 1.9364667	Wet Density
Avg.	3,67933 3,6476667 9.34551 9.2650733	4,975013 4,91913373	Dry Density
			First ut = 355.90
Des	cription After Test	<u> </u>	
	CUL V	- 1717	Final 126,2
Rem	arks <u>Initial</u> Ym	1 = 121.3 981	8 101.2
	<u>්</u> ට රා	M = 23 6	9.m 24.6
	· · · · · · · · · · · · · · · · · · ·		
	Failure Sket	ch	· · · · · · ·
		[]	
			Trimmed By
			Trimmed Date <u> </u>
			Setup By
			Setup Date
	1	1	
•			Taken Down By

RFITZ & JENS INC. Consulting Engineers Sheet _____ of ____

trixsTUP.dwg rovier ./12/98

11.

		L CELL						
PROJECT	March	STOUX	UWG	<i>I</i> ~		·		
SAMPLE	Composite	#1730	10 Silly Fin	e SAAD DEP	ΓΗ			
NITIAL CI	ELL PRESS) <i>Stouk</i> #7+ 3 0 SURE	74.0	·	START (DATE	6-07	
NITIAL P	ORE PRES	SURE	70.2		CEL	L NUMBER	- 4	
NITIAL TI	RANSDUCE	R READING	3_70	.8	TRA	NSDUCER	NUMBER -	4
					Т		PRESSURE	
TRIAL DATE	TRIAL TIME	BASE BURETTE READING	CELL PRESSURE	TRANS- DUCER READING	CELL DELTA (1)		DUCER PRESSURE CHANGE	BETA FACTOR (2/1)
1-8-07	0	4.00	71.0	70.4	<u> </u>		(2)	(2/)
	/ 2 ·		76.0	75,3	5.0		4.9	0.98
	4		1/	75.3	5.0 5.0		4.9	0,9 3 0,93
	8		<i>L</i> I	75.3	5.0		4,9	098
			,		.50			
				· · · · · · · · · · · · · · · · · · ·	·	·		
							-	
			·			à		
				,				
					· · · · · ·			
						-		
		{						
			. <u></u>					

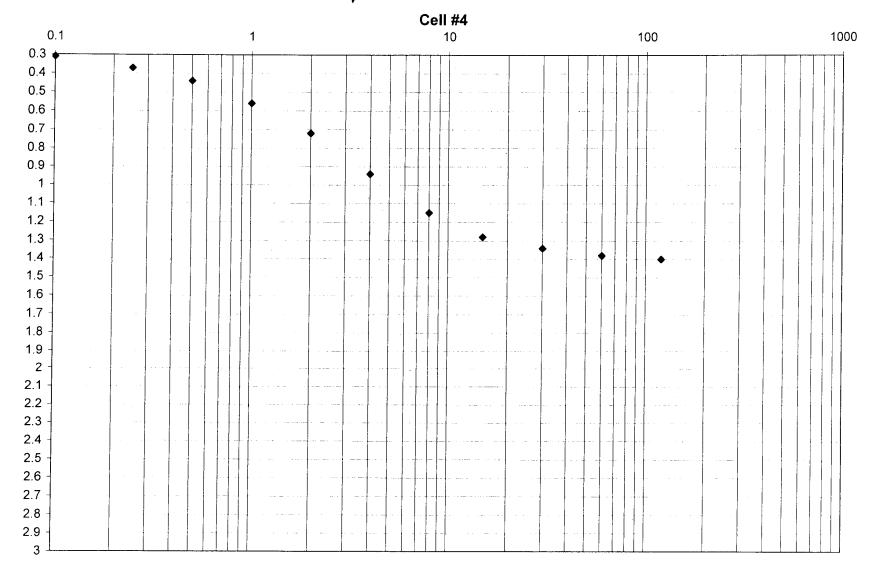
. . 11.

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _

.

1		TRIAX	IAL CI	ELL CO	NSOL	IDATIO	N TEST		
PROJEC	T Amos	en Sion	o UI	ULF			<u></u>		-
SAMPLE	Composit	8#7+	30% 5;l	ty Fine Stol	, DEPTH _	·			_
CONSOL	IDATION	CELL PRES	SURE	76.0		CELL NU	MBER	4	· ·
CONSOL	IDATION	PORE PRE	SSURE	71.0					
DATE	ТІМЕ	BURETTE READING	DELTA VOLUME	SUM DELTA VOLUME	DELTA TIME	ТЕМР	REMARKS		
1-8-07	9:35	10.00		, oconic	D.				
		9.69		0.31	, 1				
		9.63		6.37	, 25				
	9:34	9.56		6.44	.5		·		
ļ	9:30	9.44 9.28		0.56	1				
	9:39	9.06		0.72	2				
	9:43	3.85			4 8				
	9:50	8,72-		1.28	15				
	10:05	8.66		1.34	70		·		
	10:35	8.62	·	1,38	60				
	11:35	. 3.60		1.40	/20 ,			·	
					······		·		<u>`</u>
									•
								·····,································	
								· ·	
									·
			· · · · ·						
		· .							
					{		* .		
					}				<u> </u>
					·				
						-			
	:								·····
				· · · · · ·					
ſ									

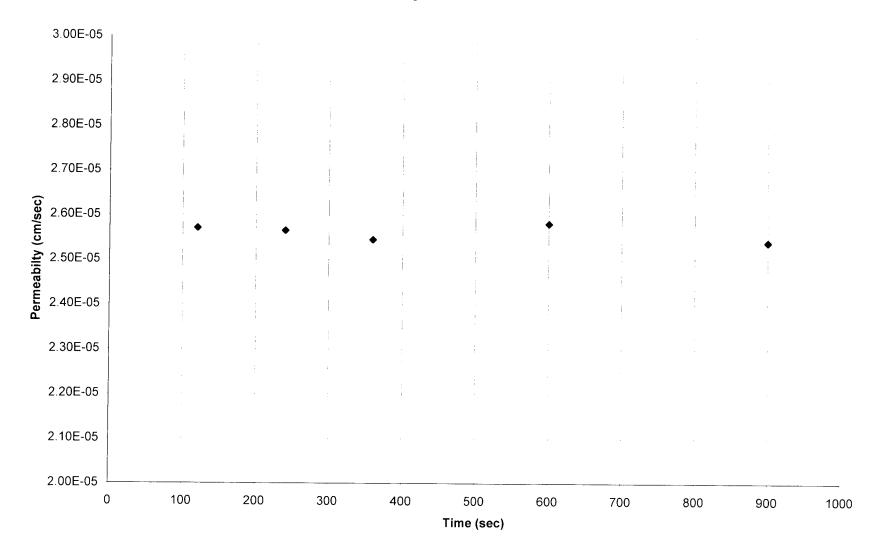
REITZ & JENS, INC. Consulting Engineers


; •

Sheet _____ of _

Composite #7 + 30% Fine SANd

. ``



Ameren, Soiux UWLF Project # 2005012477 Silty fine SAND Hydraulic Conductivity

Soil Co	nditions	Te	st Info	rmation
Pre-test conditions	Post-test Conditions	a (0	cm^2)=	0.19685
Wet Density = 118.7 (lbs/ft^3)	Wet Density = 125.1 (lbs/ft^3)	1 i	. (cm)=	9.03732
% Moisture = 19.1%	% Moisture = 23.8%	A (0	cm^2)=	19.781425
Dry Density = 99.7 (lbs/ft^3)	Dry Density = 101.1 (lbs/ft^3)	<u> </u>		

				Base	Burette	Тор і	Burette						
_			Cell Burette		Distance		Distance	Total Head		Weighted	Uncorrected Hydraulic	Correction	Corrected Hydraulic
Date	Time	Elapsed Time	Reading	Reading	from Datum	Reading	from Datum	Across Sample	Temperature	Average Temp.	Conductivity	Factor	Conductivity
		(seconds)	(mi)	(ml)	(cm)	(ml)	(cm)	(cm of water)	(°C)	(°C)	(cm/sec)		(cm/sec)
1/11/2007	8:10		20.2	10.00	27.200	0.00	78.000	85.979	20.3				· · · · ·
	8:12	120	20.2	9.44	30.045	0.57	75.104	80.239	20.3	20.30	2.59E-05	0.9929555	2.57E-05
	8:14	240	20.2	8.91	32.737	1.09	72.463	74.905	20.3	20.30	2.58E-05	0.9929555	2.57E-05
	8:16	360	20.2	8.43	35.176	1.57	70.024	70.028	20.3	20.30	2.56E-05	0.9929555	2.55E-05
	8:20	600	20.2	7.52	39.798	2.48	65.402	60.782	20.3	20.30		0.9929555	2.58E-05
	8:25	900	20.2	6.61	44.421	3.39	60.779	51.537	20.3	20.30	2.56E-05	0.9929555	2.54E-05

Hydraulic Conductivity (ASTM-D 5084) Flow Rate Calculation

Job----- American Signer (HSWLF Location-Sample--- Great Silty Fine SAND (57) A= Depth----- L=

Cell No. Z

Cell	Base	Тор
Pressure	Pressure	Pressure
(p.s.i.)	(p.s.i.)	(p.s.i.)
85.5	80.0	80.5

Date	Time	Elapsed Time Minutes	Cell Reading ML	Base Reading ML	Top Reading ML	Top Head CM	Base Head CM	h CM	Temp.	Hyd. Gradient
1-17-07	8:10	6	20.2	10.00	0.00				20.3	
	3:11	1	20.2	9.71	0.30				20.3	
	8:12	2	20.2	9.44	0.57				20.3	
	8:13	3	20.2	9.17	0.83				20.3	
	8:14	4	20.2	8.91	1.09				20.3	
	8:15	5	20.2	3,67	1.33				203	
	8:14	6	20.2	3.43	1.57				20.3	
	3:20	10	20.2	7.52	2.48				20.3	
	8:25	15	20.2	6.61	3.39				203	
-										
									1	
										
									-	[]
							······			
			•					Temp.		Hyd.
axL	t (sec)	2xAxt	aL/2At	h1	h2	ln(h1/h2)	к	Cor.	K -Cor.	Gradient
				-						
						· .			1	

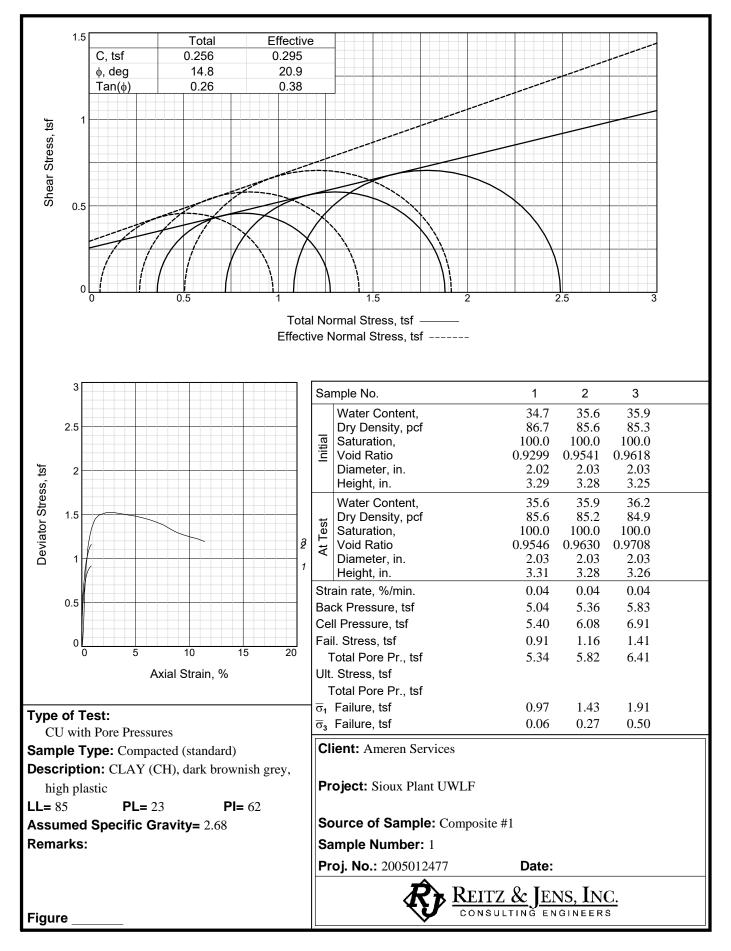
а. 1 يتعدر والأرام TRIAXIAL CELL SETUP & TAKEDOWN Project Amarin S.Dux //WLF _Dote_1-8-07 Sample Silty SAnd (SM) 2+ 82M Platt Depth. Description Sand Brain, (SM) 50 PS1 Hud. Carl. ____Confining Pressure Differential ___ Type of Test. _Saturate before after Consolidation_ Cell Number ... Number of Membranes_ LENGTH CHANGE STRAIN GAUGE at setup ______ i XH3 ph MOISTURE CONTENT at saturation start _____ INITIAL FINAL 498 36 at consolidation start _ <u>Tare No.</u> Wet Wt. + Tare B-14 Bon (18 247.40 514 929.44 at axial load start 239.06 Dry Wt. + Tare 214.38 840.65 Wt. Water 68.79 41.32 Tare Wt. 571.06 40.72 MASS PROPERTIES Dry Soil Wt. 289.59 19,014 19.202 23.7542 Moisture % Wt. Tube + Soil gm. Wt. Tube Avg. w % 19.108 gm. Wt. Soil No WH, Due to Brittle 5 gm. Tube Diameter in. Sample Length in tube length in. SPECIMEN DIMENSIONS ' in. mm. top trim in. DIAMETER HEIGHT bottom trim in. total trim in. Initial Final Initial Final sample length in. 3,5990 1.9685 1.9860 Density constant 4.85/(D^2 * L) 3.5510 Т 1 M 1,9820 1.9719 3.5630 2 35745 1.9875 B 1.9895 3.5715 3 5600 Wet Density pcf. 1.985 833 3.574333 in Dry Density pcf. Avg. 9.0183067cm 9.03732 5,044017 5,01361427 Description After Test 8 - 1251 80m - 1011 90m = 23.8 Remarks Initial Final Sm 118.7 Xp 99,6 19.) 2M Failure Sketch Trimmed By 1-8-07 Trimmed Date KOR Setup By 1-8-07 Setup Date Taken Down By Take Down Date

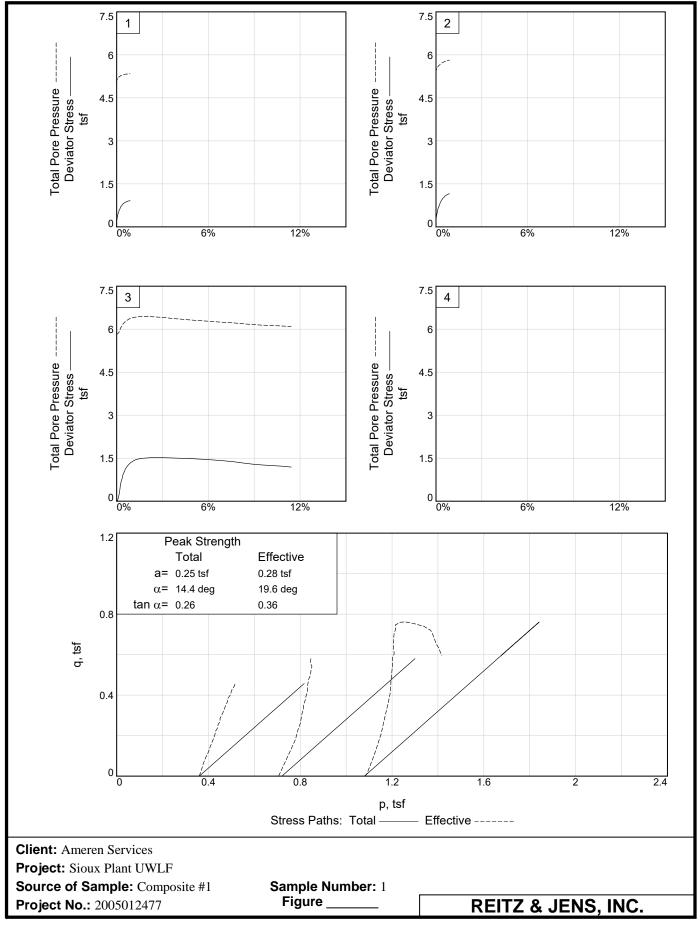
REITZ & JENS, INC. Consulting Engineers Sheet _____ of ____

LAXSTUP.dwg rov. 2/12/98

PROJECT	HAUREN	5 Sioux	/					
		Fine Sam		DEP				
INITIAL C	ELL PRES	SURE	71.0		START [DATE	1-8-07	
INITIAL P	ORE PRES	SURE	70.0)	CEL	L NUMBER	~	
INITIAL TI	RANSDUCE	R READING	g <u>71,1</u>		TRA	NSDUCER	NUMBER	2
				r		CHANGE IN	PRESSURE	·····
	-				Т	ransducer Co		
TRIAL DATE	TRIAL TIME	BASE BURETTE READING	CELL PRESSURE	TRANS- DUCER READING	CELL DELTA (1)		DUCER PRESSURE CHANGE (2)	BETA FACTOR (2/1)
1-9-07	0	2.00	71.0	70.5				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		76.6	75.3	5.0		4.8	0.96
	2 4		-11	75.2	5.0		4.7	0.94
				75.2	5.0		4.7	0.94
,			,		,			
1-10-07	0	2.78	76.00	75,4		· · · · · · · · · · · · · · · · · · ·		
	1		81.00	80.2	5.0		4.8	0.96
	2		<i>u</i>	30.2	5.0		4.8	0.96
	4		<u> </u>	36.2	5.0		4.8	0.96
	8		~	30.2	5-0	-	7.8	8.96
					· · · ·			
				·		*		
					· · · · · · · · · · · · · · · · · · ·			
·								
······								
				<u> </u>			·	<u> </u>

REITZ & JENS, INC. Consulting Engineers Sheet _____ of _


CONSOL	Æ -	-11. 5		100-01			
CONSOL		rilly Per	VE SA	ind	DFPTH_		
							MBER 2
JONSOL		PORE PRES					
DATE	ТІМЕ	BURETTE	DELTA	SUM DEI TA	DELTA	ТЕМР	REMARKS
1-10-06	10:20	READING	VOLUME	VOLUME			· ·
1-10-06	10:35	9.42		0.58	0.		
		9.38	 	0.90	-11		
	.]	9.37	∤	0.63	.25		
	10:36	9.36	1	0.04	1		
	10:37	9.36		6.01	2		
	10:39	9.35		0.65	4		
	10:43	9.34		0.66	B		
	10:50	9.33		0.67	15		
··	11:05	9.32		0.68	30		
	11:35	9.33			60		· · · · · · · · · · · · · · · · · · ·
	B:05	9.36			,		· · · · · · · · · · · · · · · · · · ·
<u> </u>	ļ						
	·}						·
							· · · · · · · · · · · · · · · · · · ·
							·
		· [1				
			1				
····	-	-			·		· · · ·
	·]	-					
····							<i></i>
							•
·			-				
	l				·		
	·	-					·
	·	-			·		
							· · · · · · · · · · · · · · · · · · ·
			+	}			
	1 .	·	1	(1	


REITZ & JENS, INC. Consulting Engineers Sheet _____ of _____

<u>Appendix 6</u>

RESULTS OF TRIAXIAL SHEAR STRENGTH TESTS ON COMPACTED COMPOSITE SAMPLES

REITZ & JENS, INC.

Tested By: K. Kocher

Checked By: J. Fouse

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

1/18/2007 7:58 AM

Date:					
Client:	Ameren Services				
Project:	Sioux Plant UWL	7			
Project No.:	2005012477				
Location:	Composite #1				
Sample Number:	1				
Description:	CLAY (CH), dark	brownish grey	, high plastic		
Remarks:					
Type of Sample:	Compacted (standa	urd)			
Assumed Specific G	iravity=2.68	LL= 85	PL= 23	PI= 62	
Test Method:	COE uniform strai	n			
	F	Parameters for	or Specimen No.	1	
Specimen Parame	ter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.		134.700			0.000
Moisture content: D	ry soil+tare, gms.	100.000			0.000
Moisture content: Ta	are, gms.	0.000			0.000
Moisture, %		34.7	35.0	35.6	
Moist specimen weig	ght, gms.	323.1			
Diameter, in.		2.02	2.02	2.03	
Area, in.²		3.20	3.21	3.23	
Height, in.		3.29	3.30	3.31	
Net decrease in heig	jht, in.		0.00	-0.01	
Wet Density, pcf		116.8	116.6	116.1	
Dry density, pcf		86.7	86.4	85.6	
Void ratio		0.9299	0.9369	0.9546	
Saturation, %		100.0	100.0	100.0	
	Те	st Readings	for Specimen No	o. 1	
Concolidation call n	-75.00 pci	(5.400 tof)			

Consolidation cell pressure = 75.00 psi (5.400 tsf) Consolidation back pressure = 70.00 psi (5.040 tsf) Consolidation effective confining stress = 0.360 tsf Strain rate, %/min. = 0.04 Fail. Stress = 0.915 tsf at reading no. 23

					Test Re	adings fo	or Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0000	20.50	0.0	0.0	0.000	0.360	0.360	1.00	70.00	0.360	0.000
1	0.0000	23.30	2.8	0.0	0.062	0.338	0.401	1.18	70.30	0.370	0.031
2	0.0000	25.90	5.4	0.0	0.120	0.317	0.437	1.38	70.60	0.377	0.060
3	0.0000	28.90	8.4	0.0	0.187	0.295	0.482	1.63	70.90	0.389	0.094
4	0.0000	31.20	10.7	0.0	0.239	0.281	0.519	1.85	71.10	0.400	0.119
5	0.0010	33.00	12.5	0.0	0.279	0.266	0.545	2.05	71.30	0.406	0.139
6	0.0010	35.00	14.5	0.0	0.323	0.252	0.575	2.28	71.50	0.414	0.162
7	0.0020	37.00	16.5	0.1	0.368	0.238	0.605	2.55	71.70	0.421	0.184
8	0.0020	38.90	18.4	0.1	0.410	0.223	0.633	2.84	71.90	0.428	0.205
9	0.0030	40.50	20.0	0.1	0.445	0.209	0.654	3.13	72.10	0.432	0.223
10	0.0030	41.90	21.4	0.1	0.477	0.202	0.678	3.36	72.20	0.440	0.238
11	0.0040	43.40	22.9	0.1	0.510	0.187	0.697	3.72	72.40	0.442	0.255
12	0.0050	44.80	24.3	0.2	0.541	0.180	0.721	4.00	72.50	0.450	0.270
13	0.0050	46.10	25.6	0.2	0.570	0.166	0.735	4.44	72.70	0.451	0.285
14	0.0070	48.40	27.9	0.2	0.621	0.151	0.772	5.10	72.90	0.462	0.310
15	0.0080	50.50	30.0	0.2	0.667	0.137	0.804	5.88	73.10	0.470	0.334
16	0.0090	52.20	31.7	0.3	0.705	0.122	0.827	6.76	73.30	0.475	0.352
17	0.0110	53.70	33.2	0.3	0.738	0.115	0.853	7.40	73.40	0.484	0.369
18	0.0120	55.00	34.5	0.4	0.766	0.101	0.867	8.60	73.60	0.484	0.383
19	0.0140	56.90	36.4	0.4	0.808	0.094	0.902	9.63	73.70	0.498	0.404
20	0.0170	58.40	37.9	0.5	0.841	0.079	0.920	11.61	73.90	0.499	0.420
21	0.0200	59.80	39.3	0.6	0.871	0.072	0.943	13.09	74.00	0.507	0.435
22	0.0250	61.20	40.7	0.8	0.900	0.065	0.965	14.90	74.10	0.515	0.450
23	0.0290	61.90	41.4	0.9	0.915	0.058	0.972	16.88	74.20	0.515	0.457

F	Parameters	for Specimen No.	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	135.600			0.000
Moisture content: Dry soil+tare, gms.	100.000			0.000
Moisture content: Tare, gms.	0.000			0.000
Moisture, %	35.6	35.6	35.9	
Moist specimen weight, gms.	323.1			
Diameter, in.	2.03	2.03	2.03	
Area, in. ²	3.24	3.24	3.25	
Height, in.	3.28	3.28	3.28	
Net decrease in height, in.		0.00	-0.01	
Wet Density, pcf	116.1	116.1	115.9	
Dry density, pcf	85.6	85.6	85.2	
Void ratio	0.9541	0.9541	0.9630	
Saturation, %	100.0	100.0	100.0	
То	st Reading	s for Specimen No	2	

Test Readings for Specimen No. 2Consolidation cell pressure = 84.50 psi (6.084 tsf)

Consolidation back pressure = 74.50 psi (5.364 tsf)

Consolidation effective confining stress = 0.720 tsf

Strain rate, %/min. = 0.04

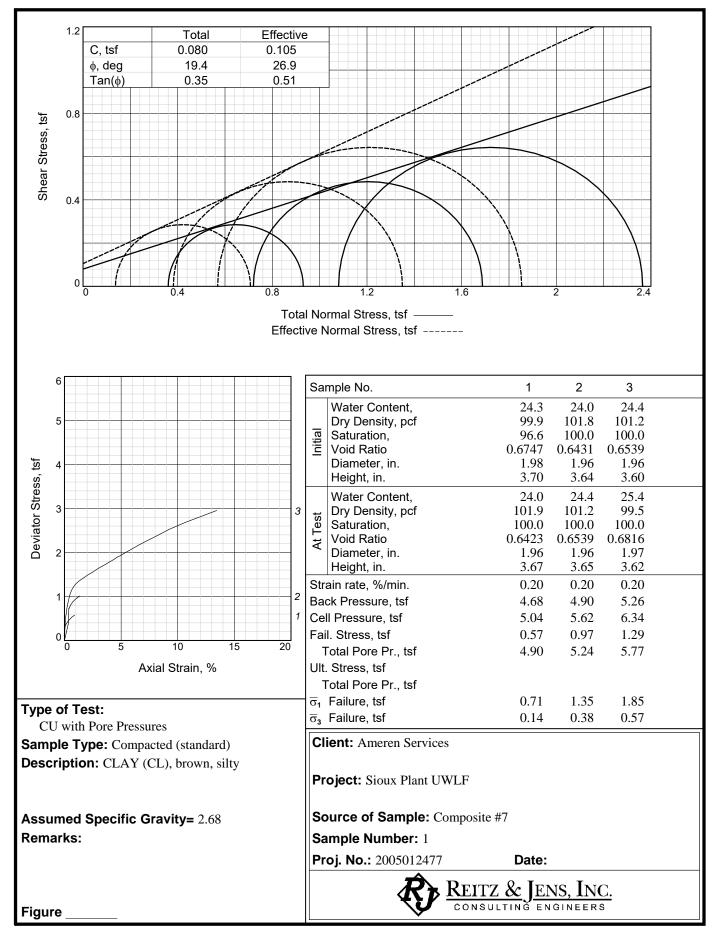
Fail. Stress = 1.161 tsf at reading no. 18

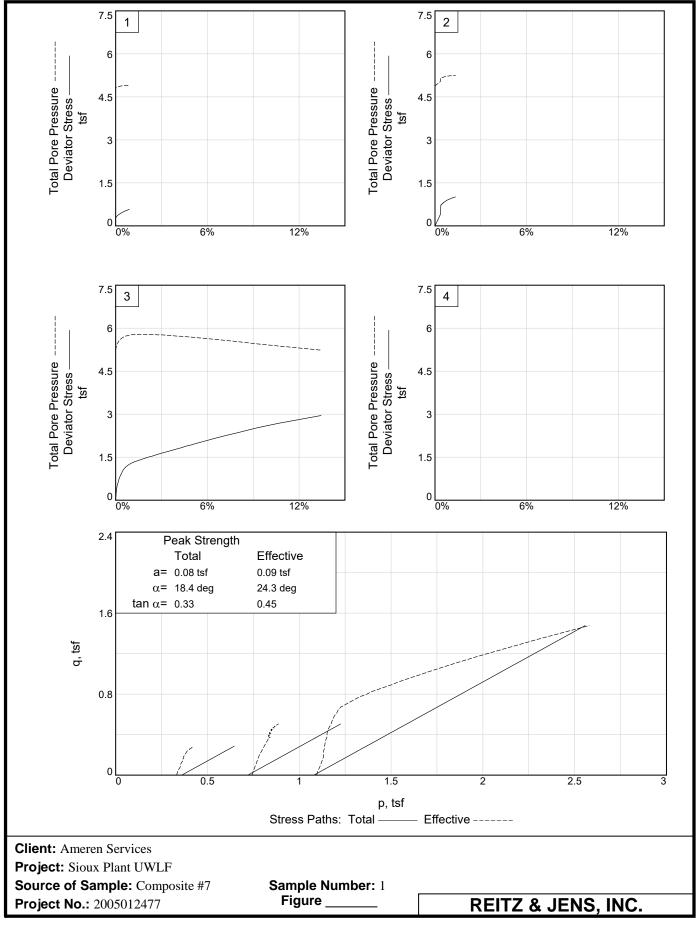
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0000	23.10	0.0	0.0	0.000	0.706	0.706	1.00	74.70	0.706	0.000
1	0.0000	34.10	11.0	0.0	0.244	0.634	0.878	1.39	75.70	0.756	0.122
2	0.0010	39.50	16.4	0.0	0.364	0.598	0.961	1.61	76.20	0.779	0.182
3	0.0020	43.70	20.6	0.1	0.457	0.562	1.018	1.81	76.70	0.790	0.228
4	0.0030	46.60	23.5	0.1	0.521	0.540	1.061	1.96	77.00	0.800	0.260
5	0.0030	48.90	25.8	0.1	0.572	0.518	1.090	2.10	77.30	0.804	0.286
6	0.0040	51.20	28.1	0.1	0.622	0.497	1.119	2.25	77.60	0.808	0.311
7	0.0050	53.10	30.0	0.2	0.664	0.482	1.147	2.38	77.80	0.815	0.332
8	0.0060	55.10	32.0	0.2	0.708	0.461	1.169	2.54	78.10	0.815	0.354
9	0.0070	57.00	33.9	0.2	0.750	0.446	1.197	2.68	78.30	0.822	0.375
10	0.0080	58.60	35.5	0.2	0.785	0.432	1.217	2.82	78.50	0.825	0.393
11	0.0090	61.20	38.1	0.3	0.843	0.410	1.253	3.05	78.80	0.832	0.421
12	0.0110	63.90	40.8	0.3	0.902	0.382	1.283	3.36	79.20	0.833	0.451
13	0.0130	66.20	43.1	0.4	0.952	0.360	1.312	3.64	79.50	0.836	0.476
14	0.0150	68.30	45.2	0.5	0.998	0.346	1.343	3.89	79.70	0.845	0.499
15	0.0180	70.50	47.4	0.5	1.045	0.324	1.369	4.23	80.00	0.847	0.523
16	0.0200	72.20	49.1	0.6	1.082	0.310	1.392	4.50	80.20	0.851	0.541
17	0.0240	74.20	51.1	0.7	1.125	0.281	1.406	5.01	80.60	0.843	0.563
18	0.0290	75.90	52.8	0.9	1.161	0.266	1.427	5.36	80.80	0.847	0.580

Parameters for Specimen No. 3										
Specimen Parameter	Initial	Saturated	Consolidated	Final						
Moisture content: Moist soil+tare, gms.	135.900			0.000						
Moisture content: Dry soil+tare, gms.	100.000			0.000						
Moisture content: Tare, gms.	0.000			0.000						
Moisture, %	35.9	35.9	36.2							
Moist specimen weight, gms.	320.2									
Diameter, in.	2.03	2.03	2.03							
Area, in.²	3.24	3.24	3.25							
Height, in.	3.25	3.25	3.26							
Net decrease in height, in.		0.00	-0.01							
Wet Density, pcf	115.9	115.9	115.6							
Dry density, pcf	85.3	85.3	84.9							
Void ratio	0.9618	0.9618	0.9708							
Saturation, %	100.0	100.0	100.0							

Test Readings for Spe Consolidation cell pressure = 96.00 psi (6.912 tsf)

Consolidation back pressure = 81.00 psi (5.832 tsf)


Consolidation effective confining stress = 1.080 tsf


Strain rate, %/min. = 0.04

Fail. Stress = 1.410 tsf at reading no. 15

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0100	26.60	0.0	0.0	0.000	1.080	1.080	1.00	81.00	1.080	0.000
1	0.0120	27.50	0.9	0.1	0.020	1.080	1.100	1.02	81.00	1.090	0.010
2	0.0150	36.40	9.8	0.2	0.217	1.015	1.232	1.21	81.90	1.124	0.109
3	0.0170	45.50	18.9	0.2	0.418	0.943	1.361	1.44	82.90	1.152	0.209
4	0.0180	52.80	26.2	0.2	0.580	0.878	1.458	1.66	83.80	1.168	0.290
5	0.0200	58.60	32.0	0.3	0.708	0.828	1.536	1.85	84.50	1.182	0.354
6	0.0220	63.40	36.8	0.4	0.813	0.785	1.598	2.04	85.10	1.191	0.407
7	0.0230	67.60	41.0	0.4	0.906	0.742	1.647	2.22	85.70	1.194	0.453
8	0.0250	71.10	44.5	0.5	0.982	0.706	1.688	2.39	86.20	1.197	0.491
9	0.0270	74.00	47.4	0.5	1.046	0.677	1.723	2.55	86.60	1.200	0.523
10	0.0280	76.90	50.3	0.6	1.109	0.648	1.757	2.71	87.00	1.203	0.555
11	0.0300	79.40	52.8	0.6	1.164	0.619	1.783	2.88	87.40	1.201	0.582
12	0.0320	81.50	54.9	0.7	1.209	0.605	1.814	3.00	87.60	1.209	0.605
13	0.0360	85.10	58.5	0.8	1.287	0.562	1.849	3.29	88.20	1.205	0.644
14	0.0400	87.90	61.3	0.9	1.347	0.533	1.880	3.53	88.60	1.206	0.673
15	0.0460	90.90	64.3	1.1	1.410	0.504	1.914	3.80	89.00	1.209	0.705
16	0.0510	92.90	66.3	1.3	1.452	0.490	1.941	3.97	89.20	1.216	0.726
17	0.0620	95.00	68.4	1.6	1.493	0.468	1.961	4.19	89.50	1.214	0.746
18	0.0830	96.70	70.1	2.2	1.520	0.475	1.995	4.20	89.40	1.235	0.760
19	0.1030	97.30	70.7	2.9	1.523	0.497	2.020	4.07	89.10	1.258	0.762
20	0.1090	97.30	70.7	3.0	1.520	0.504	2.024	4.02	89.00	1.264	0.760
21	0.1300	97.20	70.6	3.7	1.508	0.540	2.048	3.79	88.50	1.294	0.754
22	0.1520	97.00	70.4	4.4	1.493	0.569	2.062	3.63	88.10	1.315	0.747
23	0.1730	96.90	70.3	5.0	1.481	0.598	2.079	3.48	87.70	1.338	0.741
24	0.1930	96.50	69.9	5.6	1.463	0.619	2.082	3.36	87.40	1.351	0.732
25	0.2150	95.90	69.3	6.3	1.440	0.648	2.088	3.22	87.00	1.368	0.720
26	0.2370	95.00	68.4	7.0	1.411	0.670	2.081	3.11	86.70	1.375	0.706
						REITZ & 、	JENS, INC	·			

	Test Readings for Specimen No. 3											
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf	
27	0.2580	93.90	67.3	7.6	1.379	0.691	2.070	2.99	86.40	1.381	0.689	
28	0.2780	92.20	65.6	8.2	1.335	0.720	2.055	2.85	86.00	1.388	0.668	
29	0.2990	90.60	64.0	8.9	1.293	0.749	2.042	2.73	85.60	1.396	0.647	
30	0.3190	89.70	63.1	9.5	1.267	0.770	2.037	2.64	85.30	1.404	0.633	
31	0.3390	89.00	62.4	10.1	1.244	0.785	2.029	2.59	85.10	1.407	0.622	
32	0.3610	88.40	61.8	10.8	1.223	0.799	2.022	2.53	84.90	1.411	0.611	
33	0.3820	87.30	60.7	11.4	1.192	0.821	2.013	2.45	84.60	1.417	0.596	

Tested By: K. Kocher

Checked By: J. Fouse

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

1/16/2007 11:51 AM

Client: Ameren Services Project: Sioux Plant UWLF Project No.: 2005012477 Location: Composite #7 Sample Number: 1 Description: CLAY (CL), brown, silty Remarks: Type of Sample: Type of Sample: Compacted (standard) Assumed Specific Gravity=2.68 LL= PL= Pl= Test Method: COE uniform strain COE uniform strain Final Specimen Parameter Initial Saturated Consolidated Final Moisture content: Moist soil+tare, gms. 31.760 0.000 0.000 Moisture content: Dry soil+tare, gms. 29.800 0.000 0.000 Moisture content: Tare, gms. 21.740 0.000 0.000 Moist specimen weight, gms. 369.6 24.0 24.3 24.6 24.0 Moist specimen weight, in. 3.07 3.05 3.03 4eight, in. 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67 Net decrease in height, in. 0.01 0.01
Project No.: 2005012477 Location: Composite #7 Sample Number: 1 Description: CLAY (CL), brown, silty Remarks: PL= PI= Type of Sample: Compacted (standard) Assumed Specific Gravity=2.68 LL= PL= PI= Test Method: COE uniform strain Total Saturated Consolidated Final Specimen Parameter Initial Saturated Consolidated Final Moisture content: Moist soil+tare, gms. 31.760 0.000 0.000 Moisture content: Tare, gms. 21.740 0.000 Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6 1.97 1.96 Diameter, in. 1.98 1.97 1.96 Area, in.2 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Location:Composite #7Sample Number:1Description:CLAY (CL), brown, siltyRemarks:Type of Sample:Type of Sample:Compacted (standard)Assumed Specific Gravity=2.68LL=PL=Pl=Pl=Test Method:COE uniform strainFearmeters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content: Moist soil+tare, gms.31.760Moisture content: Dry soil+tare, gms.29.8000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.61.97Diameter, in.1.981.971.96Area, in.23.073.053.03Height, in.3.703.693.67
Sample Number: 1 Description: CLAY (CL), brown, silty Remarks: Type of Sample: Compacted (standard) Assumed Specific Gravity=2.68 LL= PL= PI= Test Method: COE uniform strain Parameters for Specimen No. 1 Specimen Parameter Initial Saturated Consolidated Final Moisture content: Moist soil+tare, gms. 31.760 0,000 Moisture content: Dry soil+tare, gms. 29.800 0,000 Moisture content: Tare, gms. 21.740 0,000 Moisture content: Tare, gms. 21.740 0,000 Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6 Diameter, in. 1.98 1.97 1.96 Area, in. ² 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Description:CLAY (CL), brown, siltyRemarks:Compacted (standard)Type of Sample:Compacted (standard)Assumed Specific Gravity=2.68LL=PL=Pl=Pl=Test Method:COE uniform strainParameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedMoisture content: Moist soil+tare, gms.31.7600.000Moisture content: Dry soil+tare, gms.29.8000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.61.97Diameter, in.1.981.971.96Area, in.²3.073.053.03Height, in.3.703.693.67
Remarks:Type of Sample: Compacted (standard)Assumed Specific Gravity=2.68LL=PL=Pl=Fest Method: COE uniform strainParameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content: Moist soil+tare, gms.31.7600.0000.000Moisture content: Dry soil+tare, gms.29.8000.0000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.60.000Diameter, in.1.981.971.96Area, in.23.073.053.03Height, in.3.703.693.67
Type of Sample:Compacted (standard)Assumed Specific Gravity=2.68LL=PL=Pl=Test Method:COE uniform strainParameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content:Moist soil+tare, gms.31.7600.0000.000Moisture content:Dry soil+tare, gms.29.8000.0000.000Moisture content:Tare, gms.21.7400.0000.000Moisture, %24.324.624.04.0Moist specimen weight, gms.369.61.971.96Diameter, in.1.981.971.96Area, in.²3.073.053.03Height, in.3.703.693.67
Assumed Specific Gravity=2.68LL=PL=PI=Test Method:COE uniform strainParameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedMoisture content: Moist soil+tare, gms.31.7600.000Moisture content: Dry soil+tare, gms.29.8000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.60.000Diameter, in.1.981.971.96Area, in.23.073.053.03Height, in.3.703.693.67
Test Method: COE uniform strainParameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content: Moist soil+tare, gms.31.7600.0000.000Moisture content: Dry soil+tare, gms.29.8000.0000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.6
Parameters for Specimen No. 1Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content: Moist soil+tare, gms.31.7600.0000.000Moisture content: Dry soil+tare, gms.29.8000.0000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.6
Specimen ParameterInitialSaturatedConsolidatedFinalMoisture content: Moist soil+tare, gms.31.7600.0000.000Moisture content: Dry soil+tare, gms.29.8000.0000.000Moisture content: Tare, gms.21.7400.000Moisture, %24.324.624.0Moist specimen weight, gms.369.6
Moisture content: Moist soil+tare, gms. 31.760 0.000 Moisture content: Dry soil+tare, gms. 29.800 0.000 Moisture content: Tare, gms. 21.740 0.000 Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6 1.97 1.96 Diameter, in. 1.98 1.97 1.96 Area, in. ² 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Moisture content: Dry soil+tare, gms. 29.800 0.000 Moisture content: Tare, gms. 21.740 0.000 Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6 1.97 1.96 Diameter, in. 1.98 1.97 1.96 Area, in. ² 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Moisture content: Tare, gms. 21.740 0.000 Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6
Moisture, % 24.3 24.6 24.0 Moist specimen weight, gms. 369.6 1.97 1.96 Diameter, in. 1.98 1.97 1.96 Area, in.² 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Moist specimen weight, gms. 369.6 Diameter, in. 1.98 1.97 1.96 Area, in.² 3.07 3.05 3.03 Height, in. 3.70 3.69 3.67
Diameter, in.1.981.971.96Area, in.23.073.053.03Height, in.3.703.693.67
Area, in.23.073.053.03Height, in.3.703.693.67
Height, in. 3.70 3.69 3.67
Not decreases in height in 0.01
Net decrease in height, in. 0.01 0.01
Wet Density, pcf 124.2 125.6 126.3
Dry density, pcf 99.9 100.8 101.9
Void ratio 0.6747 0.6598 0.6423
Saturation, % 96.6 100.0 100.0
Test Readings for Specimen No. 1

Consolidation cell pressure = 70.00 psi (5.040 tsf)Consolidation back pressure = 65.00 psi (4.680 tsf)Consolidation effective confining stress = 0.360 tsfStrain rate, %/min. = 0.20Fail. Stress = 0.571 tsf at reading no. 24

					Test Re	adings fo	or Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0000	17.70	0.0	0.0	0.000	0.331	0.331	1.00	65.40	0.331	0.000
1	0.0000	20.00	2.3	0.0	0.055	0.310	0.364	1.18	65.70	0.337	0.027
2	0.0000	21.10	3.4	0.0	0.081	0.295	0.376	1.27	65.90	0.336	0.040
3	0.0000	22.30	4.6	0.0	0.109	0.288	0.397	1.38	66.00	0.343	0.055
4	0.0000	23.30	5.6	0.0	0.133	0.281	0.414	1.47	66.10	0.347	0.067
5	0.0000	24.20	6.5	0.0	0.155	0.274	0.428	1.57	66.20	0.351	0.077
6	0.0000	25.60	7.9	0.0	0.188	0.259	0.447	1.73	66.40	0.353	0.094
7	0.0000	26.90	9.2	0.0	0.219	0.245	0.464	1.89	66.60	0.354	0.109
8	0.0000	27.80	10.1	0.0	0.240	0.238	0.478	2.01	66.70	0.358	0.120
9	0.0000	28.70	11.0	0.0	0.262	0.230	0.492	2.14	66.80	0.361	0.131
10	0.0000	29.80	12.1	0.0	0.288	0.223	0.511	2.29	66.90	0.367	0.144
11	0.0020	30.90	13.2	0.1	0.314	0.209	0.523	2.50	67.10	0.366	0.157
12	0.0030	32.00	14.3	0.1	0.340	0.202	0.542	2.69	67.20	0.372	0.170
13	0.0050	33.10	15.4	0.1	0.366	0.187	0.553	2.95	67.40	0.370	0.183
14	0.0070	34.10	16.4	0.2	0.389	0.180	0.569	3.16	67.50	0.375	0.195
15	0.0090	35.00	17.3	0.2	0.411	0.173	0.583	3.38	67.60	0.378	0.205
16	0.0110	35.90	18.2	0.3	0.432	0.166	0.597	3.61	67.70	0.381	0.216
17	0.0140	36.90	19.2	0.4	0.455	0.158	0.614	3.87	67.80	0.386	0.228
18	0.0160	37.80	20.1	0.4	0.476	0.151	0.627	4.15	67.90	0.389	0.238
19	0.0200	38.70	21.0	0.5	0.497	0.151	0.648	4.29	67.90	0.400	0.248
20	0.0220	39.70	22.0	0.6	0.520	0.144	0.664	4.61	68.00	0.404	0.260
21	0.0260	40.60	22.9	0.7	0.541	0.144	0.685	4.76	68.00	0.415	0.271
22	0.0310	41.70	24.0	0.8	0.566	0.137	0.703	5.14	68.10	0.420	0.283
23	0.0320	41.90	24.2	0.9	0.571	0.137	0.708	5.17	68.10	0.422	0.285
24	0.0330	41.90	24.2	0.9	0.571	0.137	0.707	5.17	68.10	0.422	0.285

F	Parameters f	or Specimen No.	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	124.000			0.000
Moisture content: Dry soil+tare, gms.	100.000			0.000
Moisture content: Tare, gms.	0.000			0.000
Moisture, %	24.0	24.0	24.4	
Moist specimen weight, gms.	364.1			
Diameter, in.	1.96	1.96	1.96	
Area, in. ²	3.02	3.02	3.03	
Height, in.	3.64	3.64	3.65	
Net decrease in height, in.		0.00	-0.01	
Wet Density, pcf	126.3	126.3	125.8	
Dry density, pcf	101.8	101.8	101.2	
Void ratio	0.6431	0.6431	0.6539	
Saturation, %	100.0	100.0	100.0	
Te	st Readings	for Specimen N	0.2	

Test Readings for \$Consolidation cell pressure = 78.10 psi (5.623 tsf)

Consolidation back pressure = 68.10 psi (4.903 tsf)

Consolidation effective confining stress = 0.720 tsf

Strain rate, %/min. = 0.20

Fail. Stress = 0.968 tsf at reading no. 32

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0030	20.00	0.0	0.0	0.000	0.742	0.742	1.00	67.80	0.742	0.000
1	0.0160	36.90	16.9	0.4	0.400	0.583	0.983	1.69	70.00	0.783	0.200
2	0.0170	50.90	30.9	0.4	0.731	0.468	1.199	2.56	71.60	0.834	0.366
3	0.0180	50.90	30.9	0.4	0.731	0.468	1.199	2.56	71.60	0.834	0.366
4	0.0190	51.40	31.4	0.4	0.743	0.468	1.211	2.59	71.60	0.839	0.371
5	0.0190	51.70	31.7	0.4	0.750	0.461	1.211	2.63	71.70	0.836	0.375
6	0.0200	52.20	32.2	0.5	0.761	0.454	1.215	2.68	71.80	0.834	0.381
7	0.0200	52.60	32.6	0.5	0.771	0.446	1.217	2.73	71.90	0.832	0.385
8	0.0210	53.00	33.0	0.5	0.780	0.446	1.227	2.75	71.90	0.836	0.390
9	0.0220	53.30	33.3	0.5	0.787	0.439	1.226	2.79	72.00	0.833	0.394
10	0.0220	53.70	33.7	0.5	0.797	0.439	1.236	2.81	72.00	0.837	0.398
11	0.0230	54.00	34.0	0.5	0.803	0.432	1.235	2.86	72.10	0.834	0.402
12	0.0230	54.40	34.4	0.5	0.813	0.432	1.245	2.88	72.10	0.838	0.406
13	0.0240	54.80	34.8	0.6	0.822	0.432	1.254	2.90	72.10	0.843	0.411
14	0.0250	55.00	35.0	0.6	0.827	0.425	1.251	2.95	72.20	0.838	0.413
15	0.0260	55.60	35.6	0.6	0.840	0.418	1.258	3.01	72.30	0.838	0.420
16	0.0270	55.90	35.9	0.7	0.847	0.418	1.265	3.03	72.30	0.841	0.424
17	0.0280	56.40	36.4	0.7	0.859	0.410	1.269	3.09	72.40	0.840	0.429
18	0.0290	57.00	37.0	0.7	0.873	0.410	1.283	3.13	72.40	0.847	0.436
19	0.0300	57.20	37.2	0.7	0.877	0.410	1.288	3.14	72.40	0.849	0.439
20	0.0310	57.60	37.6	0.8	0.886	0.403	1.290	3.20	72.50	0.846	0.443
21	0.0320	58.10	38.1	0.8	0.898	0.403	1.301	3.23	72.50	0.852	0.449
22	0.0330	58.30	38.3	0.8	0.902	0.396	1.298	3.28	72.60	0.847	0.451
23	0.0340	58.60	38.6	0.8	0.909	0.396	1.305	3.30	72.60	0.851	0.455
24	0.0350	58.90	38.9	0.9	0.916	0.396	1.312	3.31	72.60	0.854	0.458
25	0.0360	59.20	39.2	0.9	0.923	0.396	1.319	3.33	72.60	0.857	0.461
26	0.0370	59.40	39.4	0.9	0.927	0.396	1.323	3.34	72.60	0.860	0.464
						REITZ & J	IENS, INC				

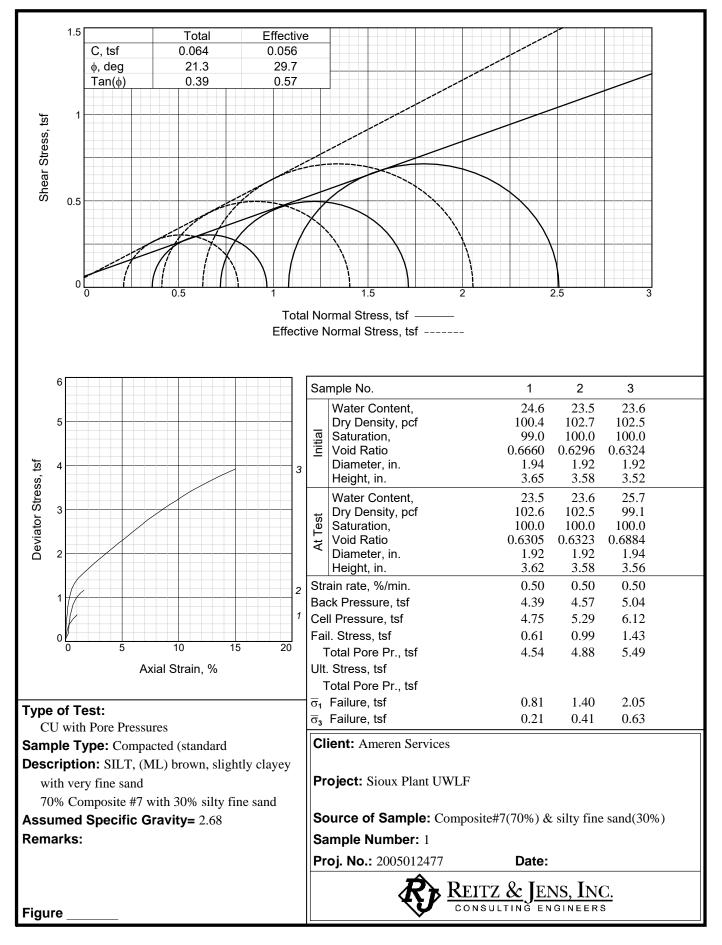
					Test Re	adings fo	or Specim	en No.	2		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
27	0.0380	59.80	39.8	1.0	0.937	0.389	1.325	3.41	72.70	0.857	0.468
28	0.0390	60.10	40.1	1.0	0.943	0.389	1.332	3.43	72.70	0.860	0.472
29	0.0400	60.30	40.3	1.0	0.948	0.389	1.337	3.44	72.70	0.863	0.474
30	0.0410	60.50	40.5	1.0	0.952	0.389	1.341	3.45	72.70	0.865	0.476
31	0.0420	60.80	40.8	1.1	0.959	0.389	1.348	3.47	72.70	0.868	0.480
32	0.0430	61.20	41.2	1.1	0.968	0.382	1.350	3.54	72.80	0.866	0.484
33	0.0440	61.20	41.2	1.1	0.968	0.382	1.349	3.54	72.80	0.866	0.484
34	0.0450	61.70	41.7	1.2	0.979	0.382	1.361	3.57	72.80	0.871	0.490
35	0.0460	61.90	41.9	1.2	0.984	0.382	1.365	3.58	72.80	0.873	0.492
36	0.0470	61.90	41.9	1.2	0.983	0.382	1.365	3.58	72.80	0.873	0.492
37	0.0480	62.20	42.2	1.2	0.990	0.382	1.372	3.60	72.80	0.877	0.495
38	0.0490	62.50	42.5	1.3	0.997	0.382	1.379	3.61	72.80	0.880	0.499
39	0.0500	62.60	42.6	1.3	0.999	0.382	1.381	3.62	72.80	0.881	0.500
40	0.0510	63.00	43.0	1.3	1.008	0.382	1.390	3.64	72.80	0.886	0.504
41	0.0520	63.10	43.1	1.3	1.010	0.382	1.392	3.65	72.80	0.887	0.505

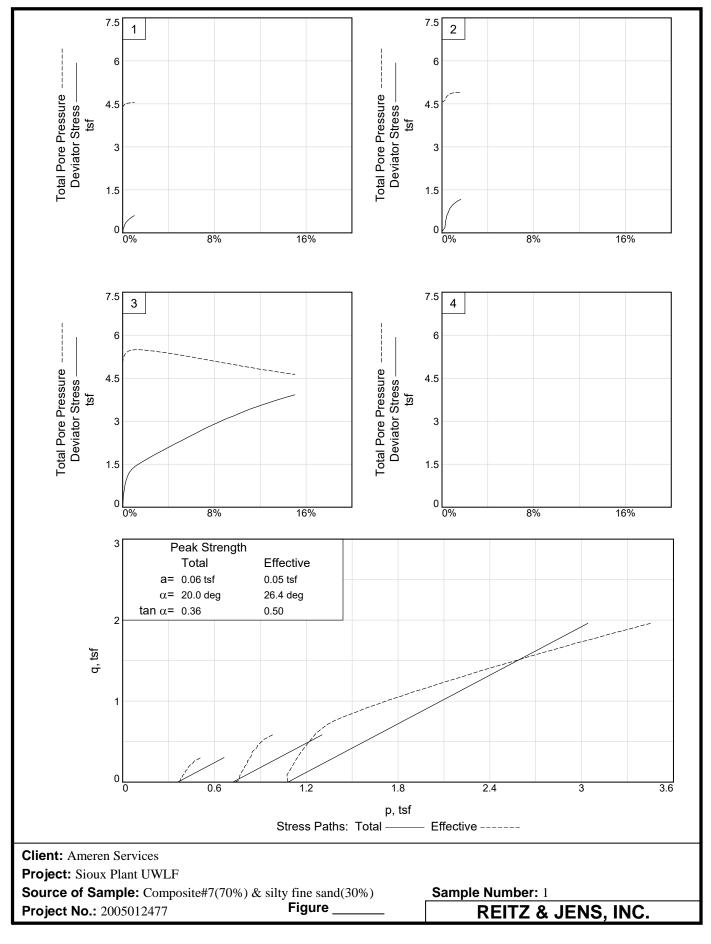
F	Parameters f	or Specimen No.	. 3	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	124.400			0.000
Moisture content: Dry soil+tare, gms.	100.000			0.000
Moisture content: Tare, gms.	0.000			0.000
Moisture, %	24.4	24.4	25.4	
Moist specimen weight, gms.	358.5			
Diameter, in.	1.96	1.96	1.97	
Area, in. ²	3.02	3.02	3.05	
Height, in.	3.60	3.60	3.62	
Net decrease in height, in.		0.00	-0.02	
Wet Density, pcf	125.8	125.8	124.8	
Dry density, pcf	101.2	101.2	99.5	
Void ratio	0.6539	0.6539	0.6816	
Saturation, %	100.0	100.0	100.0	
To	st Readings	for Specimen N	0.3	

 Test Readings for \$

 Consolidation cell pressure = 88.00 psi (6.336 tsf)

Consolidation back pressure = 73.00 psi (5.256 tsf)


Consolidation effective confining stress = 1.080 tsf


Strain rate, %/min. = 0.20

Fail. Stress = 1.285 tsf at reading no. 19

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf	
0	0.0140	24.40	0.0	0.0	0.000	1.094	1.094	1.00	72.80	1.094	0.000	
1	0.0140	28.10	3.7	0.0	0.087	1.058	1.146	1.08	73.30	1.102	0.044	
2	0.0150	31.40	7.0	0.0	0.165	1.030	1.195	1.16	73.70	1.112	0.083	
3	0.0150	34.50	10.1	0.0	0.238	1.001	1.239	1.24	74.10	1.120	0.119	
4	0.0160	37.50	13.1	0.1	0.309	0.972	1.281	1.32	74.50	1.127	0.155	
5	0.0160	39.80	15.4	0.1	0.363	0.950	1.314	1.38	74.80	1.132	0.182	
6	0.0170	44.10	19.7	0.1	0.465	0.900	1.365	1.52	75.50	1.132	0.232	
7	0.0180	47.60	23.2	0.1	0.547	0.864	1.411	1.63	76.00	1.137	0.273	
8	0.0200	50.90	26.5	0.2	0.624	0.828	1.452	1.75	76.50	1.140	0.312	
9	0.0210	53.70	29.3	0.2	0.690	0.799	1.489	1.86	76.90	1.144	0.345	
10	0.0220	56.10	31.7	0.2	0.746	0.778	1.524	1.96	77.20	1.151	0.373	
11	0.0240	59.20	34.8	0.3	0.819	0.742	1.561	2.10	77.70	1.151	0.410	
12	0.0260	62.00	37.6	0.3	0.884	0.713	1.597	2.24	78.10	1.155	0.442	
13	0.0280	64.50	40.1	0.4	0.943	0.691	1.634	2.36	78.40	1.163	0.471	
14	0.0300	67.20	42.8	0.4	1.006	0.670	1.675	2.50	78.70	1.172	0.503	
15	0.0320	69.50	45.1	0.5	1.059	0.648	1.707	2.63	79.00	1.178	0.530	
16	0.0350	71.90	47.5	0.6	1.115	0.626	1.741	2.78	79.30	1.184	0.557	
17	0.0390	74.50	50.1	0.7	1.174	0.605	1.779	2.94	79.60	1.192	0.587	
18	0.0440	76.90	52.5	0.8	1.229	0.590	1.819	3.08	79.80	1.205	0.614	
19	0.0500	79.40	55.0	1.0	1.285	0.569	1.854	3.26	80.10	1.211	0.643	
20	0.0590	82.00	57.6	1.2	1.342	0.554	1.897	3.42	80.30	1.226	0.671	
21	0.0690	84.40	60.0	1.5	1.395	0.554	1.949	3.52	80.30	1.252	0.697	
22	0.0800	86.90	62.5	1.8	1.448	0.554	2.003	3.61	80.30	1.278	0.724	
23	0.0900	89.20	64.8	2.1	1.497	0.554	2.052	3.70	80.30	1.303	0.749	
24	0.1020	91.50	67.1	2.4	1.545	0.554	2.099	3.79	80.30	1.327	0.773	
25	0.1130	94.00	69.6	2.7	1.598	0.569	2.166	3.81	80.10	1.368	0.799	
26	0.1240	96.40	72.0	3.0	1.648	0.569	2.216	3.90	80.10	1.393	0.824	

					Test Re	adings fo	r Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
27	0.1360	98.70	74.3	3.4	1.694	0.583	2.278	3.91	79.90	1.430	0.847
28	0.1480	101.10	76.7	3.7	1.743	0.598	2.341	3.92	79.70	1.469	0.872
29	0.1590	103.40	79.0	4.0	1.790	0.612	2.402	3.92	79.50	1.507	0.895
30	0.1710	105.80	81.4	4.3	1.838	0.619	2.457	3.97	79.40	1.538	0.919
31	0.1810	108.30	83.9	4.6	1.889	0.634	2.522	3.98	79.20	1.578	0.944
32	0.1940	110.60	86.2	5.0	1.933	0.648	2.581	3.98	79.00	1.615	0.967
33	0.2020	112.50	88.1	5.2	1.971	0.662	2.634	3.98	78.80	1.648	0.986
34	0.2200	116.20	91.8	5.7	2.043	0.684	2.727	3.99	78.50	1.706	1.022
35	0.2500	122.50	98.1	6.5	2.164	0.727	2.891	3.98	77.90	1.809	1.082
36	0.2750	127.50	103.1	7.2	2.258	0.763	3.021	3.96	77.40	1.892	1.129
37	0.3000	132.30	107.9	7.9	2.345	0.799	3.144	3.93	76.90	1.972	1.173
38	0.3500	142.60	118.2	9.3	2.530	0.886	3.416	3.86	75.70	2.151	1.265
39	0.4000	151.70	127.3	10.7	2.684	0.958	3.641	3.80	74.70	2.299	1.342
40	0.5000	169.00	144.6	13.4	2.954	1.102	4.056	3.68	72.70	2.579	1.477

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

1/16/2007 10:20 AM

Date:		
Client:	Ameren Services	
Project:	Sioux Plant UWLF	
Project No.:	2005012477	
Location:	Composite#7(70%) & silty fine sand(30%)	
Sample Number:	1	
Description:	SILT, (ML) brown, slightly clayey with very fine sand	
	70% Composite #7 with 30% silty fine sand	
Remarks:		
Type of Sample:	Compacted (standard	
Assumed Specific G	Gravity=2.68 LL= PL=	PI=

store operation	
Test Method:	COE uniform strain

F	arameters	for Specimen No.	1											
Specimen Parameter	Initial	Saturated	Consolidated	Final										
Moisture content: Moist soil+tare, gms.	124.600			0.000										
Moisture content: Dry soil+tare, gms.	100.000			0.000										
Moisture content: Tare, gms.	0.000			0.000										
Moisture, %	24.6	24.0	23.5											
Moist specimen weight, gms.	352.9													
Diameter, in.	1.94	1.93	1.92											
Area, in.²	2.95	2.92	2.90											
Height, in.	3.65	3.63	3.62											
Net decrease in height, in.		0.02	0.01											
Wet Density, pcf	125.1	126.2	126.8											
Dry density, pcf	100.4	101.8	102.6											
Void ratio	0.6660	0.6441	0.6305											
Saturation, %														
Те	st Reading	s for Specimen No	. 1											

Consolidation cell pressure = 66.00 psi (4.752 tsf)

Consolidation back pressure = 61.00 psi (4.392 tsf)

Consolidation effective confining stress = 0.360 tsf

Strain rate, %/min. = 0.50

Fail. Stress = 0.606 tsf at reading no. 21

					Test Re	adings fo	or Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0070	16.90	0.0	0.0	0.000	0.367	0.367	1.00	60.90	0.367	0.000
1	0.0080	18.90	2.0	0.0	0.050	0.353	0.402	1.14	61.10	0.378	0.025
2	0.0080	20.80	3.9	0.0	0.097	0.331	0.428	1.29	61.40	0.380	0.048
3	0.0090	22.30	5.4	0.1	0.134	0.324	0.458	1.41	61.50	0.391	0.067
4	0.0100	23.60	6.7	0.1	0.166	0.310	0.476	1.54	61.70	0.393	0.083
5	0.0110	25.00	8.1	0.1	0.201	0.302	0.503	1.66	61.80	0.403	0.100
6	0.0120	26.10	9.2	0.1	0.228	0.295	0.523	1.77	61.90	0.409	0.114
7	0.0120	27.20	10.3	0.1	0.255	0.281	0.536	1.91	62.10	0.408	0.128
8	0.0130	28.10	11.2	0.2	0.277	0.274	0.551	2.01	62.20	0.412	0.139
9	0.0150	29.50	12.6	0.2	0.312	0.266	0.578	2.17	62.30	0.422	0.156
10	0.0160	30.80	13.9	0.2	0.344	0.252	0.596	2.36	62.50	0.424	0.172
11	0.0180	31.90	15.0	0.3	0.371	0.245	0.616	2.51	62.60	0.430	0.185
12	0.0200	32.80	15.9	0.4	0.393	0.238	0.630	2.65	62.70	0.434	0.196
13	0.0220	34.10	17.2	0.4	0.425	0.230	0.655	2.84	62.80	0.443	0.212
14	0.0250	35.00	18.1	0.5	0.447	0.223	0.670	3.00	62.90	0.446	0.223
15	0.0270	36.10	19.2	0.6	0.473	0.223	0.697	3.12	62.90	0.460	0.237
16	0.0300	37.00	20.1	0.6	0.495	0.216	0.711	3.29	63.00	0.464	0.248
17	0.0320	38.00	21.1	0.7	0.520	0.209	0.728	3.49	63.10	0.469	0.260
18	0.0350	38.90	22.0	0.8	0.541	0.209	0.750	3.59	63.10	0.479	0.271
19	0.0380	39.80	22.9	0.9	0.563	0.209	0.772	3.70	63.10	0.490	0.281
20	0.0420	40.90	24.0	1.0	0.589	0.209	0.798	3.82	63.10	0.503	0.295
21	0.0440	41.60	24.7	1.0	0.606	0.209	0.815	3.90	63.10	0.512	0.303

F	Parameters f	for Specimen No.	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	123.500			0.000
Moisture content: Dry soil+tare, gms.	100.000			0.000
Moisture content: Tare, gms.	0.000			0.000
Moisture, %	23.5	23.5	23.6	
Moist specimen weight, gms.	344.8			
Diameter, in.	1.92	1.92	1.92	
Area, in. ²	2.90	2.90	2.90	
Height, in.	3.58	3.58	3.58	
Net decrease in height, in.		0.00	0.00	
Wet Density, pcf	126.8	126.8	126.7	
Dry density, pcf	102.7	102.7	102.5	
Void ratio	0.6296	0.6296	0.6323	
Saturation, %	100.0	100.0	100.0	
Το	st Readings	s for Specimen No	n 2	

Test Readings for S Consolidation cell pressure = 73.50 psi (5.292 tsf)

Consolidation back pressure = 63.50 psi (4.572 tsf)

Consolidation effective confining stress = 0.720 tsf

Strain rate, %/min. = 0.50

Fail. Stress = 0.994 tsf at reading no. 21

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0010	16.60	0.0	0.0	0.000	0.734	0.734	1.00	63.30	0.734	0.000
1	0.0010	17.00	0.4	0.0	0.010	0.734	0.744	1.01	63.30	0.739	0.005
2	0.0010	18.70	2.1	0.0	0.052	0.734	0.787	1.07	63.30	0.760	0.026
3	0.0100	23.90	7.3	0.3	0.181	0.677	0.858	1.27	64.10	0.767	0.090
4	0.0110	27.30	10.7	0.3	0.265	0.648	0.913	1.41	64.50	0.781	0.133
5	0.0120	30.10	13.5	0.3	0.334	0.626	0.961	1.53	64.80	0.794	0.167
6	0.0120	32.20	15.6	0.3	0.386	0.605	0.991	1.64	65.10	0.798	0.193
7	0.0130	34.40	17.8	0.3	0.441	0.590	1.031	1.75	65.30	0.811	0.220
8	0.0140	36.10	19.5	0.4	0.483	0.576	1.059	1.84	65.50	0.817	0.241
9	0.0150	37.60	21.0	0.4	0.520	0.554	1.074	1.94	65.80	0.814	0.260
10	0.0150	39.20	22.6	0.4	0.559	0.547	1.106	2.02	65.90	0.827	0.280
11	0.0160	40.60	24.0	0.4	0.594	0.533	1.126	2.11	66.10	0.830	0.297
12	0.0170	41.90	25.3	0.4	0.626	0.526	1.151	2.19	66.20	0.838	0.313
13	0.0190	43.90	27.3	0.5	0.675	0.504	1.179	2.34	66.50	0.841	0.337
14	0.0210	45.90	29.3	0.6	0.724	0.482	1.206	2.50	66.80	0.844	0.362
15	0.0220	47.60	31.0	0.6	0.766	0.468	1.234	2.64	67.00	0.851	0.383
16	0.0240	49.40	32.8	0.6	0.810	0.461	1.270	2.76	67.10	0.866	0.405
17	0.0250	50.80	34.2	0.7	0.844	0.454	1.297	2.86	67.20	0.876	0.422
18	0.0280	52.30	35.7	0.8	0.880	0.439	1.319	3.00	67.40	0.879	0.440
19	0.0300	53.90	37.3	0.8	0.919	0.425	1.344	3.16	67.60	0.884	0.460
20	0.0330	55.50	38.9	0.9	0.958	0.418	1.375	3.29	67.70	0.896	0.479
21	0.0360	57.00	40.4	1.0	0.994	0.410	1.404	3.42	67.80	0.907	0.497
22	0.0390	58.30	41.7	1.1	1.025	0.403	1.428	3.54	67.90	0.916	0.512
23	0.0430	59.70	43.1	1.2	1.058	0.396	1.454	3.67	68.00	0.925	0.529
24	0.0470	61.10	44.5	1.3	1.091	0.396	1.487	3.76	68.00	0.942	0.546
25	0.0520	62.50	45.9	1.4	1.124	0.396	1.520	3.84	68.00	0.958	0.562
26	0.0580	63.90	47.3	1.6	1.156	0.396	1.552	3.92	68.00	0.974	0.578
						REITZ & J	JENS, INC				

					Test Re	adings fo	or Specimo	en No.	. 2			
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf	
27	0.0600	64.40	47.8	1.6	1.168	0.396	1.564	3.95	68.00	0.980	0.584	
					Paran	neters for	Specimer	n No. 3				
Sp	ecimen F	Paramete	er		Ini	itial	Saturate	ed	Consol	idated		Final
Mois	ture con	tent: Mo	ist soil+	tare, gr	ns. 123.	600						0.000
Mois	ture con	tent: Dry	/ soil+ta	re, gms	. 100.	000						0.000
Mois	ture con	tent: Tar	e, gms.		0.	000						0.000
Mois	ture, %				2	23.6	23	.6		25.7		
Mois	t specim	en weig	ht, gms.		33	38.9						
Diam	eter, in.				1	.92	1.9	92		1.94		
Area	, in.²				2	2.90	2.9	9 0		2.96		
Heig	ht, in.				3	3.52	3.5	52		3.56		
Net c	lecrease	in heigh	nt, in.				0.0	00		-0.04		
Wet	Density,	pcf			12	26.7	126	.7		124.5		
Dry o	lensity, p	ocf			10)2.5	102	.5		99.1		
Void	ratio				0.6324		0.6324		0.6884			
Satu	ration, %)			10	0.0	100	.0		100.0		

Test Readings for Specimen No. 3

Consolidation cell pressure = 85.00 psi (6.120 tsf)

Consolidation back pressure = 70.00 psi (5.040 tsf)

Consolidation effective confining stress = $1.080 \ \rm tsf$

Strain rate, %/min. = 0.50

Fail. Stress = 1.429 tsf at reading no. 10

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
0	0.0040	28.70	0.0	0.0	0.000	1.080	1.080	1.00	70.00	1.080	0.000
1	0.0050	35.90	7.2	0.0	0.175	0.986	1.161	1.18	71.30	1.074	0.088
2	0.0060	43.70	15.0	0.1	0.365	0.922	1.286	1.40	72.20	1.104	0.182
3	0.0080	50.60	21.9	0.1	0.532	0.864	1.396	1.62	73.00	1.130	0.266
4	0.0100	55.90	27.2	0.2	0.660	0.821	1.481	1.80	73.60	1.151	0.330
5	0.0110	60.60	31.9	0.2	0.774	0.785	1.559	1.99	74.10	1.172	0.387
6	0.0150	67.80	39.1	0.3	0.948	0.734	1.682	2.29	74.80	1.208	0.474
7	0.0190	73.10	44.4	0.4	1.075	0.698	1.773	2.54	75.30	1.236	0.538
8	0.0240	78.40	49.7	0.6	1.202	0.662	1.864	2.81	75.80	1.263	0.601
9	0.0320	83.30	54.6	0.8	1.317	0.641	1.958	3.06	76.10	1.299	0.659
10	0.0430	88.10	59.4	1.1	1.429	0.626	2.055	3.28	76.30	1.341	0.714
11	0.0570	92.50	63.8	1.5	1.528	0.626	2.155	3.44	76.30	1.391	0.764
12	0.0720	97.00	68.3	1.9	1.629	0.641	2.270	3.54	76.10	1.455	0.815
13	0.0880	101.70	73.0	2.4	1.733	0.662	2.396	3.62	75.80	1.529	0.867
14	0.1030	106.10	77.4	2.8	1.830	0.677	2.506	3.70	75.60	1.592	0.915
15	0.1200	110.80	82.1	3.3	1.931	0.706	2.637	3.74	75.20	1.671	0.966
16	0.1370	115.60	86.9	3.7	2.034	0.727	2.761	3.80	74.90	1.744	1.017
17	0.1540	120.30	91.6	4.2	2.133	0.763	2.897	3.80	74.40	1.830	1.067
18	0.1690	124.70	96.0	4.6	2.226	0.785	3.011	3.84	74.10	1.898	1.113
19	0.1870	129.30	100.6	5.1	2.320	0.821	3.141	3.83	73.60	1.981	1.160
20	0.2020	133.70	105.0	5.6	2.411	0.850	3.261	3.84	73.20	2.055	1.206
21	0.2170	138.10	109.4	6.0	2.501	0.878	3.379	3.85	72.80	2.129	1.250
						REITZ & 、	JENS, INC				

					Test Re	adings fo	or Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress tsf	Minor Eff. Stress tsf	Major Eff. Stress tsf	1:3 Ratio	Pore Press. psi	P tsf	Q tsf
22	0.2330	142.50	113.8	6.4	2.589	0.914	3.503	3.83	72.30	2.209	1.295
23	0.2480	147.00	118.3	6.9	2.679	0.943	3.623	3.84	71.90	2.283	1.340
24	0.2630	151.40	122.7	7.3	2.766	0.972	3.738	3.85	71.50	2.355	1.383
25	0.2800	155.90	127.2	7.8	2.853	1.008	3.861	3.83	71.00	2.435	1.427
26	0.2970	160.30	131.6	8.2	2.937	1.044	3.981	3.81	70.50	2.512	1.468
27	0.3140	165.00	136.3	8.7	3.026	1.080	4.106	3.80	70.00	2.593	1.513
28	0.3310	169.50	140.8	9.2	3.109	1.109	4.218	3.80	69.60	2.663	1.555
29	0.3500	174.00	145.3	9.7	3.190	1.145	4.334	3.79	69.10	2.740	1.595
30	0.3660	178.40	149.7	10.2	3.270	1.181	4.451	3.77	68.60	2.816	1.635
31	0.3830	182.80	154.1	10.6	3.348	1.217	4.565	3.75	68.10	2.891	1.674
32	0.4020	187.60	158.9	11.2	3.432	1.246	4.677	3.76	67.70	2.961	1.716
33	0.4210	192.00	163.3	11.7	3.506	1.289	4.794	3.72	67.10	3.042	1.753
34	0.4400	196.40	167.7	12.2	3.578	1.325	4.903	3.70	66.60	3.114	1.789
35	0.4600	201.00	172.3	12.8	3.653	1.354	5.006	3.70	66.20	3.180	1.826
36	0.4790	205.40	176.7	13.3	3.723	1.390	5.113	3.68	65.70	3.251	1.862
37	0.4980	209.60	180.9	13.9	3.788	1.426	5.214	3.66	65.20	3.320	1.894
38	0.5180	214.00	185.3	14.4	3.855	1.454	5.309	3.65	64.80	3.382	1.928
39	0.5390	218.50	189.8	15.0	3.921	1.490	5.412	3.63	64.30	3.451	1.961

Appendix 7

RESULTS OF LIQUEFACTION ANALYSES

REITZ & JENS, INC.

High Risk

51

110

0

LIQUEFACTION ANALYSES BASED ON N-VALUES

Project:	Ameren	IE Sioux Power Plant Utility Waste Landfill		_	
Calc. by:	C Cook	Groundwater Elevation (ft)	417	Unit Wt. FGD	
Checked	J Fouse	Ground Motion Ratio (amax/g):	0.268	Depth (ft)	
		Earthquake Magnitude:	7.5	FGD Stress (psf)	
		Hammer Efficiency:	60	%	

B-5	58	B-59)		B-60	B-61		B-62		B-63		B-64		B-65		B-66	
Depth (ft)	FS																
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.										
7.5	n.a.	10	n.a.	7.5	n.a.	10	0.59										
10	n.a.	14	n.a.	10	n.a.	10	1.02	10	n.a.	10	0.82	10	1.10	10	n.a.	14	n.a.
18.5	0.73	19	n.a.	15	0.90	15	1.22	14	n.a.	15	1.05	14	0.82	15	n.a.	19	0.73
24	1.06	24	0.38	19	0.60	19	0.81	19	0.79	19	1.85	19	1.69	19	0.97	24	0.56
29	0.70	29	0.89	24	0.74	24	0.40	24	1.13	23	1.63	24	2.83	24	0.62	29	0.72
36	0.85			29	0.99	29	0.83	29	0.72	29	0.68	29	1.96	29	0.69		
41	2.72																
44	1.47																
49	0.97																
59	n.a.																
69	n.a.																
79	n.a.																
FS	0.70	FS	0.38	FS	0.60	FS	0.40	FS	0.72	FS	0.68	FS	0.82	FS	0.62	FS	0.56
Risk	HIGH																

B-67	,	B-68		B-69)	B-70		B-71		B-72		B-73	6	B-74		B-75		B-76	;
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	4.5	n.a.								
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	4	n.a.	6.5	n.a.	5	n.a.	7	n.a.
10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	1.06	10	n.a.	10	n.a.	9	n.a.	10	n.a.	15	0.91
14	n.a.	14	n.a.	14	1.01	19	n.a.	14	1.24	14	1.64	14	0.72	14	1.23	13	1.15	20	0.85
19	4.60	19	2.76	19	0.57	24	1.90	19	n.a.	19	4.52	19	0.71	19	1.15	19	0.78	25	0.61
24	3.02	24	1.04	24	n.a.	29	0.83	24	0.97	24	1.07	24	0.83	24	1.28	24	1.54	29	0.50
29	1.00	29	2.65	29	0.96			29	0.60	29	0.73	29	0.93	29	1.35	29	0.99		
																34	1.18		
																39	0.53		
																44	1.33		
																49	0.86		
																59	n.a.		
																69	n.a.		
																79	n.a.		
																89	n.a.		
																99	n.a.		
FS	1.00	FS	1.04	FS	0.57	FS	0.83	FS	0.60	FS	0.73	FS	0.71	FS	1.15	FS	0.53	FS	0.50
Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH								

B-77	, 	B-78		B-79)	B-80		B-81		B-82		B-83	5	B-84		B-85		B-86	5
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	10	0.50	7.5	n.a.								
15	1.16	10	n.a.	10	n.a.	10	n.a.	14	2.68	10	1.34	10	2.75	10	n.a.	10	5.54	10	1.54
20	1.25	15	1.04	15	0.98	15	2.65	19	1.18	15	0.75	14	2.38	14	0.79	14	4.06	14	1.03
25	0.74	20	0.88	20	0.83	20	1.31	24	1.07	20	0.72	19	0.72	19	0.65	19	0.58	19	0.72
30	0.65	25	0.61	25	1.14	25	0.95	29	1.10	25	1.96	24	1.06	24	0.42	24	0.68	24	1.06
		30	0.55	30	0.58	30	0.87			30	0.58	29	0.79	29	1.94	29	1.21	29	0.87
FS	0.65	FS	0.55	FS	0.58	FS	0.87	FS	0.50	FS	0.58	FS	0.72	FS	0.42	FS	0.58	FS	0.72
Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH

B-87		B-88		B-89)	B-90		B-91		B-92		B-93	5	B-94		B-95		B-96	6
Depth (ft)	FS																		
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.
7.5	n.a.																		
10	n.a.																		
14	0.64	14	0.85	14	5.04	14	0.73	14	3.88	14	n.a.	14	n.a.	14	n.a.	14	n.a.	14	1.27
19	2.19	19	0.75	19	2.25	19	1.37	19	0.89	19	n.a.	19	0.86	19	n.a.	19	0.37	19	1.94
24	0.86	24	1.29	24	1.00	24	2.56	24	1.22	24	n.a.	24	0.63	24	n.a.	24	0.70	24	0.35
29	1.99	29	1.22	29	0.84	29	1.05	29	0.99	29	1.22	29	2.12	29	1.43	29	0.90	29	0.30
FS	0.64	FS	0.75	FS	0.84	FS	0.73	FS	0.89	FS	1.22	FS	0.63	FS	1.43	FS	0.37	FS	0.30
Risk	HIGH	Risk	Low	Risk	HIGH	Risk	Low	Risk	HIGH	Risk	HIGH								

B-97	,	B-98		B-99)	B-100)	B-10 ⁴	1	B-102	2	B-10	3	B-104	4	B-10	5	B-10	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.
14	1.47	14	1.40	14	3.08	14	n.a.	14	0.70	14	1.48	14	0.94	14	1.49	14	n.a.	14	n.a.
19	1.16	19	1.12	19	2.31	19	1.07	19	0.81	19	0.85	19	1.97	19	1.19	19	0.72	19	n.a.
24	0.79	24	0.86	24	3.05	24	4.25	24	2.43	24	2.05	24	0.43	24	2.11	24	2.11	24	1.20
29	0.51	29	0.66	29	1.10	29	0.77	29	0.78	29	1.11	29	0.60	29	2.03	29	1.75	29	0.84
FS	0.51	FS	0.66	FS	1.10	FS	0.77	FS	0.70	FS	0.85	FS	0.43	FS	1.19	FS	0.72	FS	0.84
Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH

B-10	7	B-108	3	B-109)	B-110)	B-111	1	B-112	2	B-11	3	B-114	4
Depth (ft)	FS														
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.
5	n.a.	7.5	n.a.												
10	n.a.	14	1.34	10	n.a.										
14	2.67	19	1.14	14	n.a.	14	n.a.	14	1.11	14	1.29	14	0.78	14	1.72
19	1.33	24	0.16	19	n.a.	19	0.65	19	1.83	19	2.95	19	1.44	19	0.87
24	0.80	29	0.82	24	1.04	24	0.34	24	2.28	24	0.85	24	0.74	24	1.01
29	2.01			29	0.88	29	0.66	29	0.60	29	0.77	29	1.60	29	0.51
												34	1.79		
												39	1.64		
												44	0.86		
												49	2.03		
												59	n.a.		
												69	n.a.		
												79	n.a.		
												89	n.a.		
												99	n.a.		
FS	0.80	FS	0.16	FS	0.88	FS	0.34	FS	0.60	FS	0.77	FS	0.74	FS	0.51
Risk	HIGH														

LIQUEFACTION ANALYSES BASED ON N-VALUES

Project:	AmerenL	JE Sioux Power Plant Utility Waste Landfill				
Calc. by:	C Cook	Groundwater Elevation (ft)	417	Unit Wt. FGD	110	# High Risk
Checked	J Fouse	Ground Motion Ratio (amax/g):	0.268	Depth (ft)	10	
		Earthquake Magnitude:	7.5	FGD Stress (psf)	476	
		Hammer Efficiency:	<mark>60</mark>	%		

B-5	58	B-59	1		B-60	B-61		B-62		B-63		B-64		B-65		B-66	j j
Depth (ft)	FS																
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.										
7.5	n.a.	10	n.a.	7.5	n.a.	10	0.57										
10	n.a.	14	n.a.	10	n.a.	10	0.88	10	n.a.	10	0.71	10	1.00	10	n.a.	14	n.a.
18.5	0.68	19	n.a.	15	0.90	15	1.11	14	n.a.	15	1.00	14	0.76	15	n.a.	19	0.74
24	1.01	24	0.40	19	0.58	19	0.81	19	0.80	19	1.44	19	1.37	19	0.95	24	0.55
29	0.69	29	0.89	24	0.69	24	0.39	24	1.06	23	1.41	24	3.00	24	0.59	29	0.74
36	0.89			29	0.97	29	0.84	29	0.74	29	0.69	29	2.20	29	0.69		
41	n.a.																
44	n.a.																
49	n.a.																
59	n.a.																
69	n.a.																
79	n.a.																
FS	0.68	FS	0.40	FS	0.58	FS	0.39	FS	0.74	FS	0.69	FS	0.76	FS	0.59	FS	0.55
Risk	HIGH																

51

B-67	,	B-68		B-69)	B-70		B-71		B-72		B-73		B-74		B-75	1	B-76	\$
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	4.5	n.a.								
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	4	n.a.	6.5	n.a.	5	n.a.	7	n.a.
10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	0.98	10	n.a.	10	n.a.	9	n.a.	10	n.a.	15	0.88
14	n.a.	14	n.a.	14	0.95	19	n.a.	14	1.20	14	1.38	14	0.69	14	1.15	13	1.06	20	0.83
19	2.30	19	2.30	19	0.57	24	1.38	19	n.a.	19	4.95	19	0.72	19	1.14	19	0.76	25	0.63
24	3.31	24	1.01	24	n.a.	29	0.83	24	0.95	24	1.01	24	0.83	24	1.17	24	1.37	29	0.51
29	1.00	29	2.63	29	0.97			29	0.58	29	0.74	29	0.93	29	1.29	29	0.96		
																34	1.18		
																39	0.55		
																44	n.a.		
																49	n.a.		
																59	n.a.		
																69	n.a.		
																79	n.a.		
																89	n.a.		
																99	n.a.		
FS	1.00	FS	1.01	FS	0.57	FS	0.83	FS	0.58	FS	0.74	FS	0.69	FS	1.14	FS	0.55	FS	0.51
Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH								

B-77	·	B-78		B-79		B-80		B-81		B-82	2	B-83	5	B-84	•	B-85		B-86	5
Depth (ft)	FS																		
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	10	0.45	7.5	n.a.								
15	1.08	10	n.a.	10	n.a.	10	n.a.	14	2.74	10	1.23	10	1.78	10	n.a.	10	2.79	10	1.30
20	1.15	15	1.00	15	0.96	15	1.66	19	1.10	15	0.70	14	2.58	14	0.73	14	4.12	14	0.98
25	0.76	20	0.88	20	0.84	20	1.18	24	1.01	20	0.72	19	0.68	19	0.61	19	0.57	19	0.68
30	0.62	25	0.63	25	1.07	25	0.93	29	1.07	25	2.21	24	1.00	24	0.42	24	0.64	24	1.00
		30	0.59	30	0.56	30	0.88			30	0.56	29	0.80	29	2.18	29	1.17	29	0.88
FS	0.62	FS	0.59	FS	0.56	FS	0.88	FS	0.45	FS	0.56	FS	0.68	FS	0.42	FS	0.57	FS	0.68
Risk	HIGH																		

B-87	•	B-88		B-89		B-90		B-91		B-92		B-93	5	B-94		B-95		B-96	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS										
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.										
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.										
14	0.61	14	0.79	14	5.40	14	0.73	14	2.60	14	n.a.	14	n.a.	14	n.a.	14	n.a.	14	1.18
19	2.42	19	0.68	19	2.47	19	1.21	19	0.87	19	n.a.	19	0.85	19	n.a.	19	0.38	19	1.58
24	0.87	24	1.17	24	0.97	24	2.28	24	1.18	24	n.a.	24	0.60	24	n.a.	24	0.65	24	0.35
29	2.14	29	1.18	29	0.85	29	1.01	29	0.97	29	1.18	29	1.92	29	1.28	29	0.90	29	0.30
FS	0.61	FS	0.68	FS	0.85	FS	0.73	FS	0.87	FS	1.18	FS	0.60	FS	1.28	FS	0.38	FS	0.30
Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	Low	Risk	HIGH	Risk	HIGH								

B-97	,	B-98		B-99)	B-100	כ	B-10 ⁴	1	B-102	2	B-10	3	B-104	4	B-10	5	B-10	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.
14	1.32	14	1.29	14	1.98	14	n.a.	14	0.68	14	1.34	14	0.90	14	1.33	14	n.a.	14	n.a.
19	1.15	19	1.07	19	1.50	19	1.06	19	0.76	19	0.83	19	1.39	19	1.10	19	0.74	19	n.a.
24	0.78	24	0.85	24	3.34	24	4.68	24	1.99	24	1.43	24	0.42	24	1.83	24	2.33	24	1.12
29	0.52	29	0.63	29	1.07	29	0.78	29	0.79	29	1.07	29	0.58	29	2.25	29	1.41	29	0.85
FS	0.52	FS	0.63	FS	1.07	FS	0.78	FS	0.68	FS	0.83	FS	0.42	FS	1.10	FS	0.74	FS	0.85
Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH

B-10	7	B-108	3	B-109)	B-110)	B-111	1	B-112	2	B-11	3	B-114	4
Depth (ft)	FS														
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.
5	n.a.	7.5	n.a.												
10	n.a.	14	1.19	10	n.a.										
14	1.76	19	1.07	14	n.a.	14	n.a.	14	1.04	14	1.23	14	0.75	14	1.43
19	1.24	24	0.16	19	n.a.	19	0.65	19	1.47	19	1.64	19	1.32	19	0.84
24	0.80	29	0.82	24	1.00	24	0.33	24	1.53	24	0.86	24	0.71	24	0.98
29	2.10			29	0.89	29	0.63	29	0.58	29	0.78	29	1.41	29	0.52
												34	1.48		
												39	1.64		
												44	n.a.		
												49	n.a.		
												59	n.a.		
												69	n.a.		
												79	n.a.		
												89	n.a.		
												99	n.a.		
FS	0.80	FS	0.16	FS	0.89	FS	0.33	FS	0.58	FS	0.78	FS	0.71	FS	0.52
Risk	HIGH														

LIQUEFACTION ANALYSES BASED ON N-VALUES

Project:	Ameren	JE Sioux Power Plant Utility Waste Landfill				
Calc. by:	C Cook	Groundwater Elevation (ft)	417	Unit Wt. FGD	110	# High Risk
Checked	J Fouse	Ground Motion Ratio (amax/g):	0.268	Depth (ft)	20	
		Earthquake Magnitude:	7.5	FGD Stress (psf)	952	
		Hammer Efficiency:	60	%		

B-5	58	B-59)		B-60	B-61		B-62		B-63		B-64		B-65		B-66	;
Depth (ft)	FS																
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.										
7.5	n.a.	10	n.a.	7.5	n.a.	10	0.56										
10	n.a.	14	n.a.	10	n.a.	10	0.82	10	n.a.	10	0.67	10	0.97	10	n.a.	14	n.a.
18.5	0.68	19	n.a.	15	0.89	15	1.08	14	n.a.	15	0.97	14	0.71	15	n.a.	19	0.75
24	1.02	24	0.42	19	0.57	19	0.77	19	0.81	19	1.36	19	1.27	19	0.94	24	0.56
29	0.69	29	0.93	24	0.70	24	0.40	24	1.06	23	1.36	24	2.98	24	0.60	29	0.75
36	n.a.			29	1.01	29	0.88	29	0.75	29	0.69	29	1.83	29	0.69		
41	n.a.																
44	n.a.																
49	n.a.																
59	n.a.																
69	n.a.																
79	n.a.																
FS	0.68	FS	0.42	FS	0.57	FS	0.40	FS	0.75	FS	0.67	FS	0.71	FS	0.60	FS	0.56
Risk	HIGH																

50

DRAFT

Ameren Missouri Sioux Energy Center Utility Waste Landfill

Sheet 2 of 6

B-67	,	B-68		B-69		B-70		B-71		B-72		B-73		B-74		B-75		B-76	
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	4.5	n.a.								
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	4	n.a.	6.5	n.a.	5	n.a.	7	n.a.
10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	0.95	10	n.a.	10	n.a.	9	n.a.	10	n.a.	15	0.80
14	n.a.	14	n.a.	14	0.94	19	n.a.	14	1.16	14	1.28	14	0.67	14	1.11	13	1.03	20	0.80
19	1.91	19	1.68	19	0.59	24	1.32	19	n.a.	19	3.73	19	0.73	19	1.13	19	0.70	25	0.67
24	3.61	24	1.03	24	n.a.	29	0.88	24	0.97	24	1.03	24	0.84	24	1.14	24	1.34	29	0.53
29	1.03	29	1.74	29	1.00			29	0.60	29	0.75	29	0.96	29	1.30	29	1.00		
																34	n.a.		
																39	n.a.		
																44	n.a.		
																49	n.a.		
																59	n.a.		
																69	n.a.		
																79	n.a.		
																89	n.a.		
																99	n.a.		
FS	1.03	FS	1.03	FS	0.59	FS	0.88	FS	0.60	FS	0.75	FS	0.67	FS	1.11	FS	0.70	FS	0.53
Risk	Moderate	Risk	Moderate	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH								

B-77		B-78		B-79		B-80		B-81		B-82	2	B-83	;	B-84		B-85		B-86	
Depth (ft)	FS																		
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	10	0.42	7.5	n.a.								
15	1.04	10	n.a.	10	n.a.	10	n.a.	14	2.15	10	1.17	10	1.59	10	n.a.	10	2.09	10	1.20
20	1.13	15	0.99	15	0.97	15	1.44	19	1.07	15	0.66	14	1.98	14	0.68	14	2.06	14	0.96
25	0.80	20	0.91	20	0.82	20	1.15	24	1.02	20	0.68	19	0.65	19	0.60	19	0.56	19	0.65
30	0.64	25	0.67	25	1.07	25	0.94	29	1.08	25	1.65	24	1.02	24	0.42	24	0.64	24	1.02
		30	0.64	30	0.59	30	0.92			30	0.59	29	0.84	29	2.46	29	1.18	29	0.92
FS	0.64	FS	0.64	FS	0.59	FS	0.92	FS	0.42	FS	0.59	FS	0.65	FS	0.42	FS	0.56	FS	0.65
Risk	HIGH																		

B-87	,	B-88		B-89		B-90		B-91		B-92		B-93	;	B-94		B-95		B-96	
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS										
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.										
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.										
14	0.59	14	0.76	14	5.76	14	0.73	14	1.78	14	n.a.	14	n.a.	14	n.a.	14	n.a.	14	1.12
19	2.42	19	0.66	19	2.35	19	1.18	19	0.85	19	n.a.	19	0.85	19	n.a.	19	0.41	19	1.45
24	0.86	24	1.18	24	0.98	24	1.63	24	1.18	24	n.a.	24	0.61	24	n.a.	24	0.65	24	0.36
29	1.68	29	1.18	29	0.89	29	1.05	29	1.01	29	1.18	29	1.68	29	1.27	29	0.94	29	0.31
FS	0.59	FS	0.66	FS	0.89	FS	0.73	FS	0.85	FS	1.18	FS	0.61	FS	1.27	FS	0.41	FS	0.31
Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	Low	Risk	HIGH	Risk	HIGH								

B-97	'	B-98		B-99		B-100		B-10 ⁴	1	B-102	2	B-10	3	B-104		B-105		B-10	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.
14	1.23	14	1.22	14	1.63	14	n.a.	14	0.67	14	1.30	14	0.82	14	1.22	14	n.a.	14	n.a.
19	1.12	19	1.05	19	1.35	19	1.04	19	0.71	19	0.78	19	1.28	19	1.07	19	0.76	19	n.a.
24	0.75	24	0.87	24	3.67	24	5.09	24	1.90	24	1.34	24	0.42	24	1.60	24	2.29	24	1.11
29	0.53	29	0.64	29	1.09	29	0.82	29	0.82	29	1.09	29	0.61	29	2.53	29	1.42	29	0.89
FS	0.53	FS	0.64	FS	1.09	FS	0.82	FS	0.67	FS	0.78	FS	0.42	FS	1.07	FS	0.76	FS	0.89
Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH

B-10	7	B-108	8	B-109		B-110		B-111	1	B-112		B-11	3	B-114		
Depth (ft)	FS															
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	
5	n.a.	7.5	n.a.													
10	n.a.	14	1.14	10	n.a.											
14	1.51	19	1.05	14	n.a.	14	n.a.	14	1.00	14	1.18	14	0.71	14	1.33	
19	1.16	24	0.16	19	n.a.	19	0.65	19	1.35	19	1.44	19	1.24	19	0.78	
24	0.82	29	0.86	24	1.01	24	0.33	24	1.44	24	0.85	24	0.69	24	1.01	
29	1.68			29	0.93	29	0.65	29	0.61	29	0.81	29	1.42	29	0.53	
												34	n.a.			
												39	n.a.			
												44	n.a.			
												49	n.a.			
												59	n.a.			
												69	n.a.			
												79	n.a.			
												89	n.a.			
												99	n.a.			
FS	0.82	FS	0.16	FS	0.93	FS	0.33	FS	0.61	FS	0.81	FS	0.69	FS	0.53	
Risk	HIGH															

LIQUEFACTION ANALYSES BASED ON N-VALUES

Project:	Ameren	JE Sioux Power Plant Utility Waste Landfill		
Calc. by:	C Cook	Groundwater Elevation (ft)	417	Unit Wt. FGD
Checked	J Fouse	Ground Motion Ratio (amax/g):	0.268	Depth (ft)
		Earthquake Magnitude:	7.5	FGD Stress (psf)
		Hammer Efficiency:	60	%

Wt. FGD	110
th (ft)	30
O Stress (psf)	1428

High Risk

B-5	58	B-59	1		B-60	B-61		B-62		B-63		B-64		B-65		B-66	;
Depth (ft)	FS																
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.										
7.5	n.a.	10	n.a.	7.5	n.a.	10	0.57										
10	n.a.	14	n.a.	10	n.a.	10	0.79	10	n.a.	10	0.63	10	0.94	10	n.a.	14	n.a.
18.5	0.70	19	n.a.	15	0.92	15	1.07	14	n.a.	15	0.98	14	0.71	15	n.a.	19	0.79
24	n.a.	24	n.a.	19	0.58	19	0.75	19	0.84	19	1.34	19	1.26	19	0.97	24	n.a.
29	n.a.	29	n.a.	24	n.a.	24	n.a.	24	n.a.	23	n.a.	24	n.a.	24	n.a.	29	n.a.
36	n.a.			29	n.a.												
41	n.a.																
44	n.a.																
49	n.a.																
59	n.a.																
69	n.a.																
79	n.a.																
FS	0.70	FS	0.00	FS	0.58	FS	0.75	FS	0.84	FS	0.63	FS	0.71	FS	0.97	FS	0.57
Risk	HIGH	Risk	n.a.	Risk	HIGH												

B-67	,	B-68		B-69)	B-70		B-71		B-72		B-73	;	B-74		B-75		B-76	;
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS														
5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	4.5	n.a.								
7.5	n.a.	4	n.a.	6.5	n.a.	5	n.a.	7	n.a.										
10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	0.93	10	n.a.	10	n.a.	9	n.a.	10	n.a.	15	0.77
14	n.a.	14	n.a.	14	0.94	19	n.a.	14	1.15	14	1.25	14	0.66	14	1.08	13	0.96	20	0.83
19	1.72	19	1.60	19	0.62	24	n.a.	19	n.a.	19	3.80	19	0.76	19	1.15	19	0.72	25	n.a.
24	n.a.	24	n.a.	24	n.a.	29	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	29	n.a.
29	n.a.	29	n.a.	29	n.a.			29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.		
																34	n.a.		
																39	n.a.		
																44	n.a.		
																49	n.a.		
																59	n.a.		
																69	n.a.		
																79	n.a.		
																89	n.a.		
																99	n.a.		
FS	1.72	FS	1.60	FS	0.62	FS	0.00	FS	0.93	FS	1.25	FS	0.66	FS	1.08	FS	0.72	FS	0.77
Risk	Low	Risk	Low	Risk	HIGH	Risk	n.a.	Risk	HIGH	Risk	Low	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH

B-77	'	B-78		B-79)	B-80		B-81		B-82		B-83		B-84		B-85		B-86	;
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	10	0.40	7.5	n.a.								
15	1.04	10	n.a.	10	n.a.	10	n.a.	14	1.75	10	1.12	10	1.43	10	n.a.	10	1.76	10	1.15
20	1.16	15	1.02	15	1.00	15	1.41	19	1.09	15	0.67	14	1.81	14	0.68	14	1.79	14	0.93
25	n.a.	20	0.96	20	0.82	20	1.17	24	n.a.	20	0.70	19	0.67	19	0.62	19	0.57	19	0.67
30	n.a.	25	n.a.	25	n.a.	25	n.a.	29	n.a.	25	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.
		30	n.a.	30	n.a.	30	n.a.			30	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.
FS	1.04	FS	0.96	FS	0.82	FS	1.17	FS	0.40	FS	0.67	FS	0.67	FS	0.62	FS	0.57	FS	0.67
Risk	Moderate	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH										

B-87	'	B-88		B-89	1	B-90		B-91		B-92		B-93		B-94		B-95		B-96	5
Depth (ft)	FS																		
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.
7.5	n.a.																		
10	n.a.																		
14	0.57	14	0.75	14	6.21	14	0.76	14	1.62	14	n.a.	14	n.a.	14	n.a.	14	n.a.	14	1.13
19	1.92	19	0.68	19	1.92	19	1.19	19	0.83	19	n.a.	19	0.89	19	n.a.	19	0.44	19	1.46
24	n.a.																		
29	n.a.																		
FS	0.57	FS	0.68	FS	1.92	FS	0.76	FS	0.83	FS	0.00	FS	0.89	FS	0.00	FS	0.44	FS	1.13
Risk	HIGH	Risk	HIGH	Risk	Low	Risk	HIGH	Risk	HIGH	Risk	n.a.	Risk	HIGH	Risk	n.a.	Risk	HIGH	Risk	Moderate

B-97	'	B-98		B-99		B-10	כ	B-10'	1	B-102	2	B-10	3	B-104	1	B-10	5	B-10	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.
7.5	n.a.	7.5	n.a.	5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.
14	1.23	14	1.22	14	1.58	14	n.a.	14	0.68	14	1.27	14	0.78	14	1.20	14	n.a.	14	n.a.
19	1.15	19	1.09	19	1.36	19	1.08	19	0.72	19	0.76	19	1.30	19	1.09	19	0.81	19	n.a.
24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.
29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.
FS	1.15	FS	1.09	FS	1.36	FS	1.08	FS	0.68	FS	0.76	FS	0.78	FS	1.09	FS	0.81	FS	0.00
Risk	Moderate	Risk	Moderate	Risk	Low	Risk	Moderate	Risk	HIGH	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	n.a.

B-10	7	B-108	3	B-109)	B-110	כ	B-11'	1	B-112	2	B-11	3	B-114	4
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.
5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	14	1.12	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.	10	n.a.
14	1.42	19	1.08	14	n.a.	14	n.a.	14	0.96	14	1.17	14	0.70	14	1.30
19	1.18	24	n.a.	19	n.a.	19	0.68	19	1.33	19	1.42	19	1.25	19	0.77
24	n.a.	29	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.
29	n.a.			29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.
												34	n.a.		
												39	n.a.		
												44	n.a.		
												49	n.a.		
												59	n.a.		
												69	n.a.		
												79	n.a.		
												89	n.a.		
												99	n.a.		
FS	1.18	FS	1.08	FS	0.00	FS	0.68	FS	0.96	FS	1.17	FS	0.70	FS	0.77
Risk	Moderate	Risk	Moderate	Risk	n.a.	Risk	HIGH	Risk	HIGH	Risk	Moderate	Risk	HIGH	Risk	HIGH

High Risk

6

LIQUEFACTION ANALYSES BASED ON N-VALUES

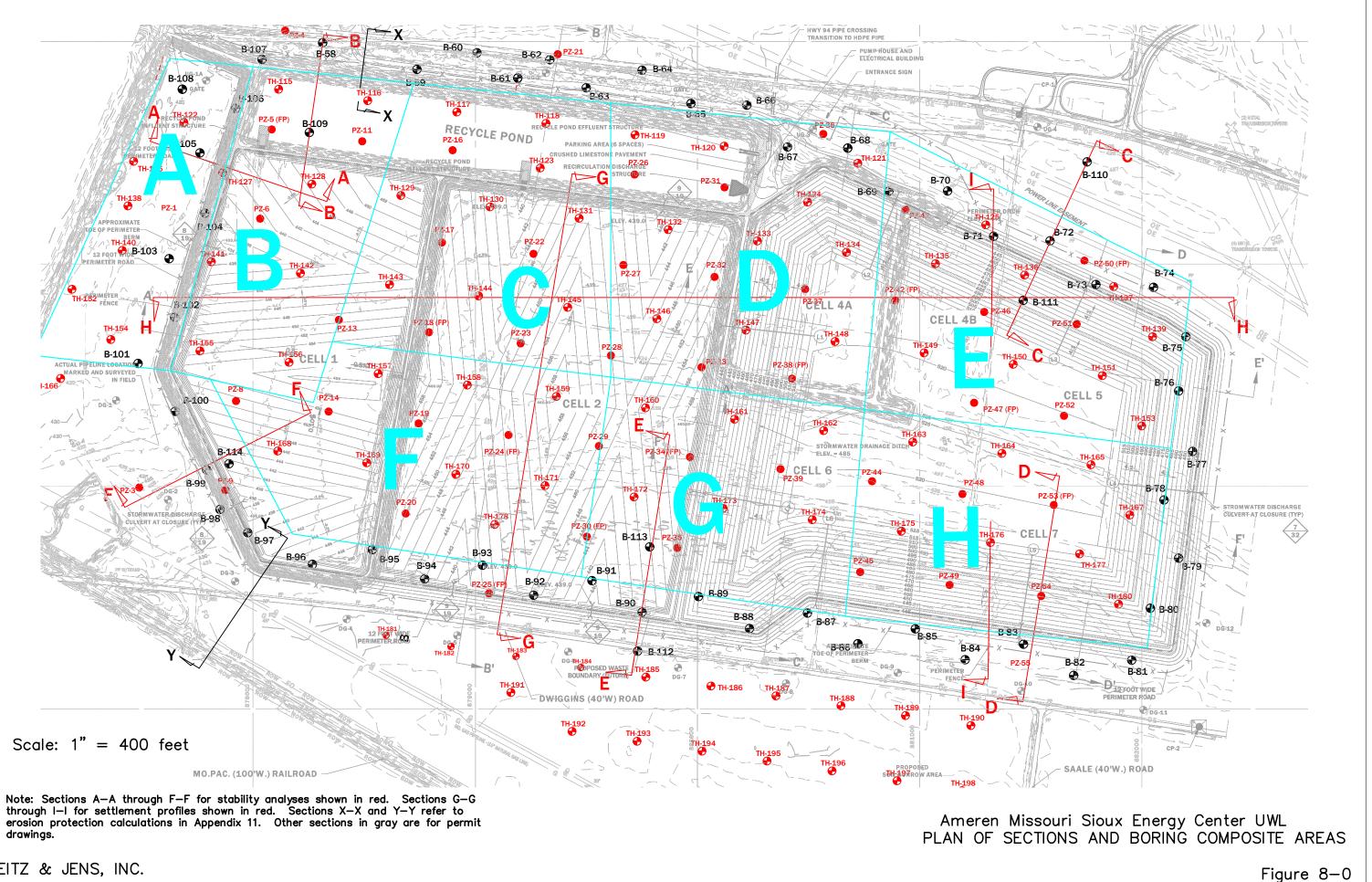
Project:	Ameren	JE Sioux Power Plant Utility Waste Landfill			
Calc. by:	C Cook	Groundwater Elevation (ft)	417	Unit Wt. FGD	110
Checked	J Fouse	Ground Motion Ratio (amax/g):	0.268	Depth (ft)	40
		Earthquake Magnitude:	7.5	FGD Stress (psf)	1904
		Hammer Efficiency:	60	%	

B-5	58	B-59			B-60	B-61		B-62		B-63	6	B-64		B-65		B-66	j
Depth (ft)	FS																
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.										
7.5	n.a.	10	n.a.	7.5	n.a.	10	0.60										
10	n.a.	14	n.a.	10	n.a.	10	0.79	10	n.a.	10	0.63	10	0.96	10	n.a.	14	n.a.
18.5	n.a.	19	n.a.	15	n.a.	15	n.a.	14	n.a.	15	n.a.	14	n.a.	15	n.a.	19	n.a.
24	n.a.	24	n.a.	19	n.a.	24	n.a.										
29	n.a.	29	n.a.	24	n.a.	24	n.a.	24	n.a.	23	n.a.	24	n.a.	24	n.a.	29	n.a.
36	n.a.			29	n.a.												
41	n.a.																
44	n.a.																
49	n.a.																
59	n.a.																
69	n.a.																
79	n.a.																
FS	0.00	FS	0.00	FS	0.00	FS	0.79	FS	0.00	FS	0.63	FS	0.96	FS	0.00	FS	0.60
Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	HIGH	Risk	n.a.	Risk	HIGH	Risk	HIGH	Risk	n.a.	Risk	HIGH

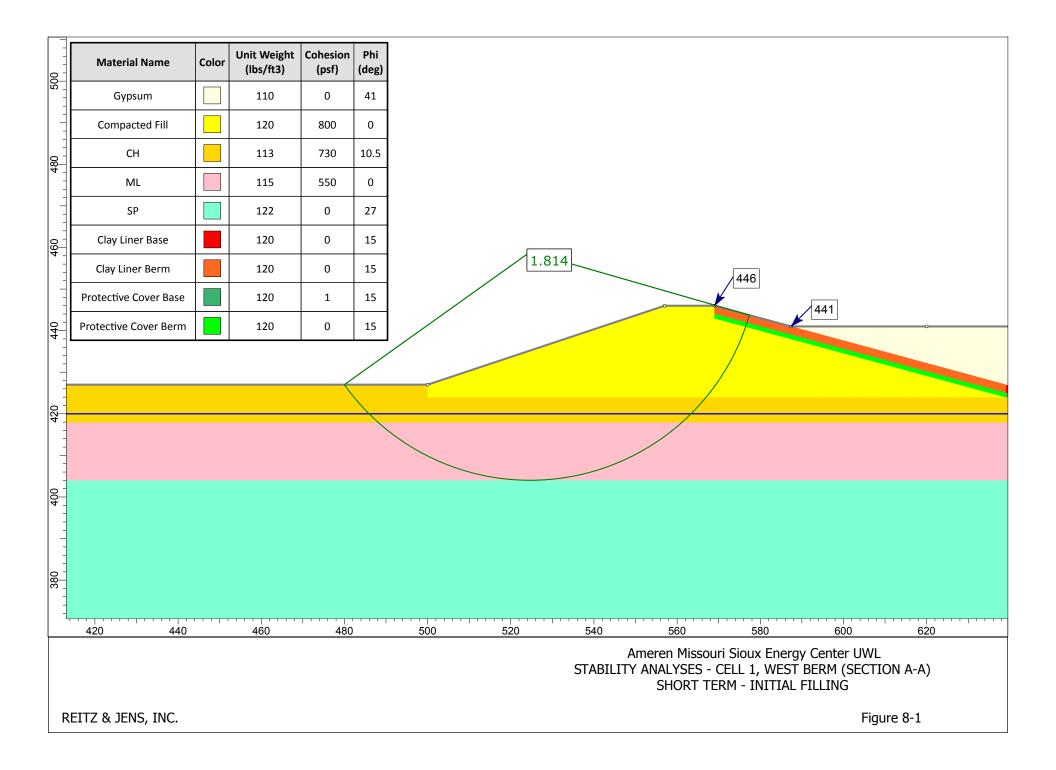
B-67		B-68		B-69	1	B-70	1	B-71		B-72		B-73		B-74		B-75		B-76	5
Depth (ft)	FS																		
5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	4.5	n.a.										
7.5	n.a.	4	n.a.	6.5	n.a.	5	n.a.	7	n.a.										
10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	0.96	10	n.a.	10	n.a.	9	n.a.	10	n.a.	15	n.a.
14	n.a.	14	n.a.	14	n.a.	19	n.a.	14	n.a.	14	n.a.	14	n.a.	14	n.a.	13	n.a.	20	n.a.
19	n.a.	19	n.a.	19	n.a.	24	n.a.	19	n.a.	25	n.a.								
24	n.a.	24	n.a.	24	n.a.	29	n.a.	24	n.a.	29	n.a.								
29	n.a.	29	n.a.	29	n.a.			29	n.a.										
																34	n.a.		
																39	n.a.		
																44	n.a.		
																49	n.a.		
																59	n.a.		
																69	n.a.		
																79	n.a.		
																89	n.a.		
																99	n.a.		
FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.96	FS	0.00								
Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	HIGH	Risk	n.a.								

B-77	·	B-78		B-79		B-80		B-81		B-82	2	B-83		B-84		B-85		B-86	6
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS										
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.
7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	10	0.41	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
15	n.a.	10	n.a.	10	n.a.	10	n.a.	14	n.a.	10	1.14	10	1.42	10	n.a.	10	1.72	10	1.15
20	n.a.	15	n.a.	15	n.a.	15	n.a.	19	n.a.	15	n.a.	14	n.a.	14	n.a.	14	n.a.	14	n.a.
25	n.a.	20	n.a.	20	n.a.	20	n.a.	24	n.a.	20	n.a.	19	n.a.	19	n.a.	19	n.a.	19	n.a.
30	n.a.	25	n.a.	25	n.a.	25	n.a.	29	n.a.	25	n.a.	24	n.a.	24	n.a.	24	n.a.	24	n.a.
		30	n.a.	30	n.a.	30	n.a.			30	n.a.	29	n.a.	29	n.a.	29	n.a.	29	n.a.
FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.41	FS	1.14	FS	1.42	FS	0.00	FS	1.72	FS	1.15
Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	HIGH	Risk	Moderate	Risk	Low	Risk	n.a.	Risk	Low	Risk	Moderate

B-87	·	B-88		B-89		B-90		B-91		B-92		B-93		B-94		B-95		B-96	;
Depth (ft)	FS																		
2.5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.
7.5	n.a.																		
10	n.a.																		
14	n.a.																		
19	n.a.																		
24	n.a.																		
29	n.a.																		
FS	0.00																		
Risk	n.a.																		


B-97	,	B-98		B-99		B-100)	B-101	1	B-102	2	B-10	3	B-104	1	B-10	5	B-10	6
Depth (ft)	FS																		
5	n.a.	5	n.a.	2.5	n.a.	2.5	n.a.												
7.5	n.a.	7.5	n.a.	5	n.a.	7.5	n.a.												
10	n.a.																		
14	n.a.																		
19	n.a.																		
24	n.a.																		
29	n.a.																		
FS	0.00																		
Risk	n.a.																		

B-10	B-107 B-10		3	B-109		B-110		B-111		B-112		B-113		B-114	4
Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS	Depth (ft)	FS
2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	2.5	n.a.	5	n.a.	5	n.a.	2.5	n.a.
5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.	7.5	n.a.
10	n.a.	14	n.a.	10	n.a.										
14	n.a.	19	n.a.	14	n.a.										
19	n.a.	24	n.a.	19	n.a.										
24	n.a.	29	n.a.	24	n.a.										
29	n.a.			29	n.a.										
												34	n.a.		
												39	n.a.		
												44	n.a.		
												49	n.a.		
												59	n.a.		
												69	n.a.		
												79	n.a.		
												89	n.a.		
												99	n.a.		
FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.00	FS	0.00
Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.	Risk	n.a.


<u>Appendix 8</u>

RESULTS OF SLOPE STABILITY ANALYSES

REITZ & JENS, INC.

REITZ & JENS, INC.

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	-Mohr Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	120	113	115	122	120	120	120
Cohesion [psf]	0	800	730	550	0	0	0	1
Friction Angle [°]	41	0	10.5	0	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

Х	Υ
0	420
1370	420

External Boundary

х	Υ
587.421	441
569	446
557	446
500	427
0	427
0	418
0	404
0	327
1370	327
1370	404
1370	418
1370	424
1370	425
1370	427
1370	441
620	441

Material Boundary

Х	Y
587.421	441
639	427
1370	427

Material Boundary

Х	Υ
500	427
500	424
639	424
1370	424

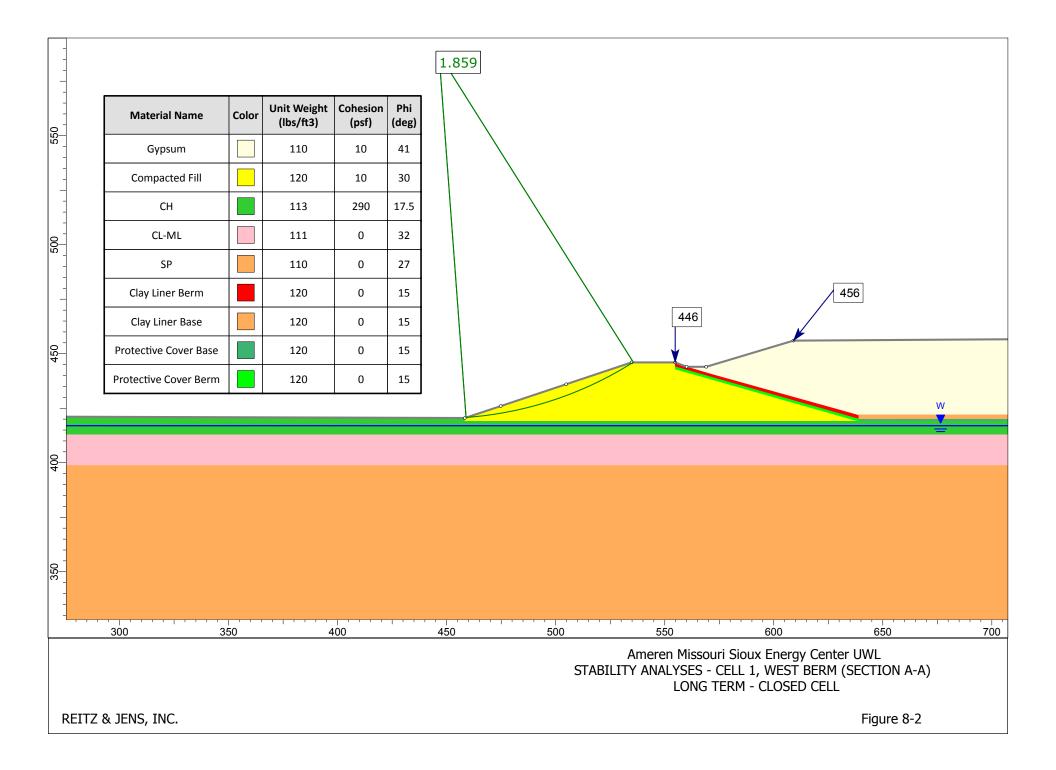
Material Boundary

Х	Y
0	418
1370	418

Х	Y
0	404
1370	404

Material Boundary

Х	Y
569	443
569	444
569	446


Material Boundary

Х	Y
569	443
639	424
639	425
639	427

Material Boundary

Х	Y
569	444
639	425

Х	Y
639	425
1370	425

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes
	-

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	30
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Enabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Berm	Clay Liner Base	Protective Cover Base
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	10	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	1	1	1	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	0

Entity Information

Water Table

X Y -16.95 417

1370 417

External Boundary

1	
Х	Y
554.774	446
534.774	446
504.774	436
474.774	426
458.343	420.523
0	422
0	413
0	399
0	322
1370	322
1370	399
1370	413
1370	419
1370	420
1370	422
1370	458
926	458
609	456
569	444
560	444

Material Boundary

Х	Υ
560	444
639	422
1370	422

Material Boundary

х	Y
458.343	420.523
458.343	419
639	419
1370	419

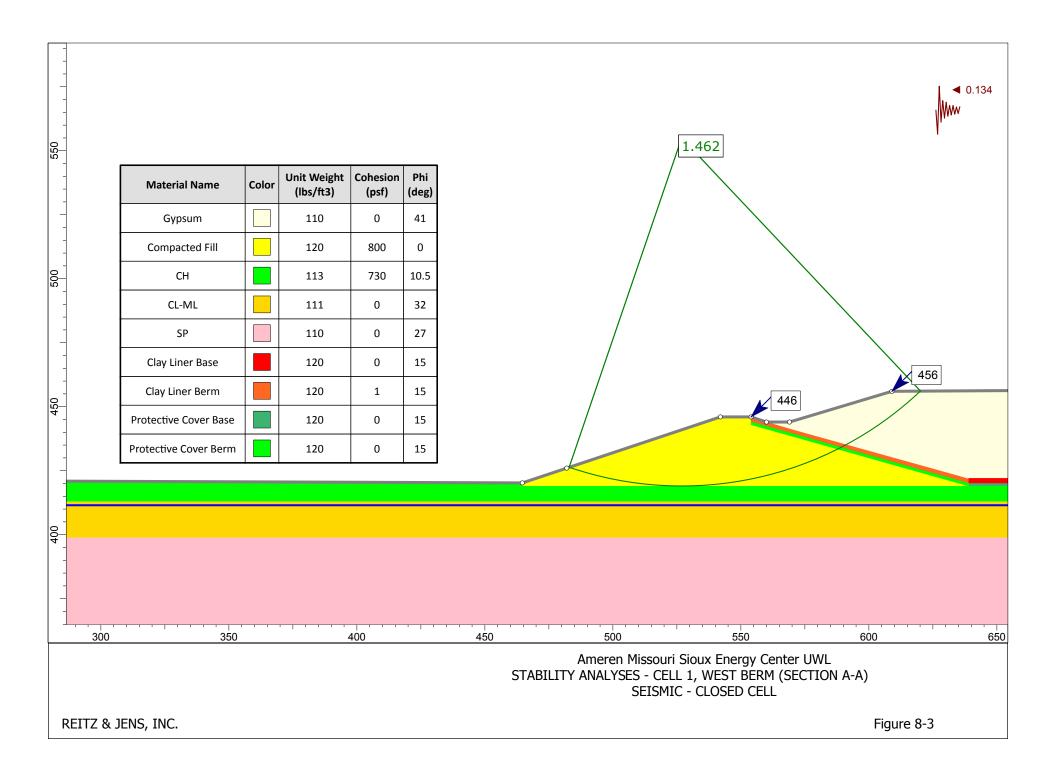
Material Boundary

Х	Y
0	413
1370	413

Х	Υ
0	399
1370	399

Material Boundary

Х	Y
554.774	443
554.774	444
554.774	446


Material Boundary

х	Υ
554.774	443
639	419
639	420
639	422

Material Boundary

х	Y
554.774	444
639	420

Х	Y
639	420
1370	420

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
	GLE/Morgenstern-Price with interslice force function (Half Sine)
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	-Mohr Coulomb	-Mohr Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	800	730	0	0	0	1	0
Friction Angle [°]	41	0	10.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

х	Y
0	411.5
1370	411.5

External Boundary

х	Y
609	456
569	444
560	444
554	446
542	446
482	426
464.603	420.201
0	422
0	413
0	399
0	322
1370	322
1370	399
1370	413
1370	419
1370	420
1370	422
1370	458
926	458

Material Boundary

Х	Y
560	444
639	422
1370	422

Material Boundary

х	Y
464.603	420.201
464.603	419
639	419
1370	419

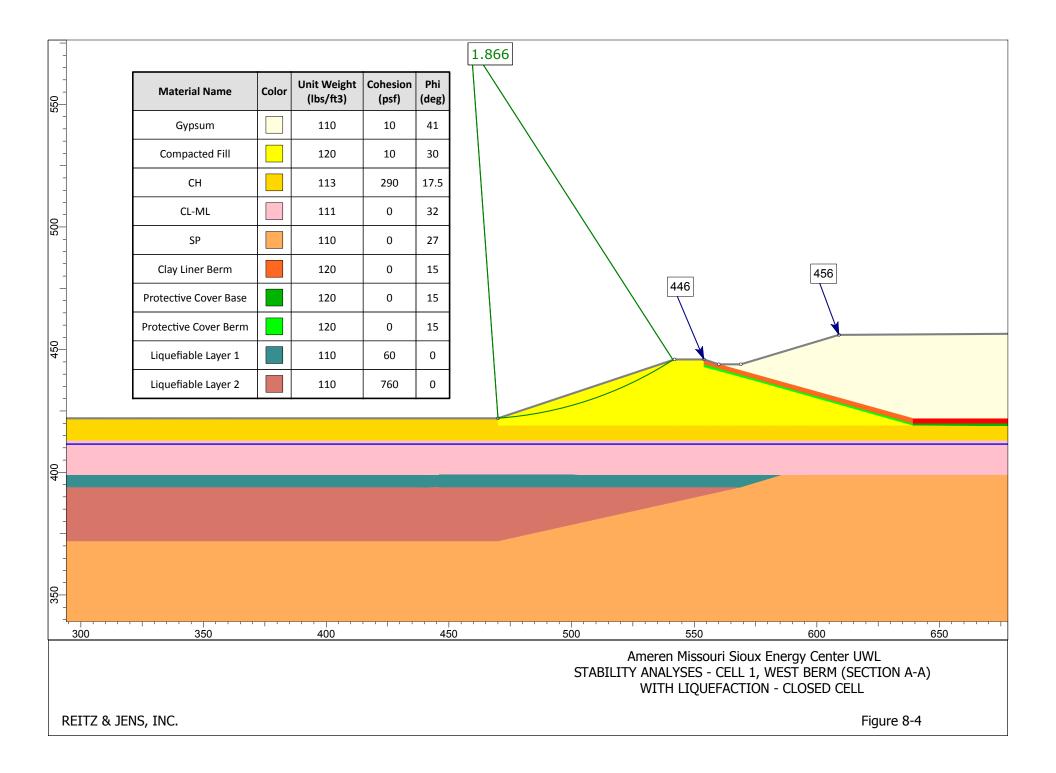
Material Boundary

Х	Υ
0	413
1370	413

Х	Y
0	399
1370	399

Material Boundary

х	Υ
554	443
554	444
554	446


Material Boundary

х	Y
554	443
639	419
639	420
639	422

Material Boundary

Х	Y
554	444
639	420

Х	Y
639	420
1370	420

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	10	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm	Liquefiable Layer 1	Liquefiable Layer 2
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	110	110
Cohesion [psf]	0	60	760
Friction Angle [°]	15	0	0
Water Surface	None	None	None
Ru Value	0	0	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

Х	Y
609	456
569	444
560	444
554	446
542	446
470	422
0	422
0	413
0	399
0	394
0	372
0	322
1370	322
1370	399
1370	413
1370	419
1370	420
1370	422
1370	458
926	458

Material Boundary

Х	Y
560	444
639	422
1370	422

Material Boundary

Х	Y
470	422
470	419
639	419
1370	419

Material Boundary

Х	Υ
0	413
1370	413

Х	Y
0	399
446.064	399
500	399
585.667	399
1370	399

Material Boundary

Х	Υ
554	444
554	446

Material Boundary

Х	Y
554	444
639	420
639	422

Material Boundary

Х	Y
639	420
1370	420

Material Boundary

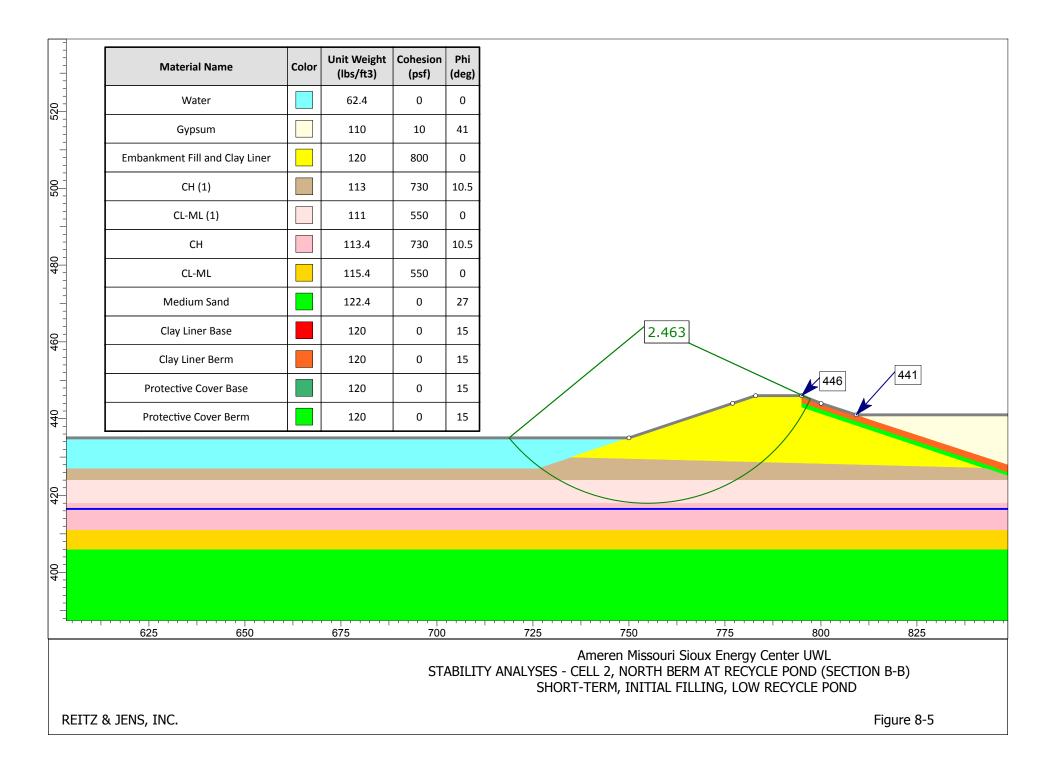
Х	Y
554	443
554	444

Material Boundary

х	Y
554	443
639	419
639	420

Material Boundary

Х	Y
0	372
470	372
569	394
585.667	399


Х		Y
	0	394

SLIDE 8.029

rocscience

446.064 394

х	Y
446.064	394
569	394

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.03

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Vertical
Spencer
50
0.005
50
Yes
3
Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Water	Gypsum	Embankment Fill and Clay Liner	CH (1)	CL-ML (1)	СН	CL-ML	Medium Sand
Color								
Strength Type	Mohr-	Mohr-	Mohr-Coulomb	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb		Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ft3]	62.4	110	120	113	111	113.4	115.4	122.4
Cohesion [psf]	0	10	800	730	550	730	550	0
Friction Angle [°]	0	41	0	10.5	0	10.5	0	27
Water Surface	None	None	None	None	None	Piezometric Line 2	Piezometric Line 2	Piezometric Line 2
Hu Value						1	1	1
Ru Value	0	0	0	0	0			

Property	Clay Liner Base	Clay Liner Berm	Protective Cover Base	Protective Cover Berm
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120
Cohesion [psf]	0	0	0	0
Friction Angle [°]	15	15	15	15
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Entity Information

Piezoline

Х	Y
-500	416.5
3324	416.5

External Boundary

х	Y
1603.05	441
809.171	441
800.052	443.981
795	446
783	446
777	444
750	435
302	435
275	444
269	446
257	446
200	427
-500	427
-500	421
-500	418
-500	411
-500	406
-500	327
1603.05	327
1603.05	406
1603.05	411
1603.05	418
1603.05	424
1603.05	425
1603.05	427

Material Boundary

Х	Υ
302	435
317	430
326	427
726	427
735	430
750	435

х	Y
809.171	441
852	427
1603.05	427

Material Boundary

Х	Y
200	427
200	424
317	430

Material Boundary

х	Y
-500	421
200	424
852	424
1603.05	424

Material Boundary

х	Y
-500	418
1603.05	418

Material Boundary

х	Y
-500	411
1603.05	411

Material Boundary

х	Y
-500	406
1603.05	406

Material Boundary

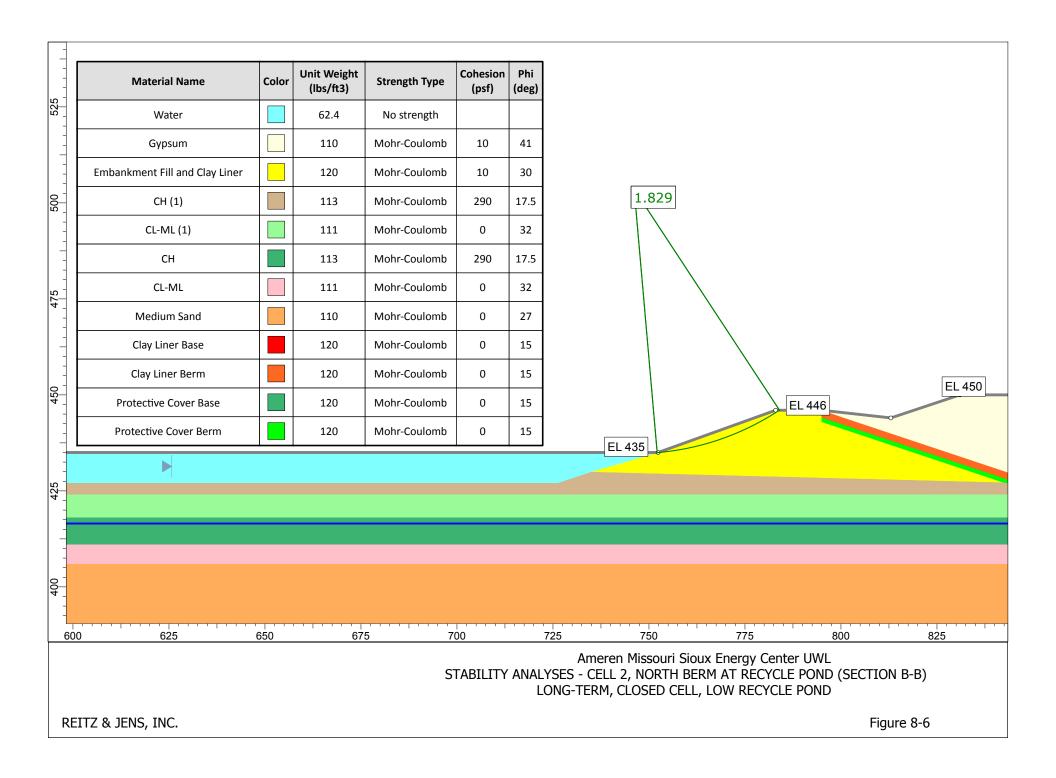
х	Y
735	430
842.25	427.25
845.5	427.167
852	427

Material Boundary

х	Υ
795	443
795	444
795	446

Material Boundary

X Y 795 443 SLIDE 8.030


rocscience

0000101100			
	842.25	427.25	
	852	424	
	852	425	
	852	427	

Material Boundary

Х	Y
795	444
845.5	427.167
852	425

х	Y
852	425
1603.05	425

Slide Analysis Information Sioux UWL

Project Summary

Slide Modeler Version:8.03Compute Time:00h:00m:05.699s

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of disco.	50
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	50
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled

Section B-B Long Term (Boring 58,109).slim

Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Water	Gypsum	Embankment Fill and Clay Liner	CH (1)	CL-ML (1)	СН	CL-ML	Medium Sand
Color								
Strongth Tuno	No	Mohr-Coulomb	Mohr-Coulomb	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	strength			Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/	62.4	110	120	113	111	113	111	110
ft3]								
Cohesion [psf]		10	10	290	0	290	0	0
Friction Angle [°]		41	30	17.5	32	17.5	32	27
	None	Piezometric Line	None	None	None	None	None	None
Water Surface		2						
Hu Value		1						
Ru Value	0		0	0	0	0	0	0

Property	Clay Liner Base	Clay Liner Berm	Protective Cover Base	Protective Cover Berm
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120
Cohesion [psf]	0	0	0	0
Friction Angle [°]	15	15	15	15
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Global Minimums

Method: spencer

FS	1.955830
Center:	745.057, 507.303
Radius:	72.587
Left Slip Surface Endpoint:	749.570, 434.857
Right Slip Surface Endpoint:	783.926, 446.000
Left Slope Intercept:	749.570 435.000
Right Slope Intercept:	783.926 446.000
Resisting Moment:	316924 lb-ft
Driving Moment:	162041 lb-ft
Resisting Horizontal Force:	4127.28 lb
Driving Horizontal Force:	2110.24 lb
Total Slice Area:	60.295 ft2
Surface Horizontal Width:	34.3557 ft
Surface Average Height:	1.75502 ft

Valid/Invalid Surfaces

Method: spencer

Number of Valid Surfaces:60345Number of Invalid Surfaces:0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.95583

Slice Number	Width [ft]	Weight [Ibs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	0.687114	9.46658	3.83653	Embankment Fill and Clay Liner	10	30	9.88935	19.3419	16.1806	0	16.1806	16.8438	16.8438
2	0.687114	22.3583	4.3803	Embankment Fill and Clay Liner	10	30	15.5617	30.436	35.3961	0	35.3961	36.5881	36.5881
3	0.687114	36.6328	4.92447	Embankment Fill and Clay Liner	10	30	21.8745	42.7829	56.7816	0	56.7816	58.6664	58.6664
4	0.687114	50.3649	5.46908	Embankment Fill and Clay Liner	10	30	27.8697	54.5083	77.0905	0	77.0905	79.7589	79.7589
5	0.687114		6.01419	Embankment Fill and Clay Liner	10		33.5516	65.6213	96.3388	0	96.3388	99.8736	99.8736
	0.687114		6.55985	Embankment Fill and Clay Liner	10		38.9251	76.1308	114.542	0	114.542	119.018	119.018
	0.687114		7.1061	Embankment Fill and Clay Liner	10	30		86.0455	131.715	0	131.715	137.199	137.199
	0.687114		7.65301	Embankment Fill and Clay Liner	10	30	48.7636	95.3734	147.87	0	147.87	154.423	154.423
	0.687114		8.20061	Embankment Fill and Clay Liner	10	30	53.237	104.123	163.025	0	163.025	170.697	170.697
	0.687114		8.74898	Embankment Fill and Clay Liner	10		57.4186	112.301	177.19	0	177.19	186.026	186.026
	0.687114		9.29815	Embankment Fill and Clay Liner	10	30	61.3116	119.915	190.378	0	190.378	200.416	200.416
	0.687114		9.84818	Embankment Fill and Clay Liner	10	30	64.9198	126.972	202.601	0	202.601	213.871	213.871
	0.687114	149.265	10.3991 10.9511	Embankment Fill and Clay Liner Embankment Fill	10 10	30	68.2467 71.2961	133.479 139.443	213.873 224.202	0	213.873 224.202	226.397 237.998	226.397 237.998
14			11.504	and Clay Liner Embankment Fill	10		74.0709	139.443	233.601	0	233.601	248.676	248.676
	0.687114		12.0581	and Clay Liner Embankment Fill	10		76.5736	149.765	242.08	0	242.08	258.437	258.437
	0.687114		12.6133	and Clay Liner Embankment Fill	10	30	78.808	154.135	249.65	0	249.65	267.285	267.285
	0.687114	184.59	13.1697	and Clay Liner Embankment Fill	10	30	80.7764	157.985	256.318	0	256.318	275.219	275.219
19	0.687114	189.927	13.7273	and Clay Liner Embankment Fill	10	30	82.4821	161.321	262.096	0	262.096	282.244	282.244
20	0.687114	194.679	14.2863	and Clay Liner Embankment Fill	10	30	83.9275	164.148	266.992	0	266.992	288.363	288.363
21	0.687114	198.841	14.8467	and Clay Liner Embankment Fill	10	30	85.1148	166.47	271.015	0	271.015	293.578	293.578
22	0.687114	202.41	15.4086	and Clay Liner Embankment Fill	10	30	86.0474	168.294	274.173	0	274.173	297.888	297.888
23	0.687114	205.38	15.9719	and Clay Liner Embankment Fill	10	30	86.7264	169.622	276.474	0	276.474	301.296	301.296
24	0.687114	207.746	16.5369	and Clay Liner Embankment Fill	10	30	87.1548	170.46	277.925	0	277.925	303.803	303.803
25	0.687114	209.504	17.1035	and Clay Liner Embankment Fill	10	30	87.3348	170.812	278.535	0	278.535	305.409	305.409
26	0.687114	210.647	17.6719	and Clay Liner Embankment Fill	10	30	87.2683	170.682	278.309	0	278.309	306.113	306.113
27	0.687114	211.17	18.242	and Clay Liner Embankment Fill	10	30	86.9575	170.074	277.257	0	277.257	305.918	305.918
28	0.687114	211.067	18.814	and Clay Liner Embankment Fill and Clay Liner	10	30	86.4042	168.992	275.382	0	275.382	304.82	304.82

rocscience

: Page 4 of 7

roc	science	9											- J
	0.687114		19.388	Embankment Fill and Clay Liner	10	30	85.6102	167.439	272.693	0	272.693	302.821	302.821
30	0.687114	208.958	19.964	Embankment Fill and Clay Liner	10	30	84.5774	165.419	269.194	0	269.194	299.918	299.918
31	0.687114	206.938	20.5421	Embankment Fill and Clay Liner	10	30	83.3079	162.936	264.892	0	264.892	296.109	296.109
32	0.687114	204.264	21.1225	Embankment Fill and Clay Liner	10	30	81.8026	159.992	259.793	0	259.793	291.395	291.395
33		200.93	21.7051	Embankment Fill and Clay Liner	10	30	80.0632	156.59	253.901	0	253.901	285.77	285.77
34	0.687114		22.29	Embankment Fill and Clay Liner	10	30	78.0917	152.734	247.223	0	247.223	279.235	279.235
35			22.8774	Embankment Fill and Clay Liner	10	30	75.8895	148.427	239.763	0	239.763	271.785	271.785
36			23.4674	Embankment Fill and Clay Liner	10	30	73.4578	143.671	231.525	0	231.525	263.416	263.416
37	0.687114	180.82	24.06	Embankment Fill and Clay Liner	10		70.7981	138.469	222.514	0	222.514	254.124	254.124
38			24.6554	Embankment Fill and Clay Liner	10	30	67.9113	132.823	212.736	0	212.736	243.908	243.908
39			25.2536	Embankment Fill and Clay Liner	10	30	64.7991	126.736	202.192	0	202.192	232.759	232.759
40		158.37	25.8548	Embankment Fill and Clay Liner	10		61.4624	120.21	190.89	0	190.89	220.675	220.675
41	0.687114	149.43	26.4591	Embankment Fill and Clay Liner	10		57.9028	113.248	178.831	0	178.831	207.648	207.648
42			27.0665	Embankment Fill and Clay Liner	10	30	54.121	105.852	166.02	0	166.02	193.675	193.675
43			27.6773	Embankment Fill and Clay Liner	10	30	50.1181	98.0225	152.459	0	152.459	178.746	178.746
44			28.2915	Embankment Fill and Clay Liner	10	30	45.8952	89.7633	138.154	0	138.154	162.857	162.857
45			28.9093	Embankment Fill and Clay Liner	10	30	41.4533	81.0757	123.107	0	123.107	145.999	145.999
	0.687114		29.5307	Embankment Fill and Clay Liner	10	30	36.7934	71.9617	107.321	0	107.321	128.164	128.164
47	0.687114		30.156	Embankment Fill and Clay Liner	10	30	31.9164	62.4231	90.7995	0	90.7995	109.343	109.343
48	0.687114	65.1917	30.7853	Embankment Fill and Clay Liner	10	30	26.8232	52.4616	73.5458	0	73.5458	89.5263	89.5263
49	0.687114	48.7585	31.4188	Embankment Fill and Clay Liner	10	30	21.1328	41.3321	54.2687	0	54.2687	67.1777	67.1777
50	0.687114	17.7399	32.0565	Embankment Fill and Clay Liner	10	30	10.7359	20.9976	19.0484	0	19.0484	25.7717	25.7717

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.95583

Slice	Х	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	749.57	434.857	0.641241	0	0
2	750.257	434.903	6.69018	2.11567	17.5488
3	750.944	434.955	15.5189	4.90761	17.5487
4	751.631	435.015	27.1863	8.59725	17.5488
5	752.318	435.08	41.2626	13.0487	17.5488
6	753.005	435.153	57.3403	18.133	17.5488
7	753.693	435.232	75.0335	23.7282	17.5488
8	754.38	435.317	93.9775	29.719	17.5488
9	755.067	435.41	113.828	35.9964	17.5488
10	755.754	435.509	134.262	42.4583	17.5488
11	756.441	435.614	154.974	49.0083	17.5488
12	757.128	435.727	175.682	55.5567	17.5487
13	757.815	435.846	196.119	62.0196	17.5488
14	758.502	435.972	216.039	68.3191	17.5488

15759.19436.105235.21574.383217.548816759.877436.245253.43780.145817.548817760.564436.392270.51585.546517.548818761.251436.546286.27690.530517.548820762.625436.874313.24190.57817.548821763.312437.049324.189102.5217.548822763.999437.231333.304105.40217.548723764.686437.421340.502107.67917.548824765.374437.617345.715109.32717.548825766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548830769.496438.954313.771105.5517.548831770.183439.204324.689102.67817.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.55617.548836773.619440.572253.17380.062217.548837774.306440.8723.457874.181917.548838774.306440.87 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
17760.564436.392270.51585.546517.548818761.251436.546286.27690.530517.548819761.938436.706300.56495.048817.548820762.625436.874313.24199.057817.548821763.312437.049324.189102.5217.548822763.999437.231333.304105.40217.548723764.686437.421340.502107.67917.548725766.061437.821348.895110.33317.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478343.994109.41617.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.2299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.56517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548839775.68441.4921	1	15 75	59.19	436.105	235.215	74.3832	17.5488
18 761.251 436.546 286.276 90.5305 17.5488 19 761.938 436.706 300.564 95.0488 17.5488 20 762.625 436.874 313.241 99.0578 17.5488 21 763.312 437.049 324.189 102.52 17.5488 22 763.999 437.231 333.304 105.402 17.5487 23 764.686 437.421 340.502 107.679 17.5488 24 765.374 437.617 345.715 109.327 17.5488 26 766.061 437.821 348.895 110.333 17.5488 27 767.435 438.252 349.04 110.379 17.5488 28 768.122 438.478 345.994 109.416 17.5488 30 769.496 438.954 333.771 105.55 17.5488 31 770.183 439.204 324.689 102.678 17.5488 32 770.87 439.461	1	6 759	9.877	436.245	253.437	80.1458	17.5488
19761.938436.706300.56495.048817.548820762.625436.874313.24199.057817.548821763.312437.049324.189102.5217.548723764.686437.421340.502107.67917.548724765.374437.617345.715109.32717.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548833771.558439.727300.96495.175417.548834772.932440.282270.54785.56517.548835772.932440.572253.17380.062217.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548840776.367441.816173.50654.868817.548841777.054442.491130.841.363717.548842777.42442.491130.841.363717.548844779.106440.872<	1	760).564	436.392	270.515	85.5465	17.5488
20762.625436.874313.24199.057817.548821763.312437.049324.189102.5217.548822763.999437.231333.304105.40217.548723764.686437.421340.502107.67917.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548829768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.87234.57874.181917.548836773.619440.87234.57874.181917.548837774.306440.87234.57874.181917.548839775.68441.492194.5261.514117.548841777.54442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.02417.548845779.803443.57369.6	1	8 761	251	436.546	286.276	90.5305	17.5488
21763.312437.049324.189102.5217.548822763.999437.231333.304105.40217.548723764.686437.421340.502107.67917.548824765.374437.617345.715109.32717.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.42442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.203 <t< td=""><td>1</td><td>.9 761</td><td>.938</td><td>436.706</td><td>300.564</td><td>95.0488</td><td>17.5488</td></t<>	1	.9 761	.938	436.706	300.564	95.0488	17.5488
22763.999437.231333.304105.40217.548723764.686437.421340.502107.67917.548824765.374437.617345.715109.32717.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548839775.68441.492194.5261.514117.548841777.054442.149152.17348.122417.548842777.42442.491130.841.363717.548843778.429442.842109.69434.68917.548845779.803443.57369.6192.01617.548845779.803443.57369.	2	20 762	2.625	436.874	313.241	99.0578	17.5488
23764.686437.421340.502107.67917.548824765.374437.617345.715109.32717.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548841777.054442.149152.17348.122417.548842777.742442.491130.841.63717.548843778.429442.842109.69434.68917.548744779.116443.20389.181628.202417.548845779.803443.5736	2	21 763	3.312	437.049	324.189	102.52	17.5488
24765.374437.617345.715109.32717.548725766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.872253.17380.062217.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548841777.054442.149152.17348.122417.548843778.429442.842109.69434.68917.548843778.429442.842109.69434.68917.548843779.803443.57369.61922.01617.548844779.116443.20389.181628.202417.548845779.803443.5736	2	2 763	8.999	437.231	333.304	105.402	17.5487
25766.061437.821348.895110.33317.548826766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.842109.69434.68917.548843778.429442.842109.69434.68917.548845779.803443.57369.6192.01617.548846780.49443.95251.38	2	23 764	.686	437.421	340.502	107.679	17.5488
26766.748438.033350.008110.68517.548827767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548845779.803443.57369.	2	24 765	5.374	437.617	345.715	109.327	17.5487
27767.435438.252349.04110.37917.548828768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.56517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.842109.69434.68917.548843778.429443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548845779.803443.57369.61922.01617.548846780.49443.95251.3866	2	25 766	5.061	437.821	348.895	110.333	17.5488
28768.122438.478345.994109.41617.548929768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.56517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.842109.69434.68917.548843778.429442.83251.386616.250217.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.864444.74120.573	2	26 766	5.748	438.033	350.008	110.685	17.5488
29768.809438.712340.892107.80217.548830769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.842109.69434.68917.548843778.429442.842109.69434.68917.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	7 767	7.435	438.252	349.04	110.379	17.5488
30769.496438.954333.771105.5517.548831770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548843778.429442.842109.69434.68917.548845779.803443.57369.61922.01617.548845779.803443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	28 768	3.122	438.478	345.994	109.416	17.5489
31770.183439.204324.689102.67817.548832770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548843778.429442.842109.69434.68917.548843779.803443.20389.181628.202417.548845779.803443.95251.386616.250217.548744779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	29 768	3.809	438.712	340.892	107.802	17.5488
32770.87439.461313.72299.2117.548833771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548843778.429442.842109.69434.68917.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	80 769	9.496	438.954	333.771	105.55	17.5488
33771.558439.727300.96495.175417.548834772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.816173.50654.868817.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	81 770	0.183	439.204	324.689	102.678	17.5488
34772.245440286.52890.610317.548835772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.816173.50654.868817.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548845779.803443.57369.61922.01617.548846780.49443.34134.892411.034217.548848781.177444.34120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	32 77	70.87	439.461	313.722	99.21	17.5488
35772.932440.282270.54785.556517.548836773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.812194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.177444.34134.892411.034217.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	3 771	558	439.727	300.964	95.1754	17.5488
36773.619440.572253.17380.062217.548837774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	34 772	2.245	440	286.528	90.6103	17.5488
37774.306440.87234.57874.181917.548838774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	35 772	2.932	440.282	270.547	85.5565	17.5488
38774.993441.177214.95667.976717.548839775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.177444.34134.892411.034217.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	36 773	8.619	440.572	253.173	80.0622	17.5488
39775.68441.492194.5261.514117.548840776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548844779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548848781.177444.34134.892411.034217.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	37 774	1.306	440.87	234.578	74.1819	17.5488
40776.367441.816173.50654.868817.548841777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548744779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	38 774	1.993	441.177	214.956	67.9767	17.5488
41777.054442.149152.17348.122417.548842777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548744779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548847781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	3	89 77	75.68	441.492	194.52	61.5141	17.5488
42777.742442.491130.841.363717.548843778.429442.842109.69434.68917.548744779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	10 776	5.367	441.816	173.506	54.8688	17.5488
43778.429442.842109.69434.68917.548744779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	1 777	7.054	442.149	152.173	48.1224	17.5488
44779.116443.20389.181628.202417.548845779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	2 777	7.742	442.491	130.8	41.3637	17.5488
45779.803443.57369.61922.01617.548846780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	3 778	3.429	442.842	109.694	34.689	17.5487
46780.49443.95251.386616.250217.548747781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	4	4 779	9.116	443.203	89.1816	28.2024	17.5488
47781.177444.34134.892411.034217.548848781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	15 779	9.803	443.573	69.619	22.016	17.5488
48781.864444.74120.57316.5059517.548849782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	4	16 78	30.49	443.952	51.3866	16.2502	17.5487
49782.551445.158.895172.8129617.548850783.238445.570.636550.201317.5488	2	7 781	177	444.341	34.8924	11.0342	17.5488
50 783.238 445.57 0.63655 0.2013 17.5488			864	444.741	20.5731	6.50595	17.5488
	2	19 782	2.551	445.15	8.89517	2.81296	17.5488
51 783.926 446 0 0 0				445.57			17.5488
	5	51 783	3.926	446	0	0	0

Entity Information

Piezoline

Х	Y
-500	416.5
3324	416.5

External Boundary

Х	Y
1228	440
902	450
831	450
813	444
795	446
783	446
777	444
750	435
302	435
275	444
269	446
257	446
200	427

-500	427
-500	421
-500	418
-500	411
-500	406
-500	327
1604.19	327
1604.19	406
1604.19	411
1604.19	418
1604.19	424
1604.19	425.211
1604.19	426.211
1604.19	428.211
1604.19	440
	-500 -500 -500 1604.19 1604.19 1604.19 1604.19 1604.19 1604.19 1604.19

Material Boundary

х	Y
302	435
317	430
326	427
726	427
735	430
750	435

Material Boundary

х	Y
795	446
852	427
1604.19	428.211

Material Boundary

х	Υ
200	427
200	424
317	430

Material Boundary

х	Υ
-500	421
200	424
852	424
1604.19	424

Material Boundary

х	Y
-500	418
1604.19	418

Material Boundary

х	Y
-500	411
1604.19	411

Material Boundary

-

Х	Y
-500	406
1604.19	406

Material Boundary

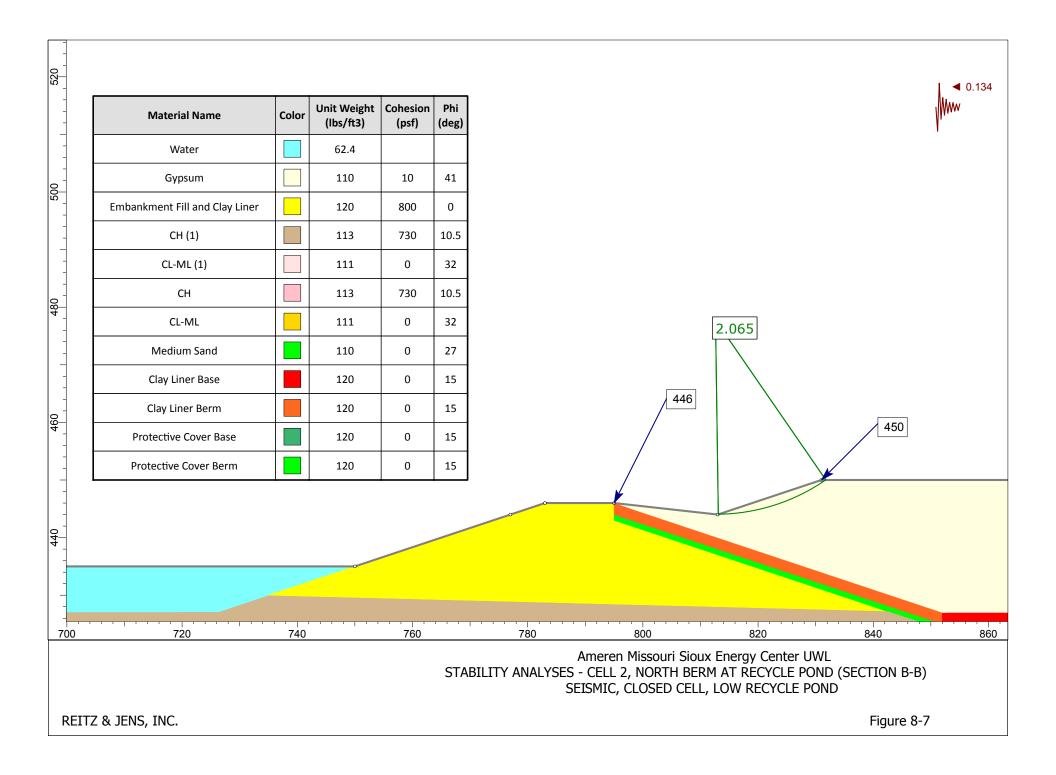
ſ	х	Y
	735	430
	842.25	427.25
	845.5	427.167
	852	427

Material Boundary

х	Y
795	443
795	444
795	446

Material Boundary

х	Y
795	443
842.25	427.25
852	424
852	425
852	427


Material Boundary

Γ	Х	Y
	795	444
	845.5	427.167
	852	425

Material Boundary

х	Y
852	424
1604.19	425.211

х	Y
852	425
1604.19	426.211

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.03

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
-	

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Water	Gypsum	Embankment Fill and Clay Liner	CH (1)	CL-ML (1)	СН	CL-ML	Medium Sand
Color								
Strongth Tupo	No	Mohr-	Mohr-Coulomb	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	strength	Coulomb		Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ft3]	62.4	110	120	113	111	113	111	110
Cohesion [psf]		10	800	730	0	730	0	0
Friction Angle [°]		41	0	10.5	32	10.5	32	27
Water Surface	None	Piezometric Line 2	None	None	None	None	None	None
Hu Value		1						
Ru Value	0		0	0	0	0	0	0

Property	Clay Liner Base	Clay Liner Berm	Protective Cover Base	Protective Cover Berm
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120
Cohesion [psf]	0	0	0	0
Friction Angle [°]	15	15	15	15
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Entity Information

Х	Y
-500	416.5
3324	416.5

External Boundary

х	Y
1603.97	337.937
1603.97	406
1603.97	411
1603.97	418
1604.05	424
1604.07	425
1604.09	427
1604.01	425
1603.97	424
1603.97	425
1603.97	427
1603.97	440
1208	440
902	450
831	450
813	444
795	446
783	446
777	444
750	435
302	435
275	444
269	446
257	446
200	427
-500	427
-500	421
-500	418
-500	411
-500	406
-500	327

Material Boundary

Х	Υ
302	435
317	430
326	427
726	427
735	430
750	435

Х	Υ
795	446
852	427
1603.97	427

Material Boundary

Х	Υ
200	427
200	424
317	430

Material Boundary

х	Y
-500	421
200	424
852	424
1603.97	424
1604.05	424

Material Boundary

х	Y
-500	418
1603.97	418

Material Boundary

х	Υ
-500	411
1603.97	411

Material Boundary

х	Y
-500	406
1603.97	406

Material Boundary

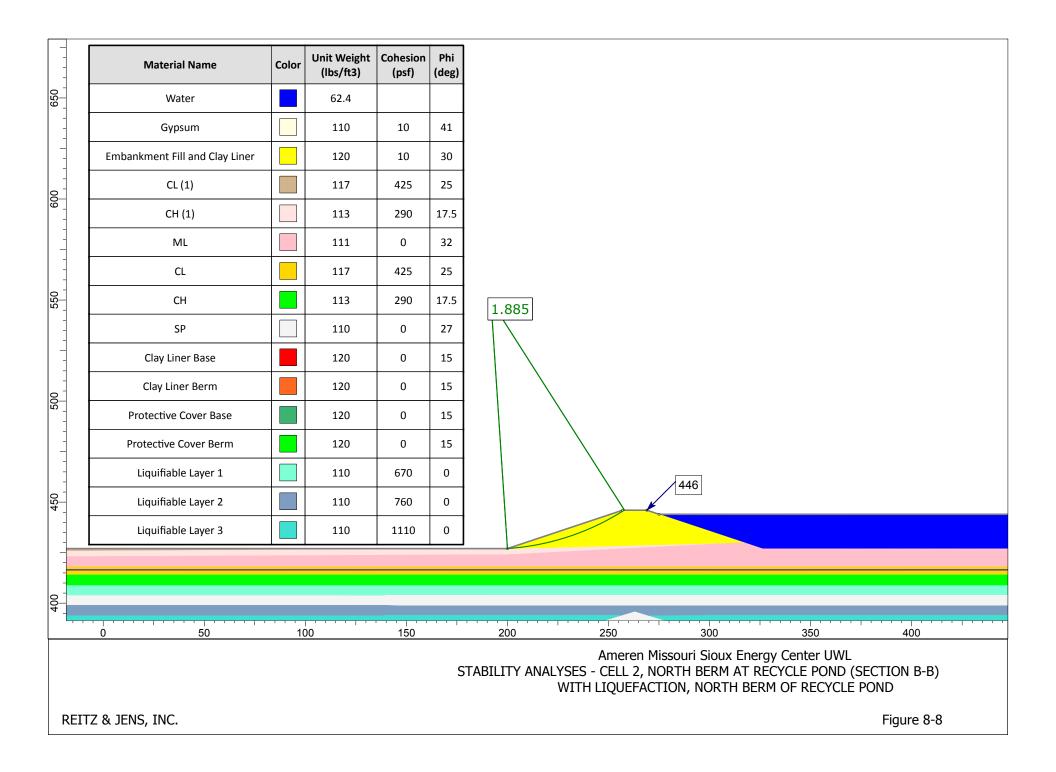
Х	Y
735	430
842.25	427.25
845.5	427.167
852	427

Х	Y
1603.97	418

1603.97 424

Material Boundary

х	Y
795	443
795	444
795	446


Material Boundary

х	Y
795	443
842.25	427.25
852	424
852	425
852	427

Material Boundary

х	Y
795	444
845.5	427.167
852	425
1603.97	425

х	Y
1604.01	425
1604.07	425

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	50
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Water	Gypsum	Embankment Fill and Clay Liner	CL (1)	CH (1)	ML	CL	СН
Color								
Strength Type	No strength	Mohr-	Mohr-Coulomb	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type		Coulomb		Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ft3]	62.4	110	120	117	113	111	117	113
Cohesion [psf]		10	10	425	290	0	425	290
Friction Angle [°]		41	30	25	17.5	32	25	17.5
Water	Piezometric	Piezometric	Piezometric Line 1	Piezometric	Piezometric	Piezometric	Piezometric	Piezometric
Surface	Line 1	Line 1		Line 1				
Hu Value	0	1	1	1	1	1	1	1

Property	SP	Clay Liner	Clay Liner	Protective	Protective	Liquifiable	Liquifiable	Liquifiable
Property	JF	Base	Berm	Cover Base	Cover Berm	Layer 1	Layer 2	Layer 3
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-Coulomb	Mohr-Coulomb	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb	Coulomb			Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ft3]	110	120	120	120	120	110	110	110
Cohesion [psf]	0	0	0	0	0	670	760	1110
Friction Angle [°]	27	15	15	15	15	0	0	0
Water Surface	Piezometric Line 1	None	None	None	None	Piezometric Line 1	None	None
Hu Value	1					1		
Ru Value		0	0	0	0		0	0

Entity Information

Piezoline

Х	Y
-500	416.5
3324	416.5

External Boundary

х	Y
	440
	450
831	450
813	444
795	446
783	446
	444
275	444
	446
	446
	427
-500	
-500	
-500	_
-500	
-500	
-500	409
-500	404
-500	399
-500	394
-500	389
-500	379
-500	377
-500	327
1603.92	327
1603.92	390
1603.92	394
1603.92	399
1603.92	404
1603.92	409
1603.92	414
1603.92	418
1603.92	424
1603.92	425
1603.92	
1603.92	440

: Page 4 of 7

275	444	
317	430	
326	427	
726	427	
735	430	
777	444	

Material Boundary

Х	Y
795	446
852	427
1603.92	427

Material Boundary

Х	Y
200	427
200	424
317	430

Material Boundary

Х	Y
-500	423
200	427
317	430

Material Boundary

Х	Y
-500	421
200	424

Material Boundary

Х	Y
-500	418
1603.92	418

Material Boundary

х	Y
-500	414
1603.92	414

х	Y
-500	409
1603.92	409

Material Boundary

х	Y
-500	404
139.448	404
888	404
1603.92	404

Material Boundary

Х	Y
735	430
842.25	427.25
845.5	427.167
852	427

Material Boundary

Х	Υ
795	443
795	444
795	446

Material Boundary

Y
443
427.25
424
425
427

Material Boundary

Х	Y
795	444
845.5	427.167
852	425

Material Boundary

х	Y
852	424
1603.92	424

х	Y
852	425
1603.92	425

Х	Y
-500	377
200	377
206.629	379
239.777	389
256.351	394
262.98	396
269.614	394
286.198	389
319.366	379
326	377
726	377
732.348	379
764.091	389
779.962	394
786.31	396
819.827	399
831	400
869.9	399
1064.4	394
1220	390
1603.92	390

Material Boundary

х	Υ
139.448	379
139.448	389
139.448	394
139.448	399
139.448	404

Material Boundary

х	Y
-500	379
139.448	379

Material Boundary

х	Y
139.448	379
206.629	379
319.366	379
732.348	379

SLIDE 8.029

rocscience

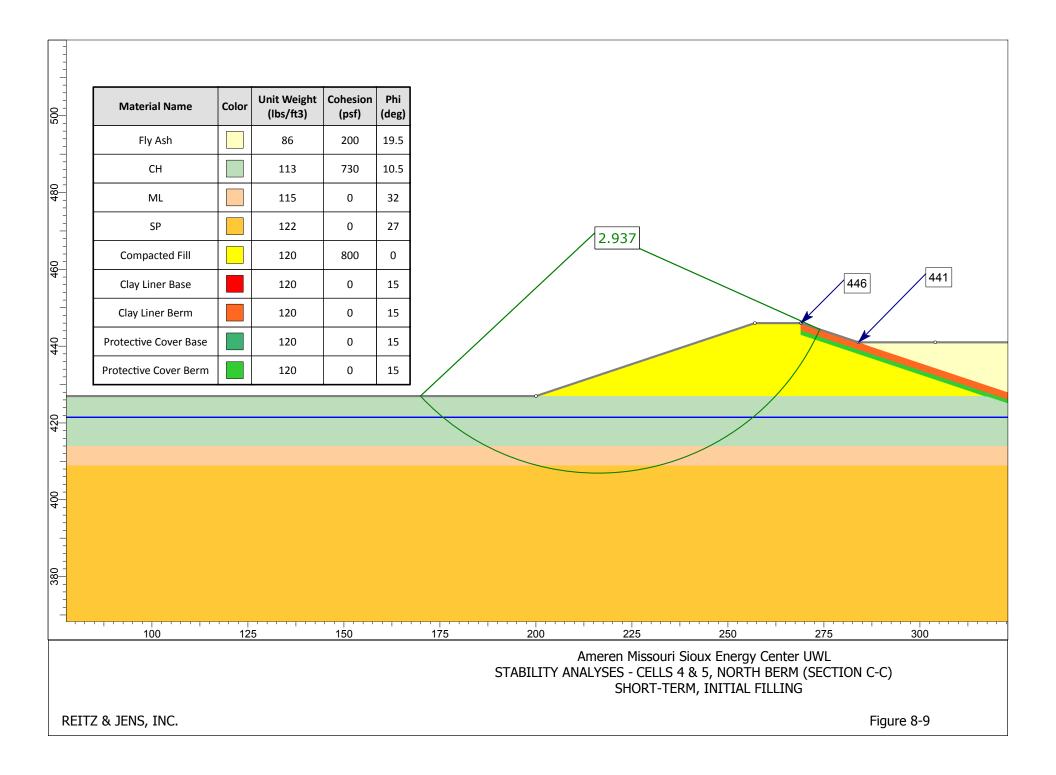
-500 399 139.448 399

Material Boundary

х	Y
139.448	399
819.827	399
869.9	399
1603.92	399

Material Boundary

х	Y
-500	394
139.448	394


Material Boundary

Х	Y
139.448	394
256.351	394
269.614	394
779.962	394
1064.4	394
1603.92	394

Material Boundary

Х	Y
-500	389
139.448	389

х	Υ
139.448	389
239.777	389
286.198	389
764.091	389

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

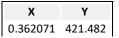
Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	10
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	2
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No


Materials

Property	Fly Ash	СН	ML	SP	Compacted Fill	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	86	113	115	122	120	120	120	120
Cohesion [psf]	200	730	0	0	800	0	0	0
Friction Angle [°]	19.5	10.5	32	27	0	15	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

920.362 421.482

External Boundary

х	Υ
0	320
920	320
920	409
920	414
920	424
920	425
920	427
920	441
304	441
284	441
269	446
257	446
200	427
0	427
0	414
0	409

Material Boundary

Х	Y
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Y
284	441
326	427

Material Boundary

Х	Y
0	414
920	414

Material Boundary

Х	Y
0	409
920	409

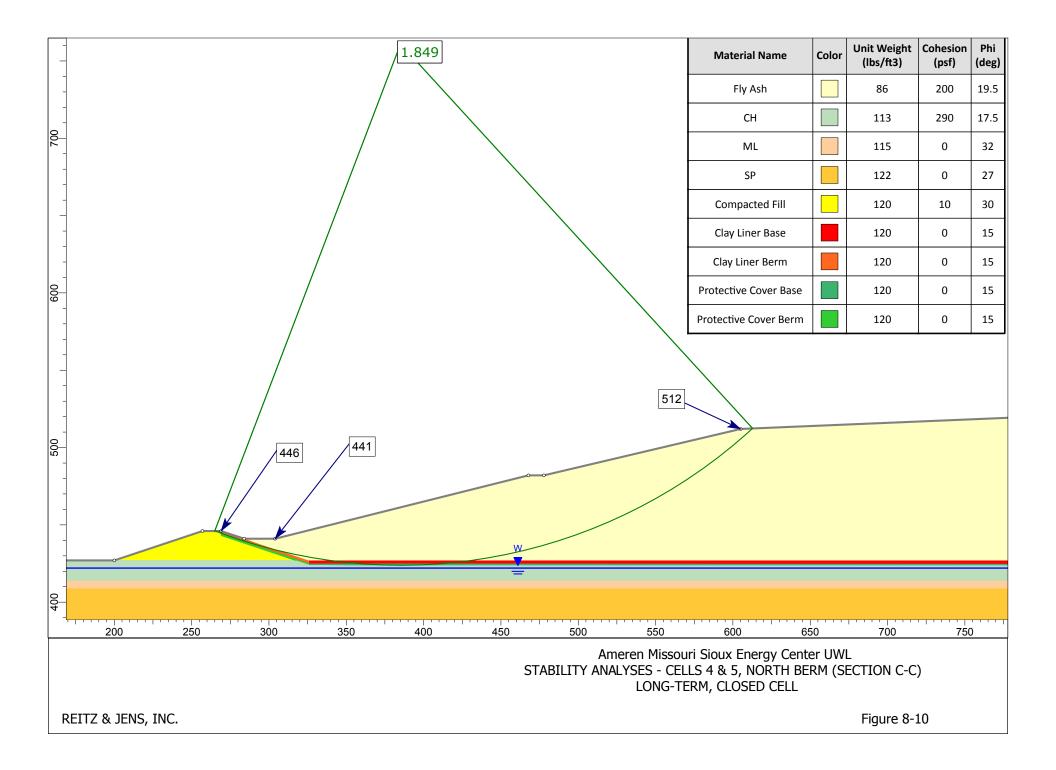
_

Material Boundary

X Y

_____rocscience

10110
443
444
446


Material Boundary

Х	Y
269	443
317	427
326	424
326	425
326	427

Material Boundary

Х	Y
326	424
920	424

Х	Υ
269	444
320	427
326	425
920	425

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Fly Ash	СН	ML	SP	Compacted Fill	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	86	113	115	122	120	120	120	120
Cohesion [psf]	200	290	0	0	10	0	0	0
Friction Angle [°]	19.5	17.5	32	27	30	15	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

X Y 0.983889 422.014

920.984 422.014

External Boundary

Х	Y
0	320
920	320
920	409
920	414
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	414
0	409

Material Boundary

Х	Y
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Υ
284	441
326	427

Material Boundary

Х	Y
0	414
920	414

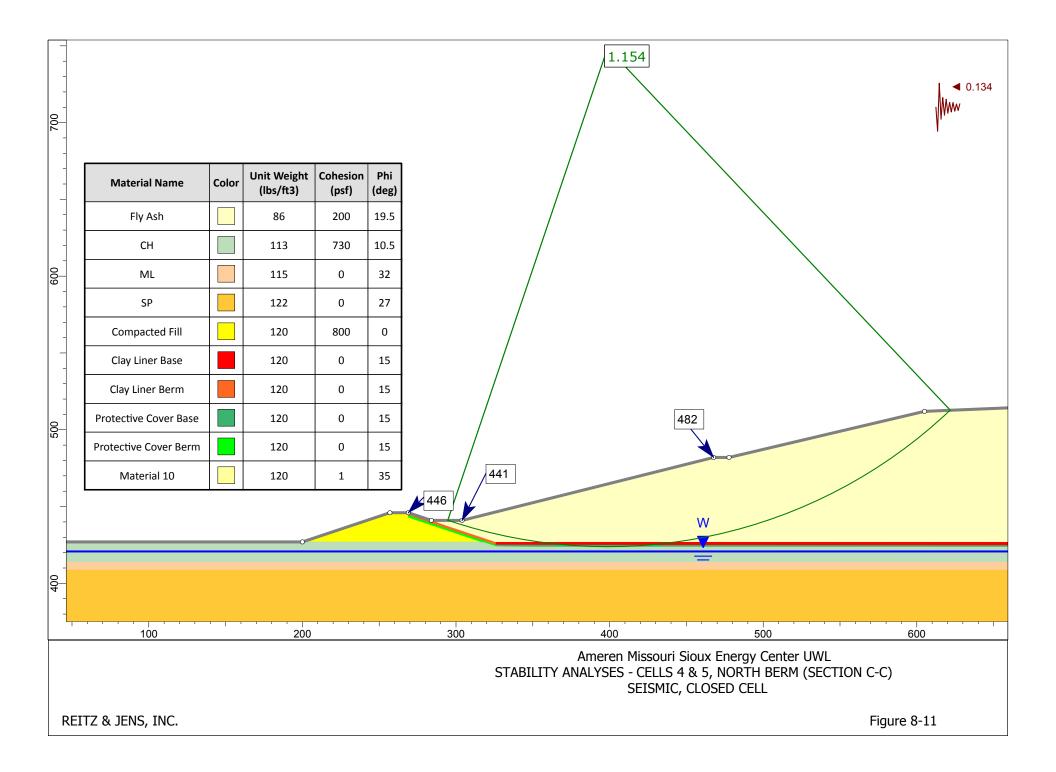
х	Y
0	409
920	409

Material Boundary

Х	Y
605	512
920	525

Material Boundary

Х	Υ
269	443
269	444
269	446


Material Boundary

Х	Υ
269	443
317	427
326	424
326	425
326	427

Material Boundary

Х	Y
326	424
920	424

Х	Y
269	444
320	427
326	425
920	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
-	

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Fly Ash	СН	ML	SP	Compacted Fill	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strongth Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	86	113	115	122	120	120	120	120
Cohesion [psf]	200	730	0	0	800	0	0	0
Friction Angle [°]	19.5	10.5	32	27	0	15	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

XY0.978654420.786920.979420.786

External Boundary

Х	Y
0	320
920	320
920	409
920	414
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	414
0	409

Material Boundary

Х	Υ
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Υ
284	441
326	427

Material Boundary

Х	Y
0	414
920	414

Material Boundary

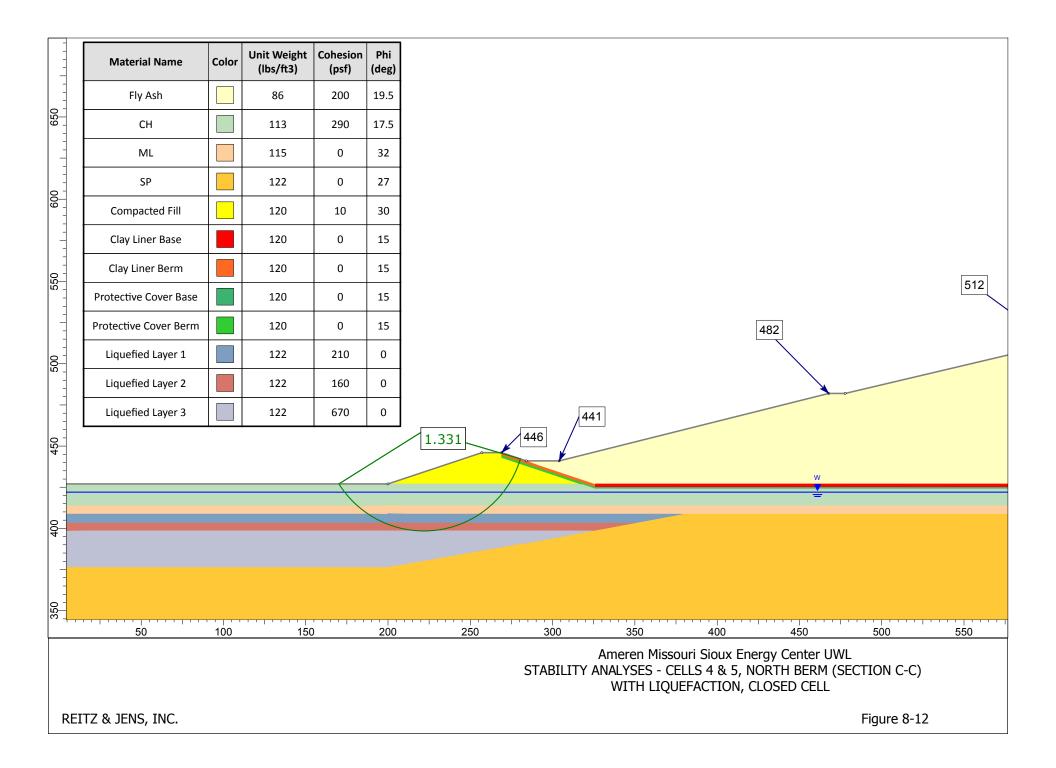
X Y

___ rocscience

0	409
920	409

Material Boundary

Х	Y
269	443
269	444
269	446


Material Boundary

Х	Y
326	424
326	425
326	427

Material Boundary

Х	Y
269	443
317	427
326	424
920	424

Х	Y
269	444
320	427
326	425
920	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Fly Ash	СН	ML	SP	Compacted Fill	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	86	113	115	122	120	120	120	120
Cohesion [psf]	200	290	0	0	10	0	0	0
Friction Angle [°]	19.5	17.5	32	27	30	15	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Berm	Liquefied Layer 1	Liquefied Layer 2	Liquefied Layer 3
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	122	122	122
Cohesion [psf]	0	210	160	670
Friction Angle [°]	15	0	0	0
Water Surface	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	1	1

Entity Information

Water Table

920.984 422.014

External Boundary

х	Y
0	320
920	320
920	409
920	414
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	414
0	409
0	403.5
0	398.5
0	376.244

Material Boundary

Х	Y
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Y
284	441
326	427

Material Boundary

Х	Y
0	414
200	414
920	414

Х	Y
0	409
200	409
380.664	409
920	409

Material Boundary

х	Υ
605	512
920	525

Material Boundary

Х	Υ
269	443
269	444
269	446

Material Boundary

Х	Υ
269	443
317	427
326	424
326	425
326	427

Material Boundary

х	Υ
326	424
920	424

Material Boundary

Х	Y
269	444
320	427
326	425
920	425

Material Boundary

Х	Y
0	403.5
200	403.5

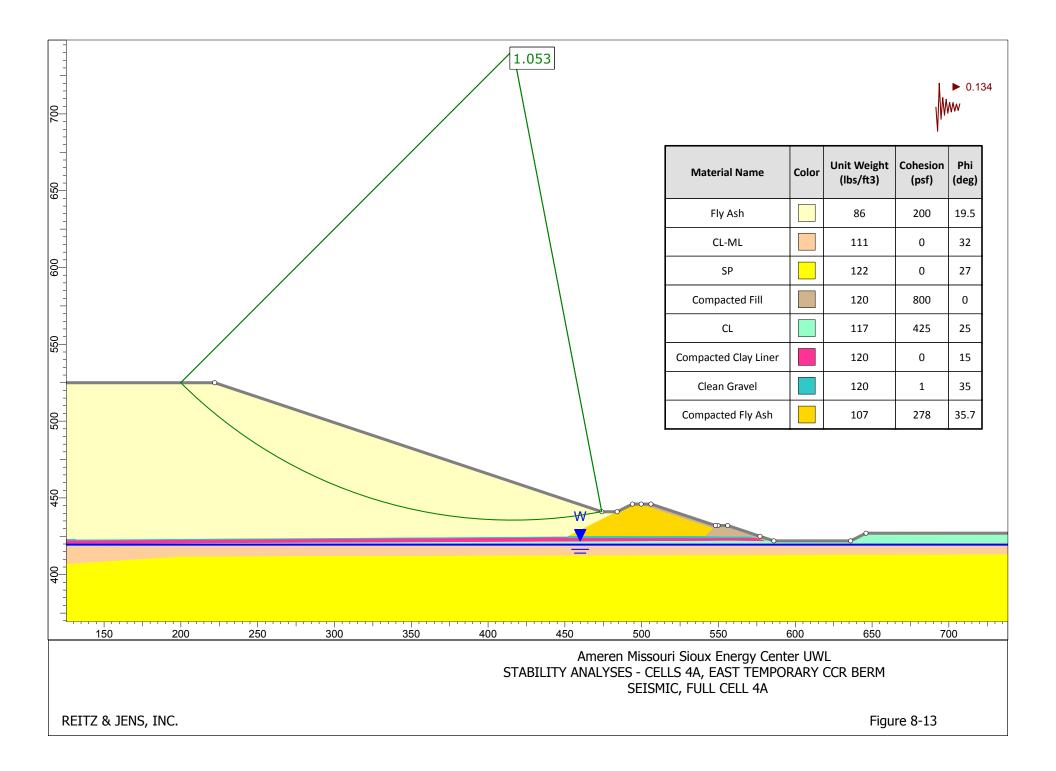
Material Boundary

ХҮ

0 376.244 200 376.244

Material Boundary

х	Y
200	376.244
284	391
324.277	398.5
351.128	403.5
380.664	409
381.182	409.096


Material Boundary

х	Y
200	403.5
351.128	403.5

Material Boundary

Х	Y
0	398.5
200	398.5

х	Y
200	398.5
324.277	398.5

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Left to Right

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.131

Materials

Property	Fly Ash	CL-ML	SP	Compacted Fill	CL	Compacted Clay Liner	Clean Gravel	Compacted Fly Ash
Color								
Strength Type	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr-Coulomb	Mohr- Coulomb	Mohr- Coulomb
Unsaturated Unit Weight [lbs/ft3]								107
Saturated Unit Weight [lbs/ft3]								107
Cohesion [psf]	200	0	0	800	425	0	1	278
Friction Angle [°]	19.5	32	27	0	25	15	35	35.7
Water Surface	None	Water Table	Water Table	Water Table	Water Table	Water Table	None	None
Hu Value		1	1	1	1	1		
Ru Value	0						0	0

Entity Information

Water Table

XY-0.0025923419.574919.997419.574

Block Search Polyline

х	Y
132	422
449.766	423.986

External Boundary

Х	Y
0	425
0	424
0	422
2.13163e-14	418
7.10543e-15	399
0	320
920	320
920	409
920	414
920	421
920	423
920	427
646	427
636	422
586	422
577	425
556	432
549.675	432
548	432
506	446
499.675	446
494	446
484	441
474	441
222	525
0	525

Material Boundary

Х	Y
7.10543e-15	399
200	412
920	414

Material Boundary

Х	Y
0	422
132	420

Material Boundary

X Y 132 420

132	422
132	423

Material Boundary

Х	Y
0	424
132	422

Material Boundary

Х	Υ
132	422
452	424

Material Boundary

Х	Y
452	425
541	425

Material Boundary

х	Y
570.675	425
577	425

Material Boundary

Х	Υ
132	423
452	425

Material Boundary

х	Y
132	420
579.675	422
586	422

Material Boundary

Х	Y
0	425
132	423

Х	Y
2.13163e-14	418
920	421

Material Boundary

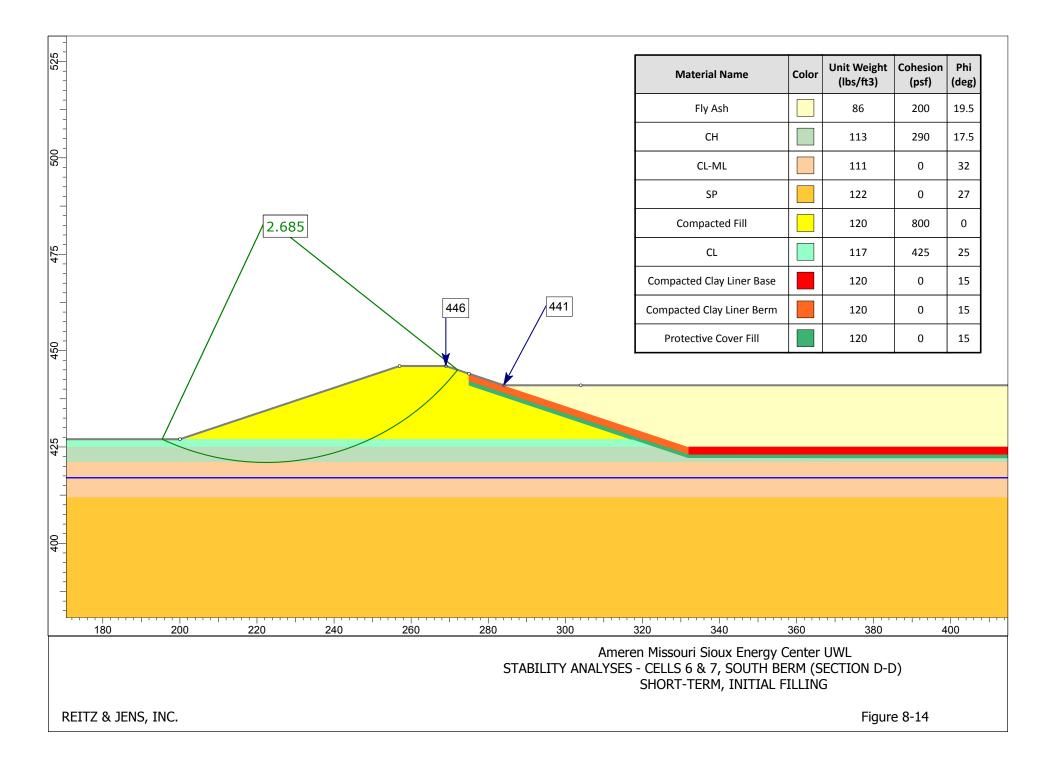
Х	Y
452	425
484	441

Material Boundary

х	Y
541	425
546.419	430.419
548	432

Material Boundary

х	Y
499.675	446
546.419	430.419


Material Boundary

х	Y
570.675	425
573.675	424
579.675	422

Material Boundary

х	Y
541	425
570.675	425

Х	Y
452	424
573.675	424

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
71	
Search Method:	Auto Refine Search
Divisions along slope:	10
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Compacted Clay Liner Base	Compacted Clay Liner Berm
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb		
Unit Weight [lbs/ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	290	0	0	800	425	0	0
Friction Angle [°]	19.5	17.5	32	27	0	25	15	15
Water Surface	Water	Water	Water	Water	Water	Water	Water Table	Water Table
water Sullace	Table	Table	Table	Table	Table	Table		
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Fill
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

г_____

SLIDE 8.029

rocscience

Х	Y
0	417
920	417

External Boundary

Х	Υ
0	320
920	320
920	409
920	412
920	414
920	421
920	422
920	423
920	425
920	427
920	441
304	441
284	441
275	444
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409

Material Boundary

х	Υ
200	427
317	427
320.006	427
326	427

Material Boundary

х	Y
0	421
920	421

Material Boundary

Х	Υ
0	412
920	412

х	Y
275	444
275	442
320.006	427
326.003	425
332	423
920	423

Material Boundary

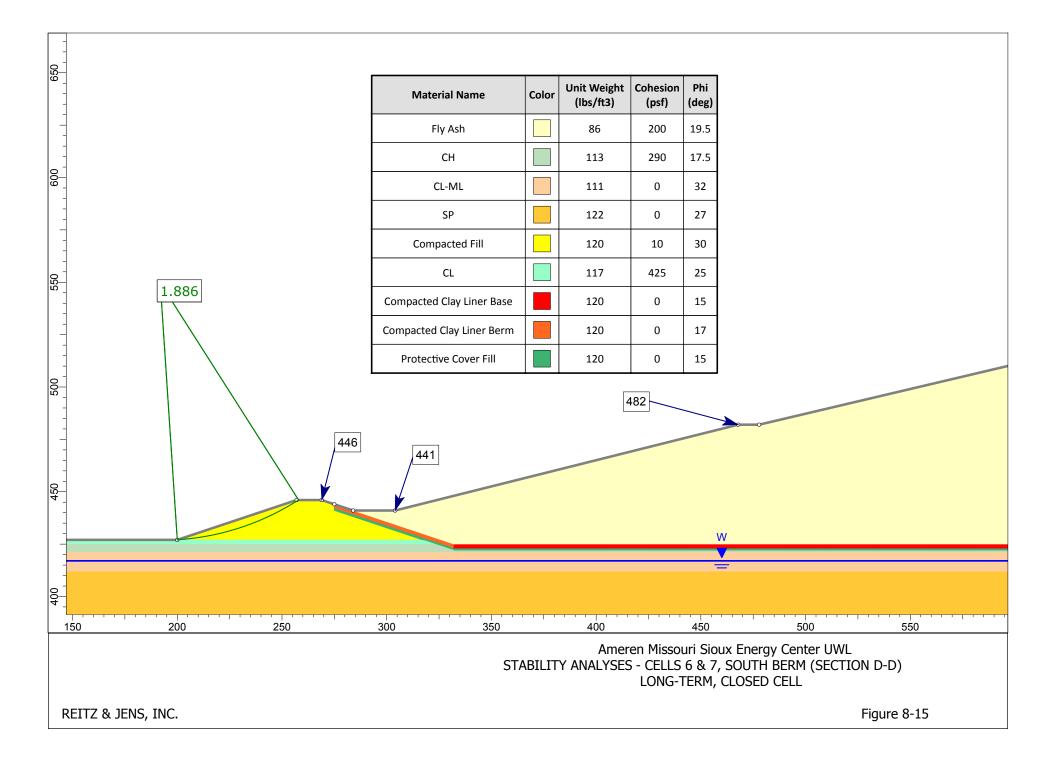
Х	Y
284	441
326	427
332	425
920	425

Material Boundary

Х	Y
0	425
323	425
326.003	425

Material Boundary

Х	Υ
275	441
275	442


Material Boundary

х	Y
275	441
317	427
323	425
332	422
332	423

Material Boundary

Х	Υ
332	422
920	422

Х	Y
332	423
332	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
71	
Search Method:	Auto Refine Search
Divisions along slope:	10
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Compacted Clay Liner Base	Compacted Clay Liner Berm
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb		
Unit Weight [lbs/ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	290	0	0	10	425	0	0
Friction Angle [°]	19.5	17.5	32	27	30	25	15	17
Water Surface	Water	Water	Water	Water	Water	Water	Water Table	Water Table
water Surface	Table	Table	Table	Table	Table	Table		
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Cover Fill
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

SLIDE 8.029

rocscience

Х	Y
0	417
920	417

External Boundary

х	Υ
0	320
920	320
920	409
920	412
920	414
920	421
920	422
920	423
920	425
920	427
920	428
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
275	444
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409

Material Boundary

х	Y
200	427
317	427
320.006	427
326	427

Material Boundary

Х	Υ
0	421
920	421

SLIDE 8.029

rocscience

Х	Y
0	412
920	412

Material Boundary

Х	Y
275	444
275	442
320.006	427
326.003	425
332	423
920	423

Material Boundary

Х	Y
284	441
326	427
332	425
920	425

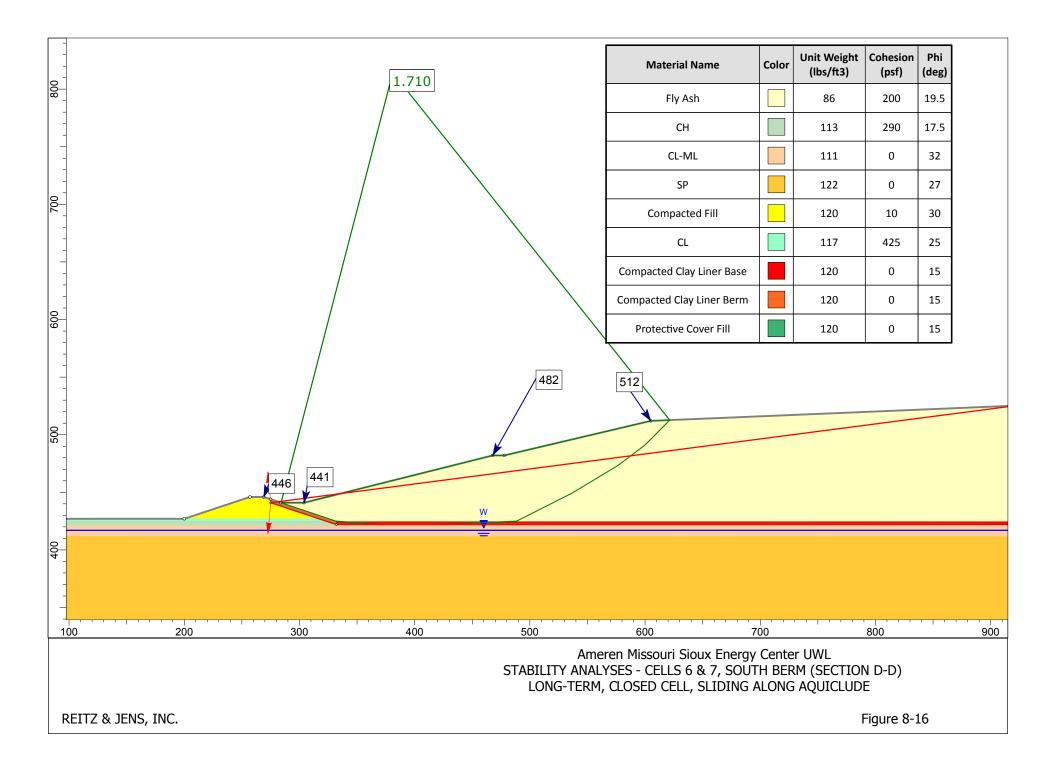
Material Boundary

х	Y
0	425
323	425
326.003	425

Material Boundary

Х	Y
275	441
275	442

Material Boundary


Х	Υ
275	441
317	427
323	425
332	422
332	423

Material Boundary

Х	Υ
332	422
920	422

____ rocscience

Х	Y
332	423
332	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Vertical
Spencer
25
25
0.005
50
Yes
1
Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	100000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Disabled
Left Projection Angle (Start Angle) [°]:	95
Left Projection Angle (End Angle) [°]:	265
Right Projection Angle (Start Angle) [°]:	-85
Right Projection Angle (End Angle) [°]:	85
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.131

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Clay Liner Base	Clay Liner Berm
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	730	1400	0	800	750	0	0
Friction Angle [°]	19.5	10.5	15	29	0	10	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Fill Base	Protective Fill Berm
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120
Cohesion [psf]	0	0
Friction Angle [°]	15	15
Water Surface	Water Table	Water Table
Hu Value	1	1

Entity Information

<u>rocscience</u>

Water Table

х	Y
0	422.655
920	422.655

Block Search Window

Х	Υ
269	443
326	424
920	424
920	525

External Boundary

х	Υ
0	320
920	320
920	409
920	412
920	414
920	421
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409

Х	Y
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Y
284	441
326	427

Material Boundary

Х	Υ
0	425
323	425
326	425
920	425

Material Boundary

х	Υ
0	421
920	421

Material Boundary

Y
412
412

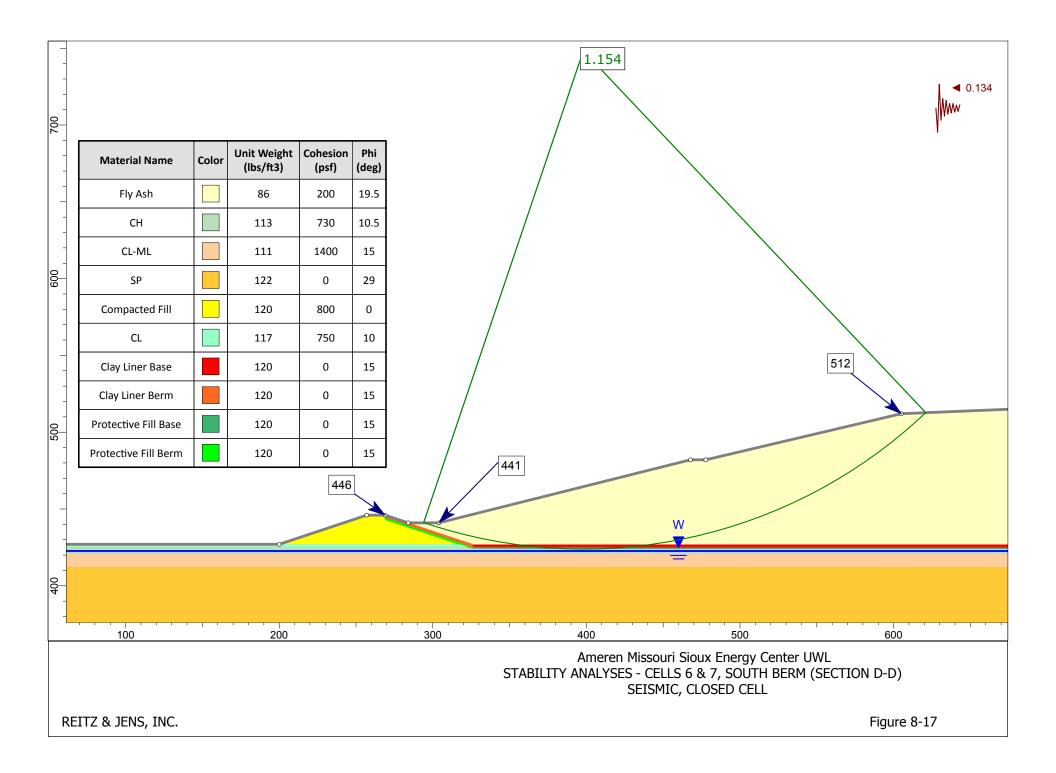
Material Boundary

х	Υ
269	443
269	444
269	446

Material Boundary

Υ
424
425
427

Material Boundary


Х	Y
269	443
317	427
323	425
326	424
920	424

Material Boundary

X Y

SLIDE 8.029

269	444
320	427
326	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	10
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Clay Liner Base	Clay Liner Berm
Color								
Chuon ath Turn a	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	730	1400	0	800	750	0	0
Friction Angle [°]	19.5	10.5	15	29	0	10	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Fill Base	Protective Fill Berm
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120
Cohesion [psf]	0	0
Friction Angle [°]	15	15
Water Surface	Water Table	Water Table
Hu Value	1	1

Entity Information

Water Table

SLIDE 8.030

____ rocscience

Х	Y
0	422.655
920	422.655

External Boundary

х	Υ
0	320
920	320
920	409
920	412
920	414
920	421
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409

Material Boundary

Х	Υ
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Y
284	441
326	427

____ rocscience

323	425
326	425
920	425 425 425

Material Boundary

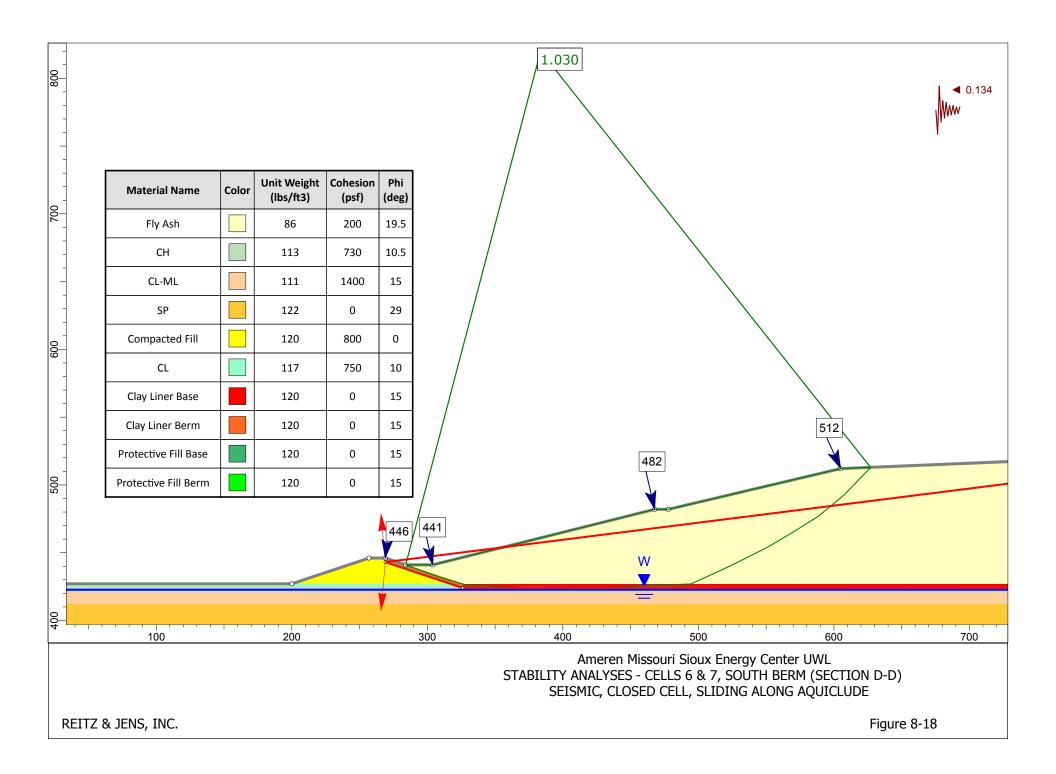
Х	Y
0	421
920	421

Material Boundary

Х	Y
0	412
920	412

Material Boundary

Х	Y
269	443
269	444
269	446


Material Boundary

х	Υ
326	424
326	425
326	427

Material Boundary

Х	Y
269	443
317	427
323	425
326	424
920	424

Х	Υ
269	444
320	427
326	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	100000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Disabled
Left Projection Angle (Start Angle) [°]:	95
Left Projection Angle (End Angle) [°]:	265
Right Projection Angle (Start Angle) [°]:	-85
Right Projection Angle (End Angle) [°]:	85
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Clay Liner Base	Clay Liner Berm
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	730	1400	0	800	750	0	0
Friction Angle [°]	19.5	10.5	15	29	0	10	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Fill Base	Protective Fill Berm
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120
Cohesion [psf]	0	0
Friction Angle [°]	15	15
Water Surface	Water Table	Water Table
Hu Value	1	1

Entity Information

Water Table

Х	Y
0	422.655
920	422.655

Block Search Window

Х	Υ
269	443
326	424
920	424
920	525

External Boundary

х	Y
0	320
920	320
920	409
920	412
920	414
920	421
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409

Х	Y
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Y
284	441
326	427

Material Boundary

Х	Υ
0	425
323	425
326	425
920	425

Material Boundary

х	Υ
0	421
920	421

Material Boundary

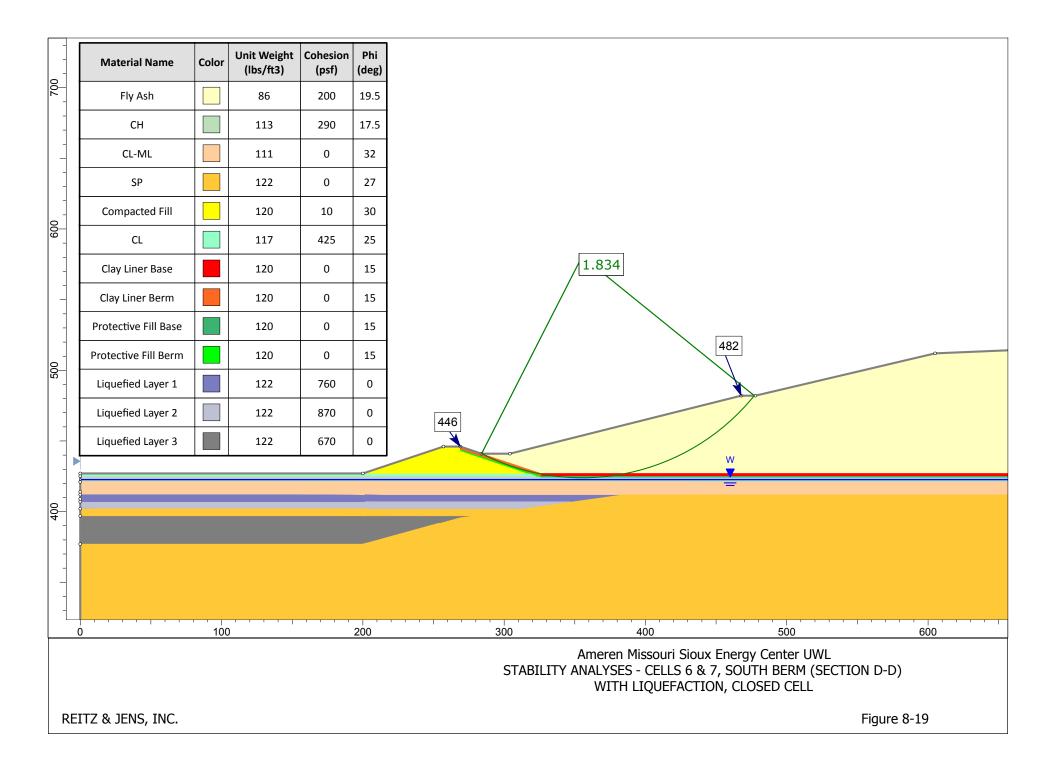
Y
412
412

Material Boundary

х	Υ
269	443
269	444
269	446

Material Boundary

Υ
424
425
427


Material Boundary

Х	Y
269	443
317	427
323	425
326	424
920	424

Material Boundary

ХҮ

269	444
320	427
326	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	50
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Fly Ash	СН	CL-ML	SP	Compacted Fill	CL	Clay Liner Base	Clay Liner Berm
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
Unit Weight [lbs/ ft3]	86	113	111	122	120	117	120	120
Cohesion [psf]	200	290	0	0	10	425	0	0
Friction Angle [°]	19.5	17.5	32	27	30	25	15	15
Water Surface	Water Table	Water Table	Water Table	Water Table				
Hu Value	1	1	1	1	1	1	1	1

Property	Protective Fill Base	Protective Fill Berm	Liquefied Layer 1	Liquefied Layer 2	Liquefied Layer 3
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	122	122	122
Cohesion [psf]	0	0	760	870	670
Friction Angle [°]	15	15	0	0	0
Water Surface	Water Table	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	1	1	1

Entity Information

Water Table

920 422.655

External Boundary

х	Y
0	320
920	320
920	409
920	412
920	414
920	421
920	424
920	425
920	427
920	525
916	525
605	512
477.785	482
467.785	482
304	441
284	441
269	446
257	446
200	427
0	427
0	425
0	421
0	414
0	412
0	409
0	407
0	402
0	397
0	377

Material Boundary

Х	Υ
200	427
317	427
320	427
326	427
920	427

Material Boundary

Х	Υ
284	441
326	427

Х	Υ	
0	425	
323	425	
326	425	
920	425	

Material Boundary

х	Y
0	421
445.811	421
920	421

Material Boundary

х	Y
0	412
201.595	412
382.159	412
920	412

Material Boundary

Х	Υ
269	443
269	444
269	446

Material Boundary

Х	Υ
326	424
326	425
326	427

Material Boundary

Х	Υ
269	443
317	427
323	425
326	424
920	424

Х	Υ
269	444
320	427
326	425

Material Boundary

х	Y
0	377
200	377
254.474	392
269	396
276.072	397
311.435	402
346.797	407
382.159	412
445.811	421

Material Boundary

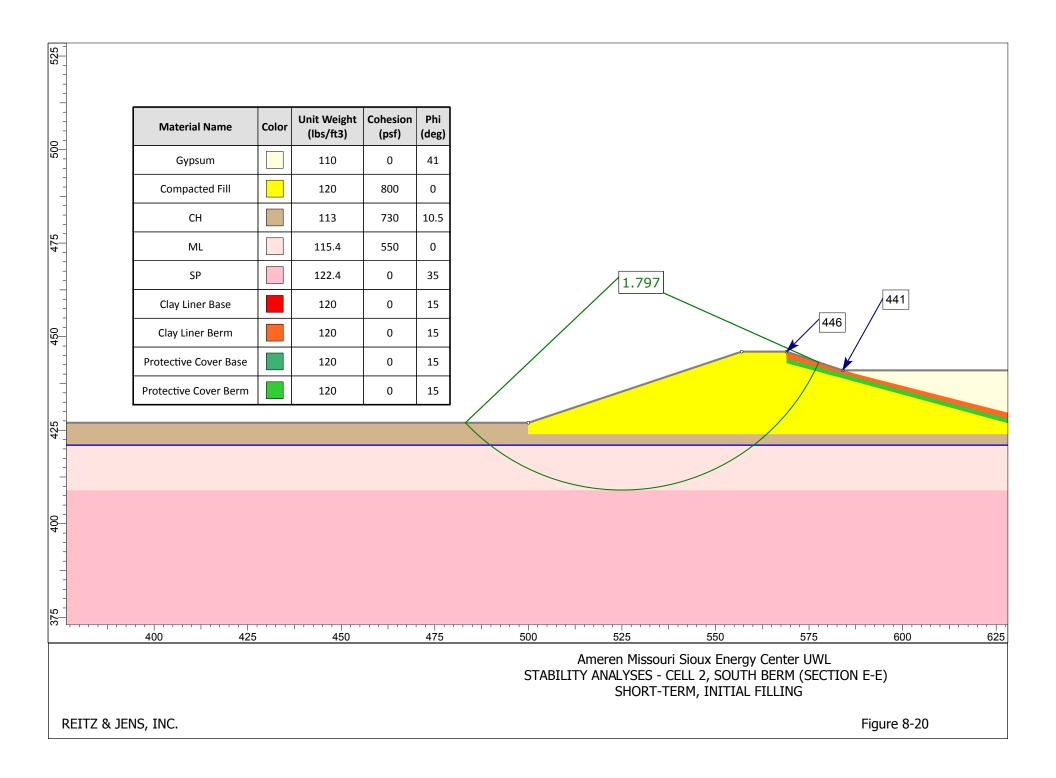
х	Y
0	407
201.595	407

Material Boundary

х	Y
201.595	407
346.797	407

Material Boundary

Х	Y
0	402
201.595	402


Material Boundary

х	Y
201.595	402
311.435	402

Material Boundary

х	Y
0	397
201.595	397

х	Y
201.595	397
276.072	397

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
•	
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	115.4	122.4	120	120	120
Cohesion [psf]	0	800	730	550	0	0	0	0
Friction Angle [°]	41	0	10.5	0	35	15	15	15
Water Surface	None	None	Piezometric Line 2	Piezometric Line 2	Piezometric Line 2	None	None	None
Hu Value			1	1	1			
Ru Value	0	0				0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

.

Х	Υ
0	421
1370	421

External Boundary

Х	Υ
584	441
569	446
557	446
500	427
0	427
0	421
0	409
0	327
1370	327
1370	409
1370	421
1370	424
1370	425
1370	427
1370	441

Material Boundary

Х	Υ
584	441
639	427
1370	427

Material Boundary

Х	Y
500	427
500	424
639	424
1370	424

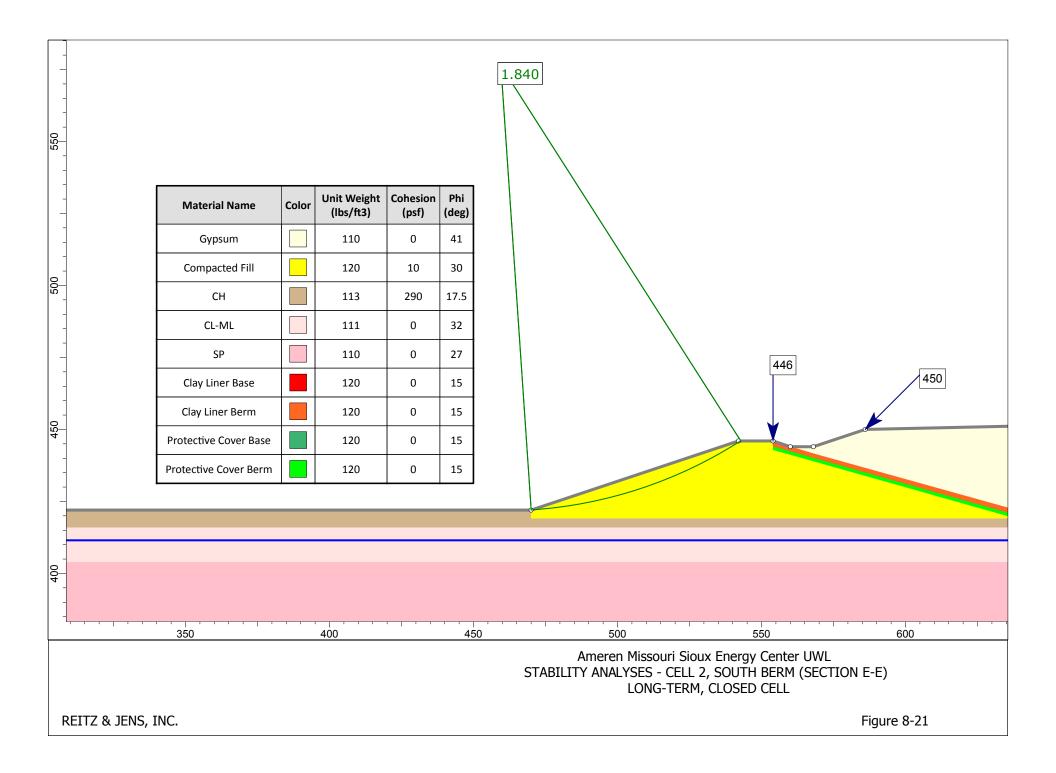
Material Boundary

Х	Y
0	421
1370	421

Х	Y
0	409
1370	409

Material Boundary

Х	Y
569	443
569	444
569	446


Material Boundary

х	Y
569	443
639	424
639	425
639	427

Material Boundary

Х	Υ
569	444
639	425

Х	Υ
639	425
1370	425

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
	Bishop simplified
	GLE/Morgenstern-Price with interslice force function (Half Sine)
	Janbu simplified
	Janbu corrected
	Ordinary/Fellenius
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No	
Staged pseudostatic analysis:	No	

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

Х	Y
1076	456
676	452
586	450
568	444
560	444
554	446
542	446
470	422
0	422
0	416
0	404
0	322
1370	322
1370	404
1370	416
1370	419
1370	420
1370	422
1370	456

Material Boundary

Х	Y
560	444
639	422
1370	422

Material Boundary

х	Υ
470	422
470	419
639	419
1370	419

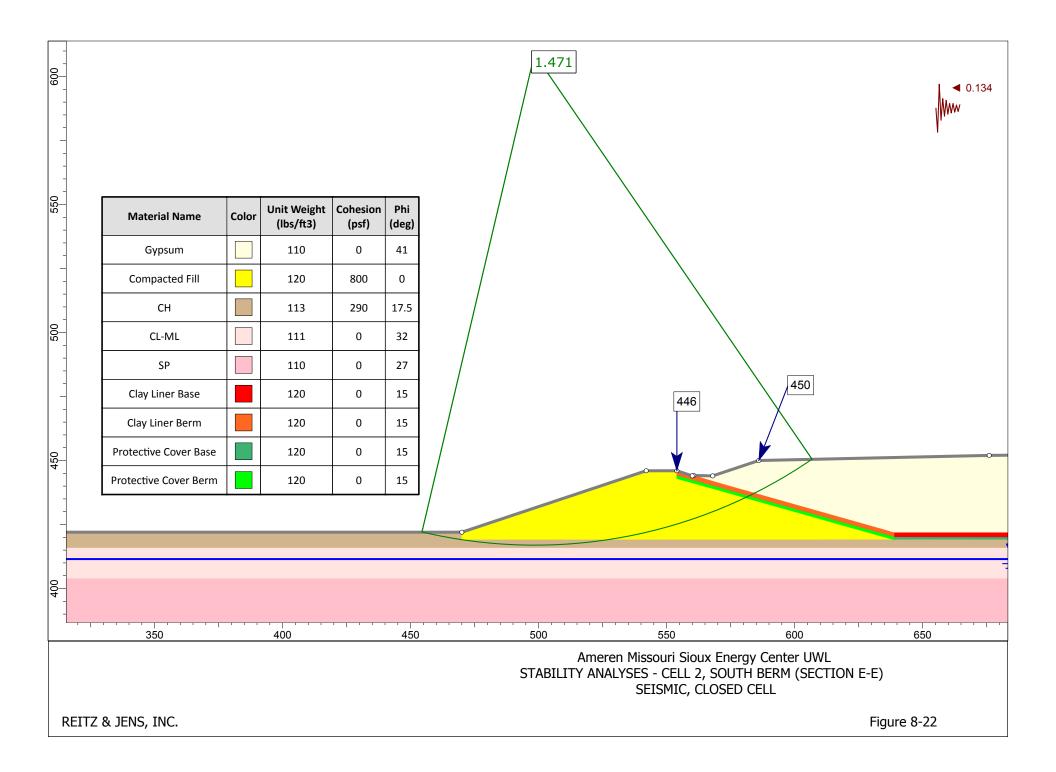
Х	Y
0	416
1370	416

Material Boundary

Х	Y
0	404
1370	404

Material Boundary

Х	Y
554	443
554	444
554	446


Material Boundary

Х	Y
554	443
639	419
639	420
639	422

Material Boundary

х	Y
554	444
639	420

Х	Y
639	420
1370	420

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	800	290	0	0	0	0	0
Friction Angle [°]	41	0	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

х	Y
568	444
560.58	444.142
560	444
554	446
542	446
470	422
0	422
0	416
0	404
0	322
1370	322
1370	404
1370	416
1370	419
1370	420
1370	422
1370	456
1076	456
676	452
586	450

Material Boundary

I	х	Y
	560.58	444.142
	639	422
	1370	422

Material Boundary

Х	Y
470	422
470	419
639	419
1370	419

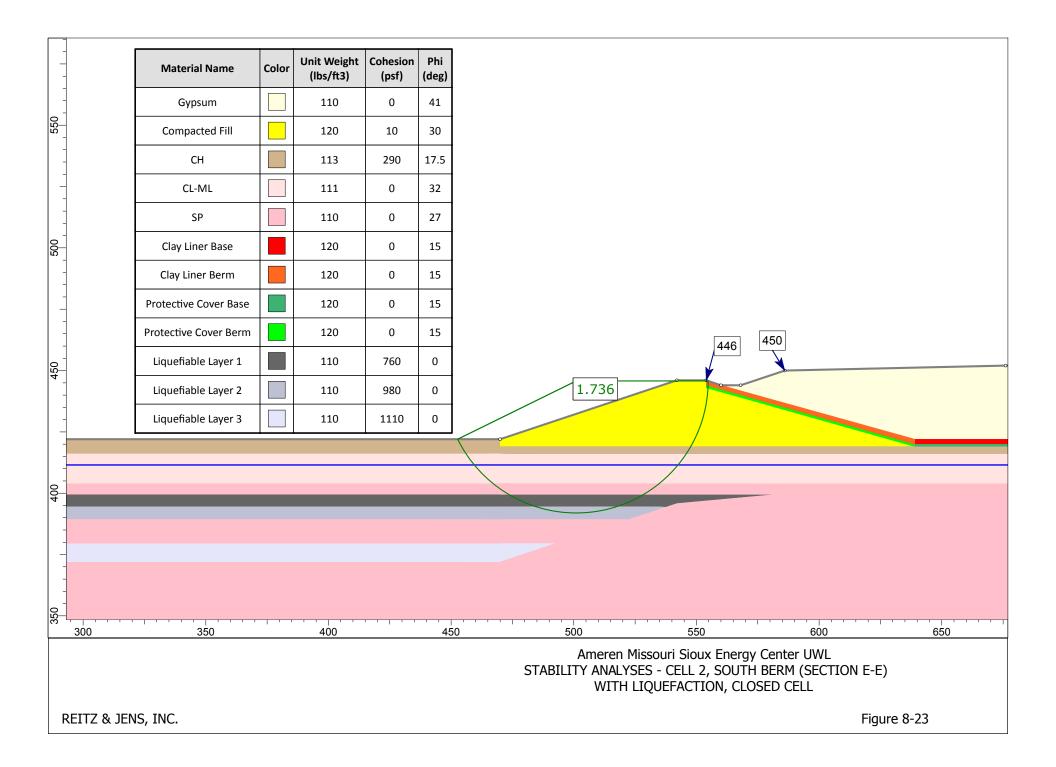
	Х	Y
	0	416
1	370	416

Material Boundary

Х	Y
0	404
1370	404

Material Boundary

Х	Y
554	443
554	444
554	446


Material Boundary

Х	Υ
554	443
639	419
639	420
639	422

Material Boundary

Х	Υ
554	444
639	420

Х	Υ
639	420
1370	420

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
	Bishop simplified
	GLE/Morgenstern-Price with interslice force function (Half Sine)
	Janbu simplified
	Janbu corrected
	Ordinary/Fellenius
Number of allocations	50
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No	
Staged pseudostatic analysis:	No	

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm	Liquefiable Layer 1	Liquefiable Layer 2	Liquefiable Layer 3
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	110	110	110
Cohesion [psf]	0	760	980	1110
Friction Angle [°]	15	0	0	0
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

Х	Y
1076	456
676	452
586	450
568	444
560	444
554	446
542	446
470	422
0	422
0	416
0	404
0	399.5
0	394.5
0	389.5
0	379.5
0	372
0	322
1370	322
1370	404
1370	416
1370	419
1370	420
1370	422
1370	456

Material Boundary

Х	Y
560	444
639	422
1370	422

Х	Y
470	422
470	419
639	419
1370	419

Material Boundary

Х	Y
0	416
470	416
1370	416

Material Boundary

х	Y
0	404
470	404
896.201	404
1370	404

Material Boundary

Х	Y
554	443
554	444
554	446

Material Boundary

Х	Υ
554	443
639	419
639	420
639	422

Material Boundary

Х	Υ
554	444
639	420

Material Boundary

Х	Y	
639	420	
1370	420	

х	Y
0	372
470	372
492.5	379.5
522.5	389.5
537.5	394.5
542	396
580.5	399.5

400
403.754
404

Material Boundary

Х	Υ
470	379.5
492.5	379.5

Material Boundary

Х	Y
0	389.5
470	389.5

Material Boundary

Х	Y
470	389.5
522.5	389.5

Material Boundary

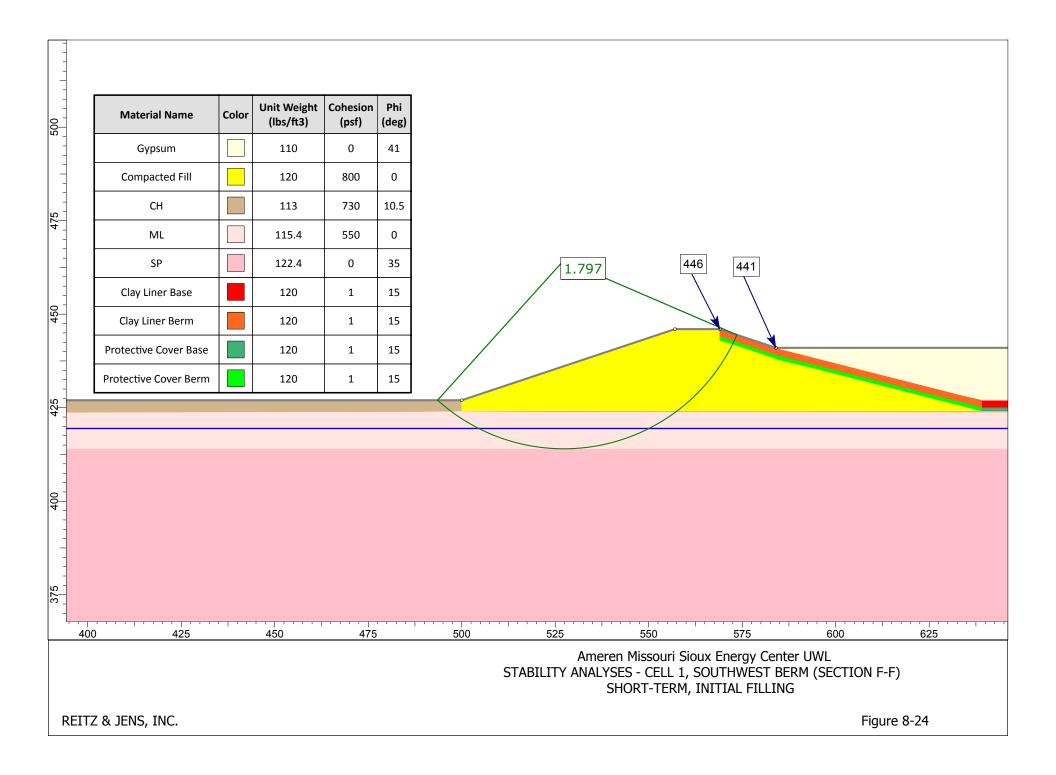
Х	Y
470	394.5
537.5	394.5

Material Boundary

Х	Y
0	394.5
470	394.5

Material Boundary

х	Y
0	399.5
470	399.5


Material Boundary

Х	Y
470	399.5
580.5	399.5

х	Y
0	379.5
470	379.5

SLIDE 8.029

rocscience

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	-Mohr Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	-Mohr Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	120	113	115.4	122.4	120	120	120
Cohesion [psf]	0	800	730	550	0	1	1	1
Friction Angle [°]	41	0	10.5	0	35	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	1
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

х	Y
-0.52591	419.43
1370.3	419.43

External Boundary

Х	Υ
584	441
569	446
557	446
500	427
0	427
0	423
0	414
0	327
1370	327
1370	414
1370	423
1370	424
1370	425
1370	427
1370	441

Material Boundary

Х	Υ
584	441
639	427
1370	427

Material Boundary

Х	Y
500	427
500	424
639	424
1370	424

Material Boundary

Х	Υ
0	423
500	424
1370	423

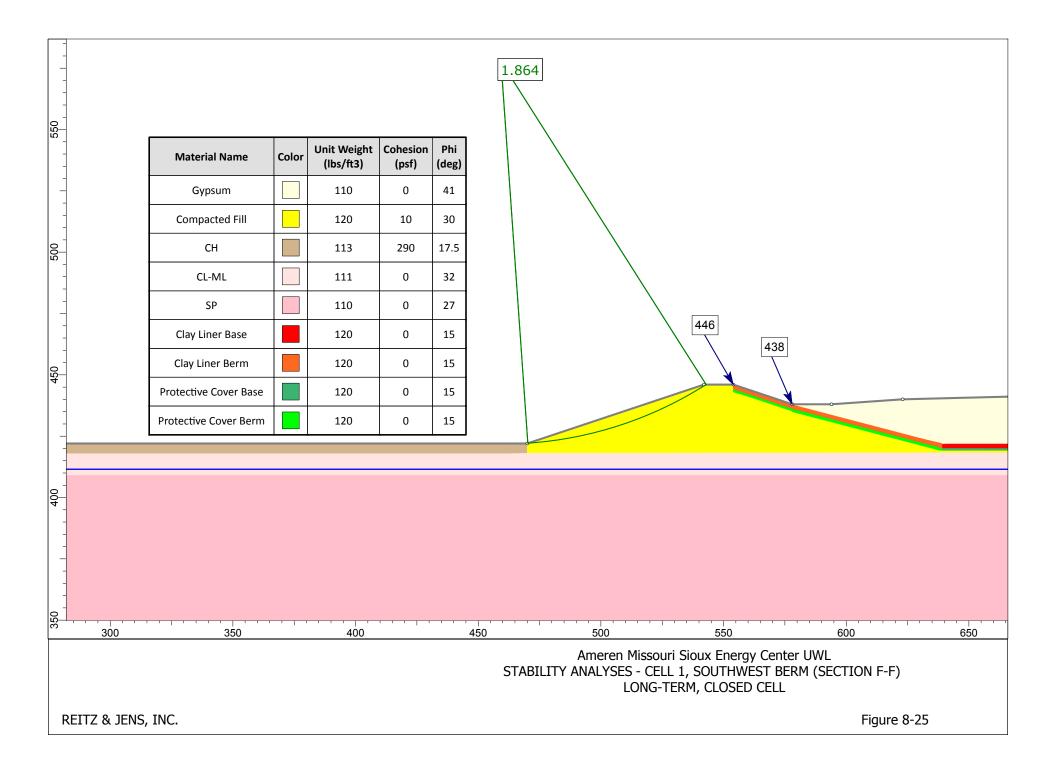
Х	Y
0	414
1370	414

Material Boundary

Х	Y
569	443
569	444
569	446

Material Boundary

Х	Y
584	438
584	439
584	441


Material Boundary

Х	Y
569	444
584	439
639	425

Material Boundary

Х	Υ
569	443
584	438
639	424
639	425
639	427

Х	Y
639	425
1370	425

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	Mohr- Coulomb	-Mohr Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

Х	Y
623	440
594	438
578	438
554	446
542	446
470	422
0	422
0	418
0	409
0	322
1370	322
1370	409
1370	418
1370	419
1370	420
1370	422
1370	456
1255	456

Material Boundary

Х	Υ
578	438
639	422
1370	422

Material Boundary

Х	Υ
470	422
470	418
1370	419

Material Boundary

Х	Y
0	418
470	418
1370	418

Material Boundary

X Y

___ rocscience

0	409
1370	409

Material Boundary

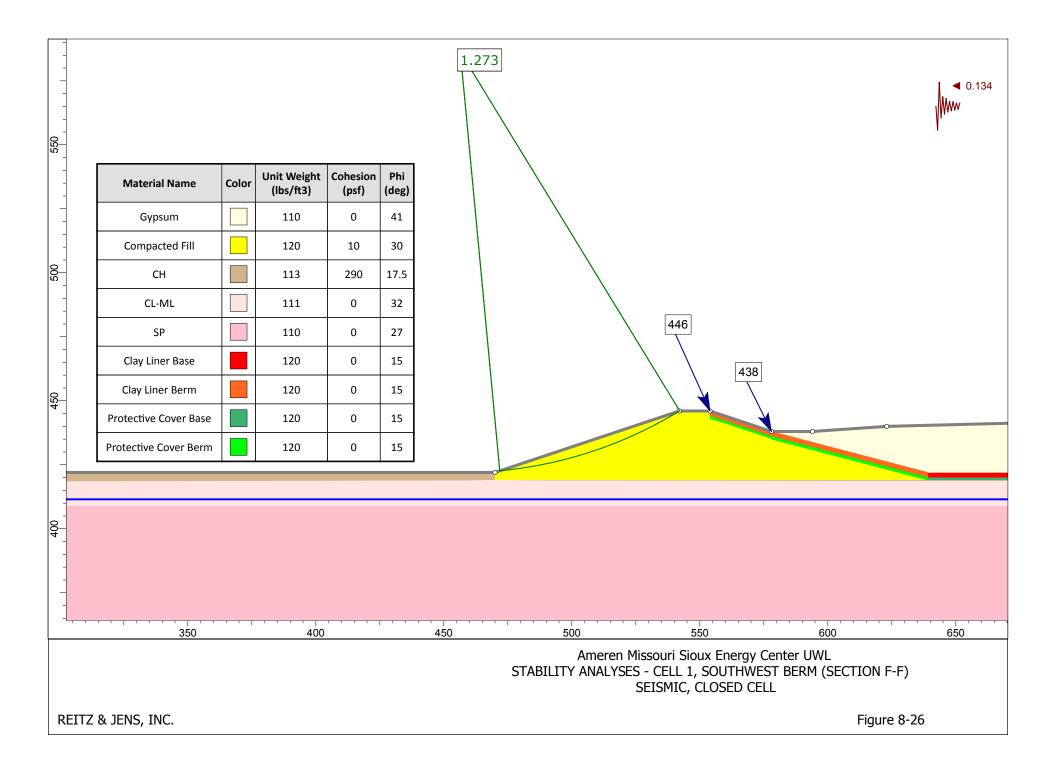
Х	Y
554	443
554	444
554	446

Material Boundary

Х	Y
578	435
578	436
578	438

Material Boundary

Х	Υ
554	444
578	436
639	420


Material Boundary

Х	Y
554	443
578	435
639	419
639	420
639	422

Material Boundary

Х	Y
639	419
1370	419

Х	Y
639	420
1370	420

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
-	

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Seismic Load Coefficient (Horizontal): 0.134

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [°]	15
Water Surface	None
Ru Value	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

Х	Y
594	438
578	438
554	446
542	446
470	422
0	422
0	418
0	409
0	322
1370	322
1370	409
1370	418
1370	419
1370	420
1370	422
1370	456
1255	456
623	440

Material Boundary

Х	Y
578	438
639	422
1370	422

Material Boundary

Х	Υ
470	422
470	419
639	419
1370	419

Material Boundary

Х	Υ
0	418
470	419
1370	418

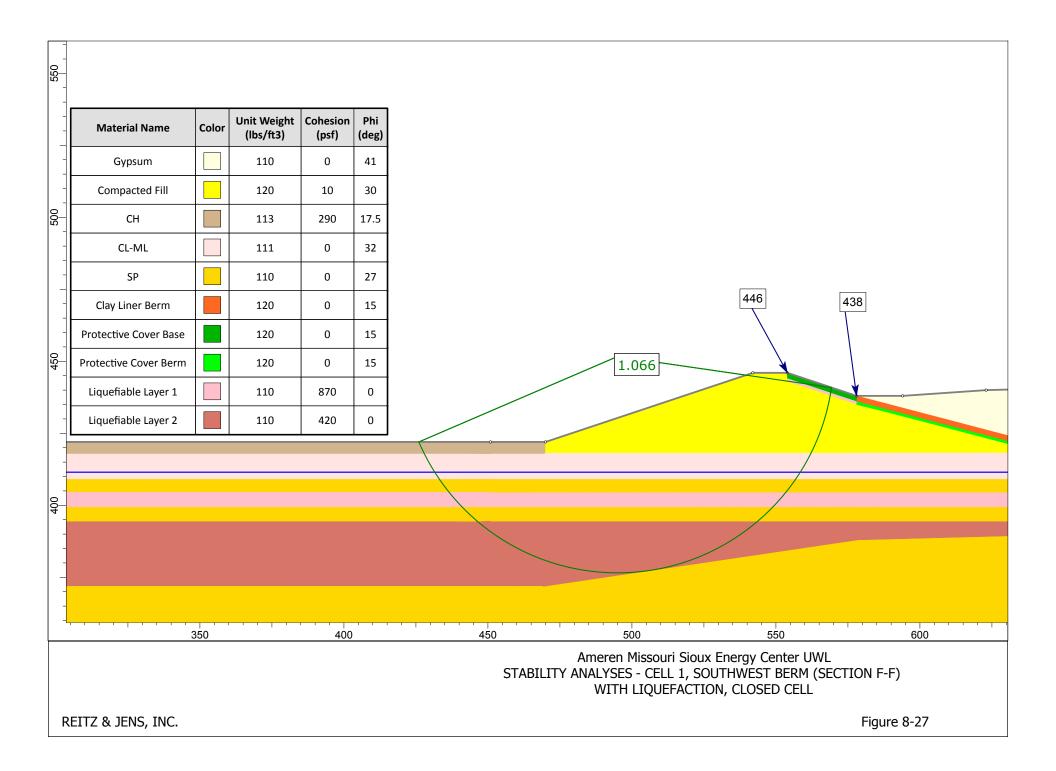
Х	Y
0	409
1370	409

Material Boundary

Х	Y
554	443
554	444
554	446

Material Boundary

Х	Y
578	435
578	436
578	438


Material Boundary

Х	Υ
639	419
639	420
639	422

Material Boundary

Х	Υ
554	443
578	435
639	419

Х	Υ
554	444
578	436
639	420
1370	420

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
	Bishop simplified
	GLE/Morgenstern-Price with interslice force function (Half Sine)
	Janbu simplified
	Janbu corrected
	Ordinary/Fellenius
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis:	No	
Staged pseudostatic analysis:	No	

Materials

Property	Gypsum	Compacted Fill	СН	CL-ML	SP	Clay Liner Base	Clay Liner Berm	Protective Cover Base
Color								
Strength Type	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-Coulomb
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	
Unit Weight [lbs/ft3]	110	120	113	111	110	120	120	120
Cohesion [psf]	0	10	290	0	0	0	0	0
Friction Angle [°]	41	30	17.5	32	27	15	15	15
Water Surface	Piezometric Line 2	None	None	None	None	None	None	None
Hu Value	1							
Ru Value		0	0	0	0	0	0	0

Property	Protective Cover Berm	Liquefiable Layer 1	Liquefiable Layer 2
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	110	110
Cohesion [psf]	0	870	420
Friction Angle [°]	15	0	0
Water Surface	None	None	None
Ru Value	0	0	0

Entity Information

Piezoline

Х	Y
0	411.5
1370	411.5

External Boundary

х	Y
594	438
578	438
554	446
542	446
470	422
450.91	422
0	422
0	418
0	409
0	404.5
0	404
0	399.5
0	394.5
0	371.888
0	322
1370	322
1370	405.96
1370	409
1370	418
1370	419
1370	420
1370	422
1370	456
1255	456
623	440

Material Boundary

Х	Υ
578	438
639	422
1370	422

Material Boundary

_

Х	Υ
470	422
470	418
1370	419

Material Boundary

х	Y
0	418
450.91	418
470	418
1370	418

Material Boundary

х	Y
0	409
450.91	409
666	409
1370	409

Material Boundary

Х	Y
554	443
554	444
554	446

Material Boundary

Х	Y
578	435
578	436
578	438

Material Boundary

Х	Y
639	419
639	420
639	422

Material Boundary

Х	Υ
554	443
578	435
639	419
1370	419

х	Y
554	444
578	436
639	420
1370	420

Material Boundary

х	Y
0	371.888
469.254	371.841
578.433	388
823.387	394.5
1011.82	399.5
1200.25	404.5
1255.26	405.96
1370	405.96

Material Boundary

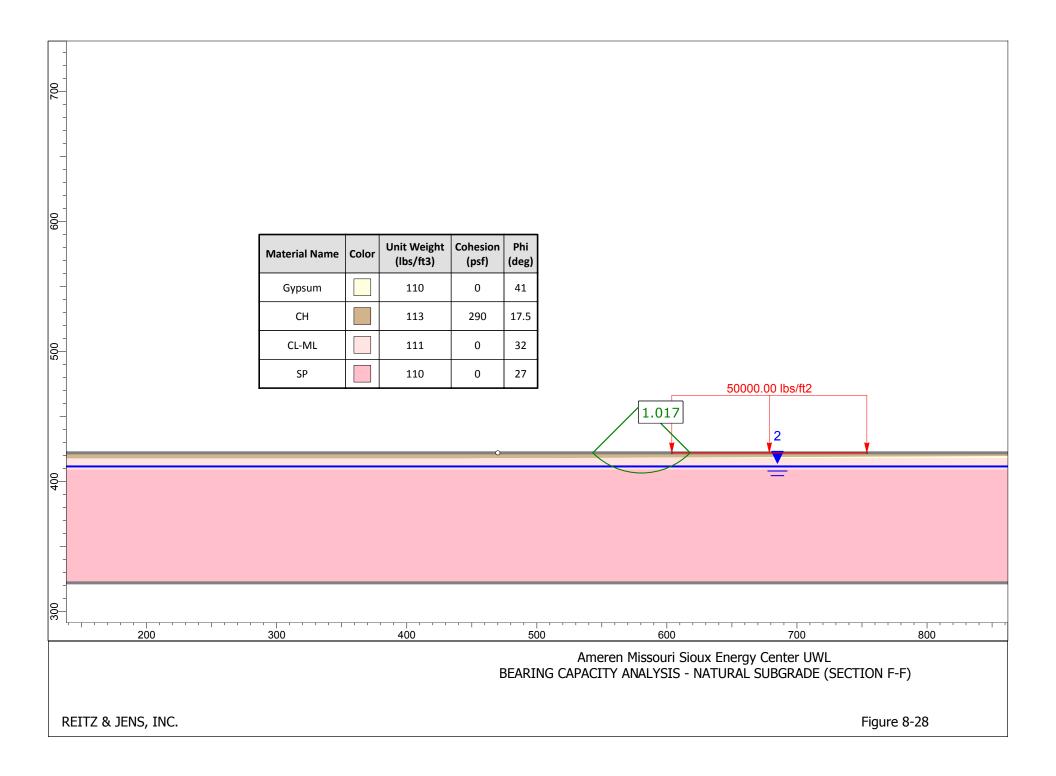
х	Y
0	394.5
450.91	394.5

Material Boundary

х	Y
450.91	394.5
823.387	394.5

Material Boundary

Х	Y
0	399.5
450.91	399.5


Material Boundary

х	Y
450.91	399.5
1011.82	399.5

Material Boundary

х	Y
0	404.5
450.91	404.5

х	Y
450.91	404.5
1200.25	404.5

Slide Analysis Information Sioux UWL

Project Summary

Last saved with Slide version: 8.029

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	3
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	rand

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
-	

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

1 Distributed Load present

Distributed Load 1		
Distribution:	Constant	
Magnitude [psf]:	50000	
Orientation:	Vertical	

Materials

Property	Gypsum	СН	CL-ML	SP
Color				
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	110	113	111	110
Cohesion [psf]	0	290	0	0
Friction Angle [°]	41	17.5	32	27
Water Surface	Piezometric Line 2	None	None	None
Hu Value	1			
Ru Value		0	0	0

Entity Information

Piezoline

X Y 0 411.5

1370 411.5

Distributed Load

х	Y
603.777	422
753.777	422

External Boundary

Х	Υ
470	422
0	422
0	418
0	409
0	322
1370	322
1370	409
1370	418
1370	422

Material Boundary

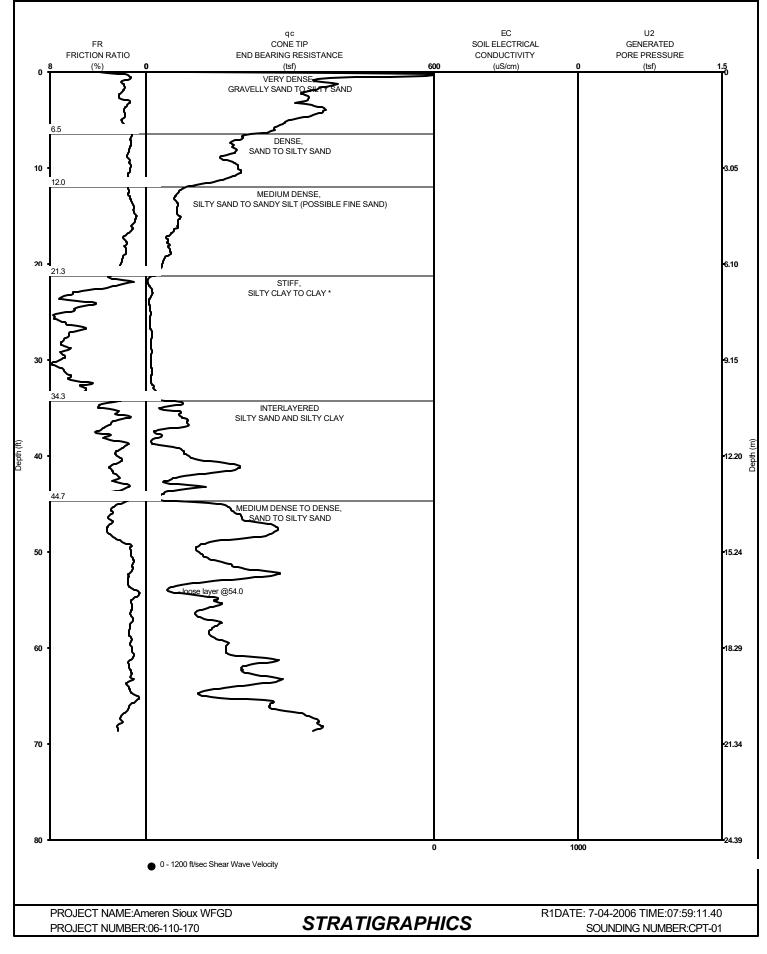
Х	Y
470	422
470	418
1370	422

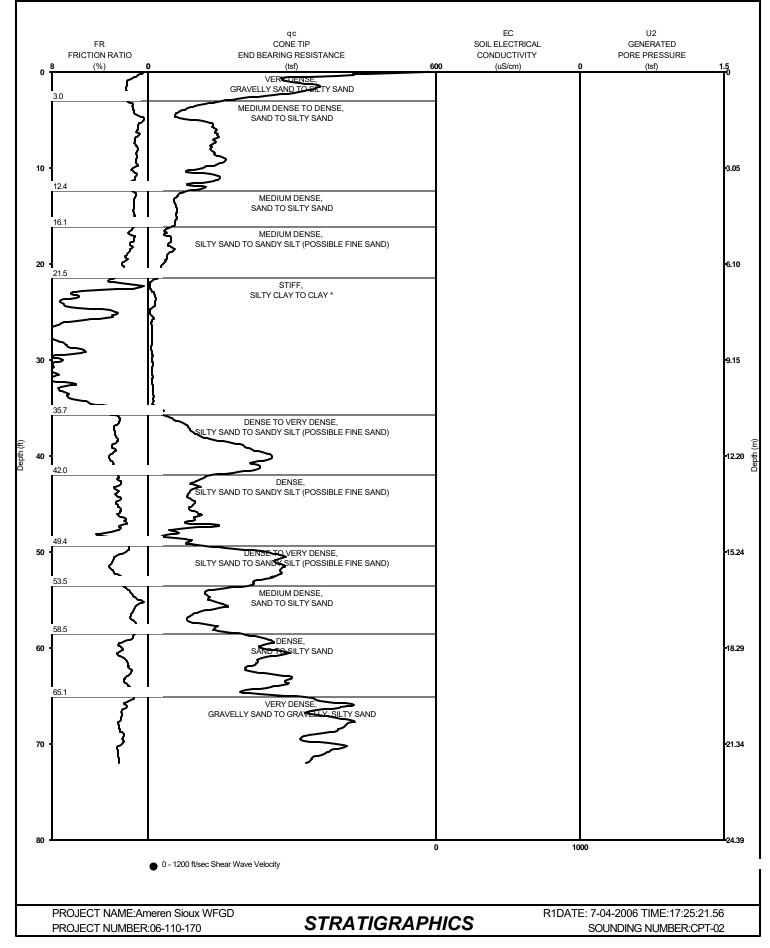
Material Boundary

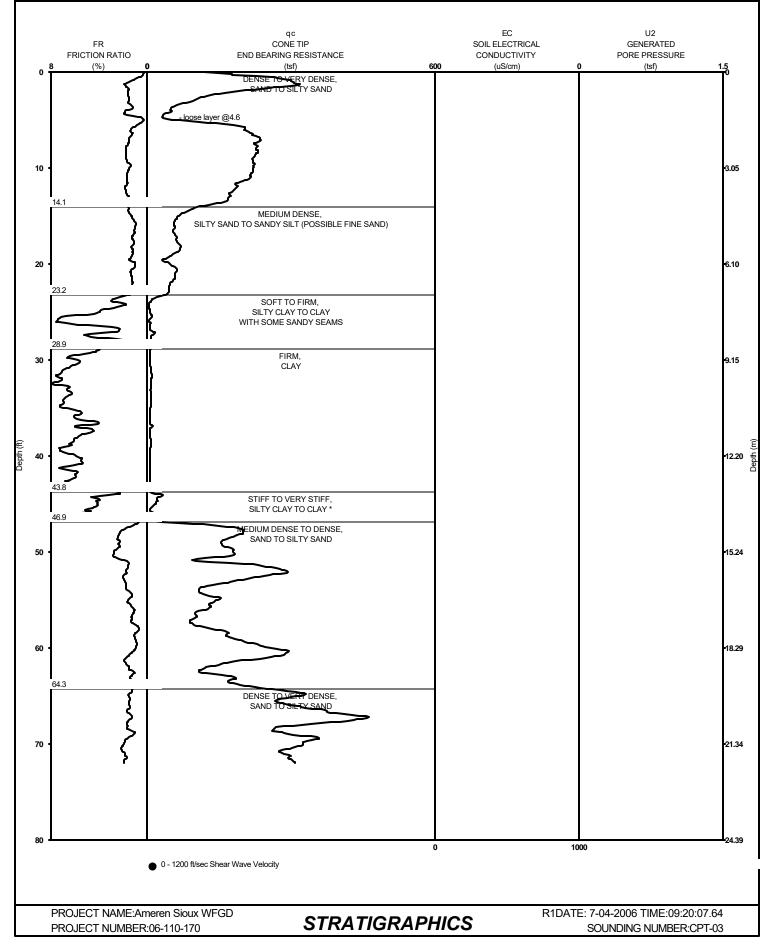
Х	Υ
0	418
470	418
1370	418

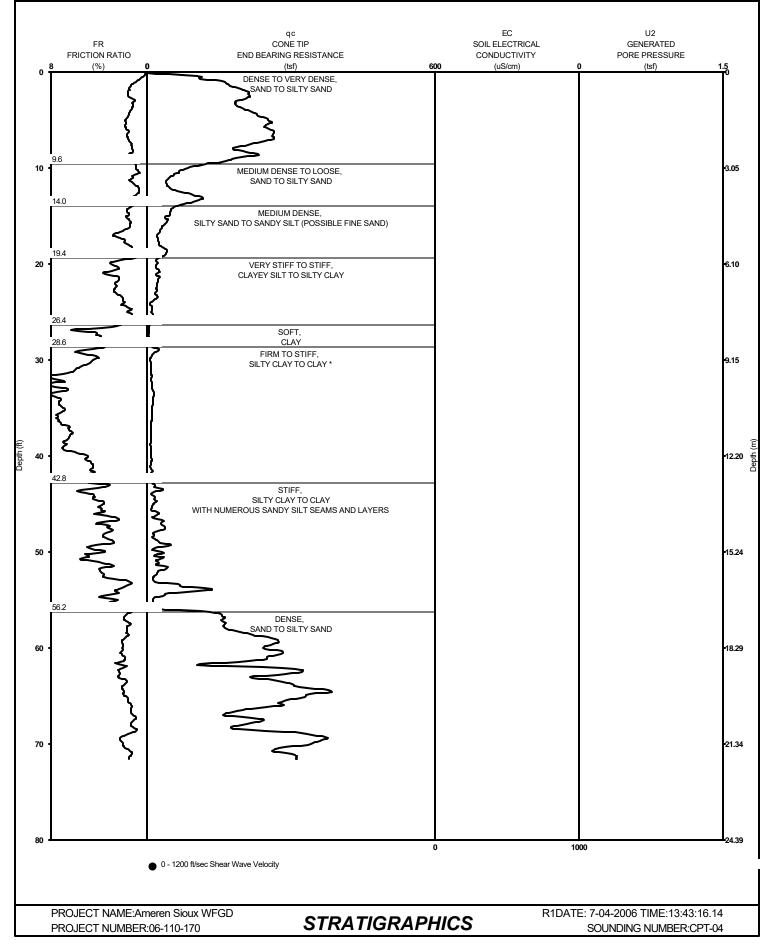
Х	Y
0	409
1370	409

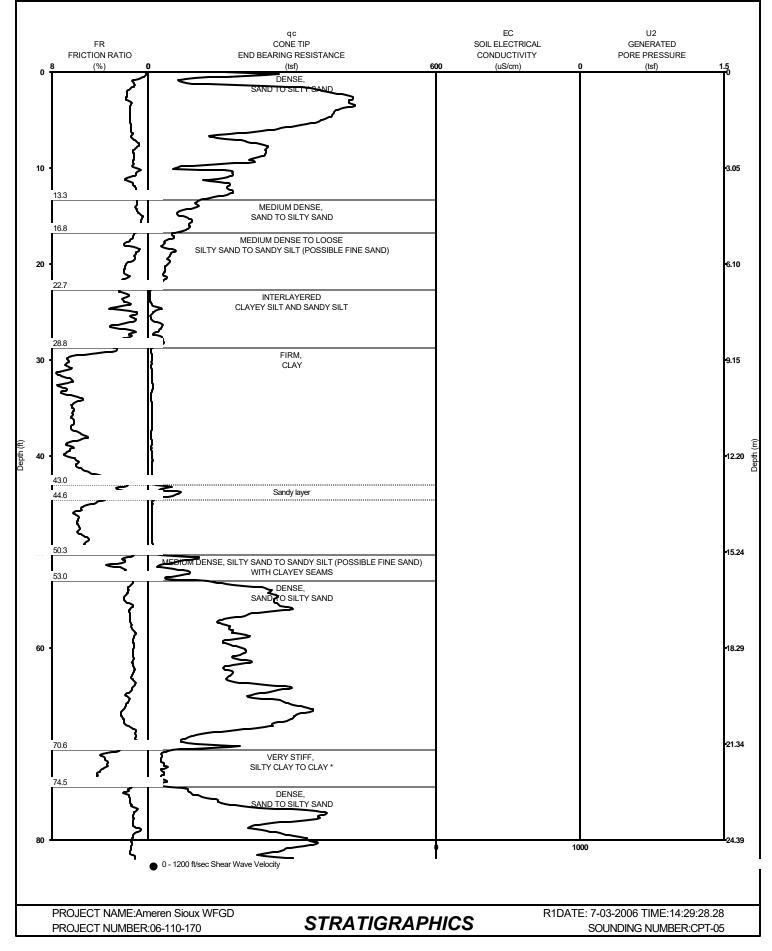
PREJECT AMERICAN PROJECT AMERICAN SIGUL COUNT REPERSION
SUBJECT SUBJECT STABILLITY OF FINAL COVER
DATE 1/8/2020 BY J. FOUSE Proj. NUMBER 20M0/2439 SHEET 1 OF
STABILLITY OF FINAL COVER
SILTY CLAY SEMI-COMPACTED
Y = 120reF, c = 200 rsP

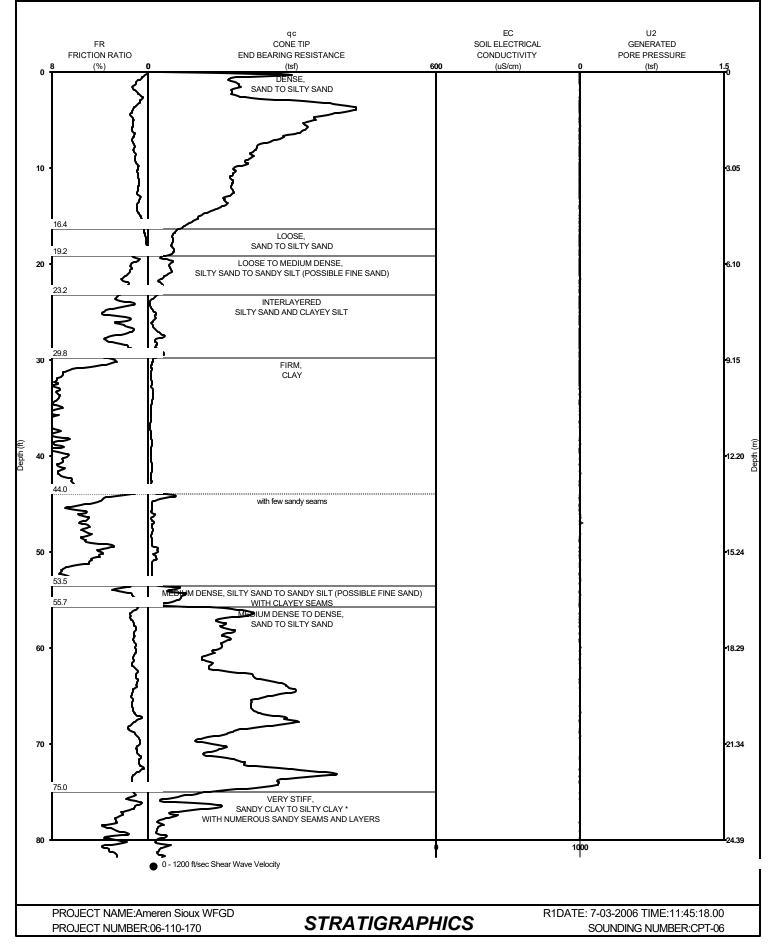

$$0 = 20.5^{\circ}$$
 MIN.
 $1 = 120reF, c = 200 rsP$
 $0 = 20.5^{\circ}$ MIN.
 $1 = 120reF, c = 200 rsP$
 $0 = 20.5^{\circ}$ MIN.
 $1 = 120reF, c = 200 rsP$
 $0 = 20.5^{\circ}$ MIN.
 $1 = 120reF, c = 1200 rsP$
ASSUME NO SEEPAGE THEOUGH HDPE MEMPERANCE.
FOR "INFINITE SLOPE", $F = \frac{C}{32} \cdot \frac{1}{51N(\beta \cos \beta} + \frac{TAN\beta}{TANJ\beta}$
 $F = \frac{200 rsP}{(120 reF (27))} \cdot \frac{1}{5IN(4^{\circ}) \cos (4^{\circ})} + \frac{TAN(20.5^{\circ})}{TAN(4^{\circ})} = 5.0$
FOR $C = 0$, $F = \frac{TAN(20.5^{\circ})}{TAN(4^{\circ})} = 1.5$
So, MINJIMUM ϕ FOR SOIL COVER IS 20.5°

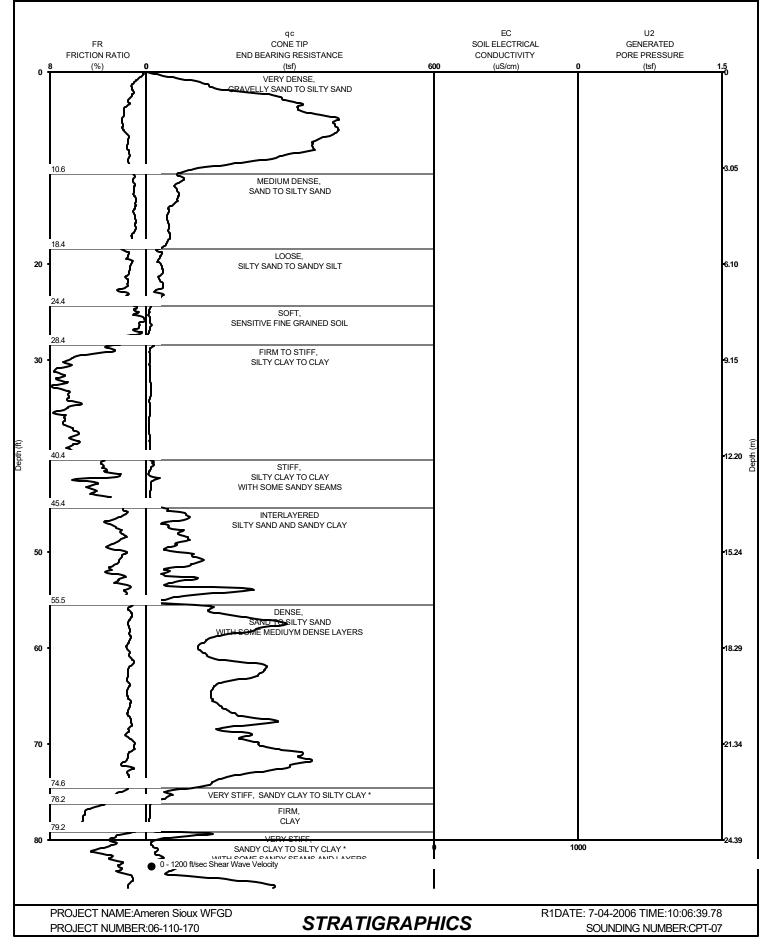

C

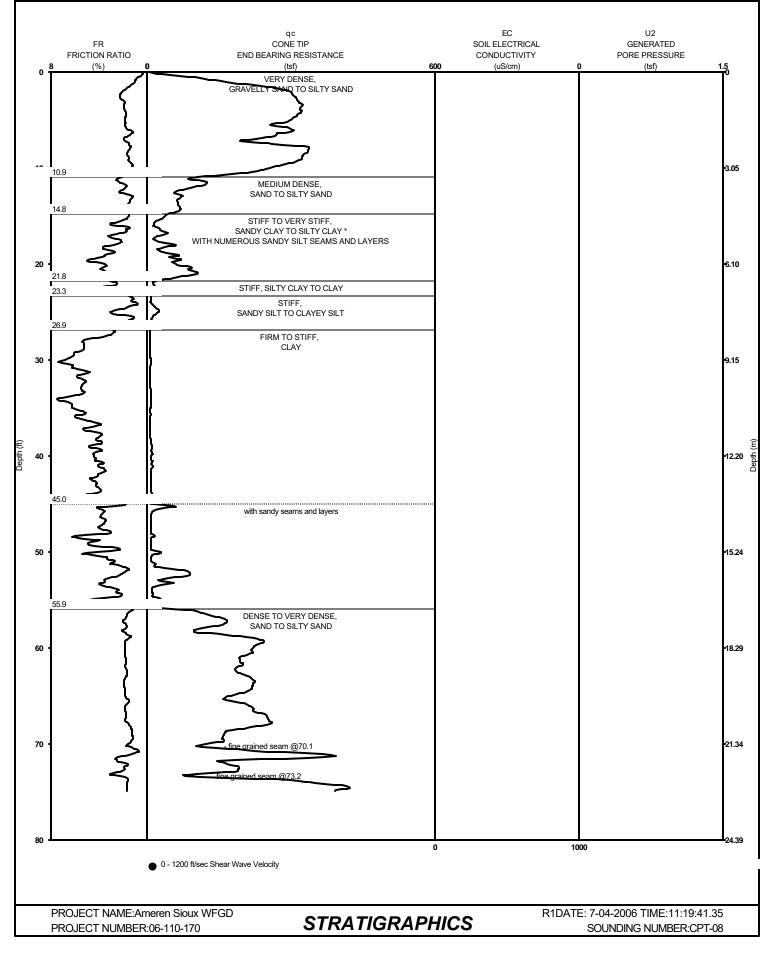

Appendix 9

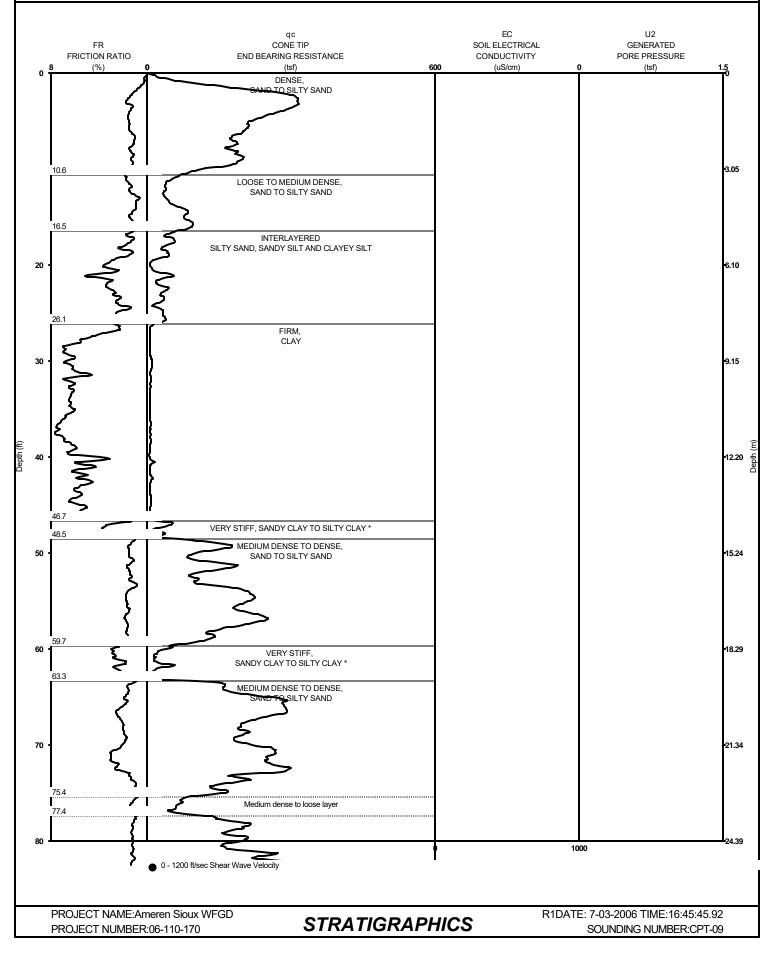

RESULTS OF CONE PENETROMETER TESTS (CPT) AT SIOUX ENERGY CENTER

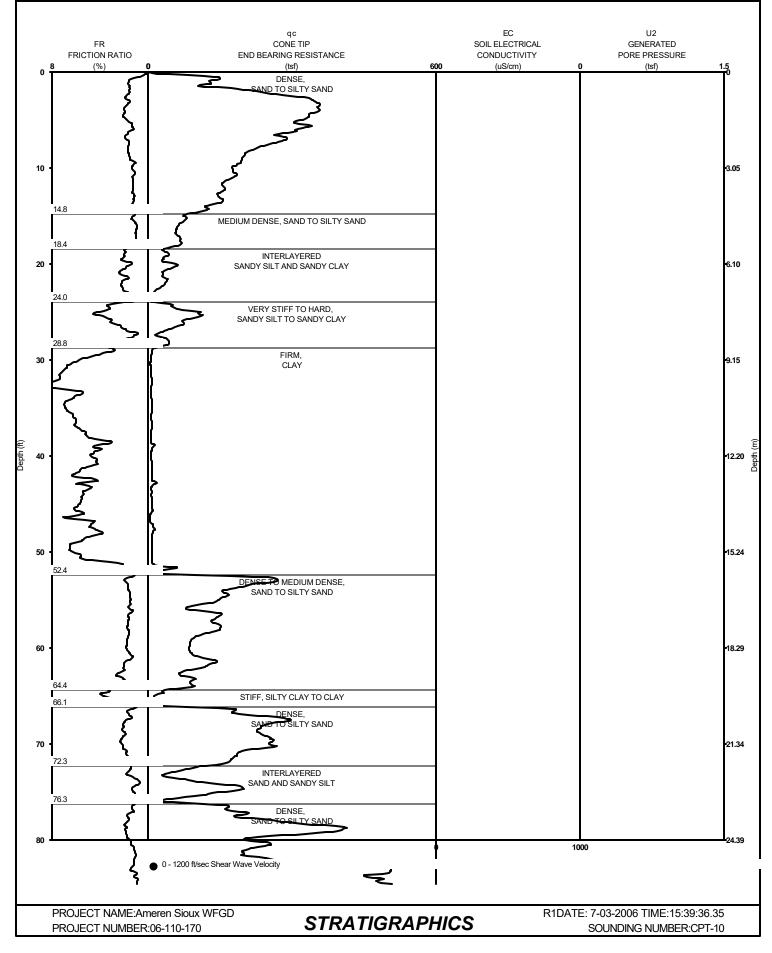

REITZ & JENS, INC.

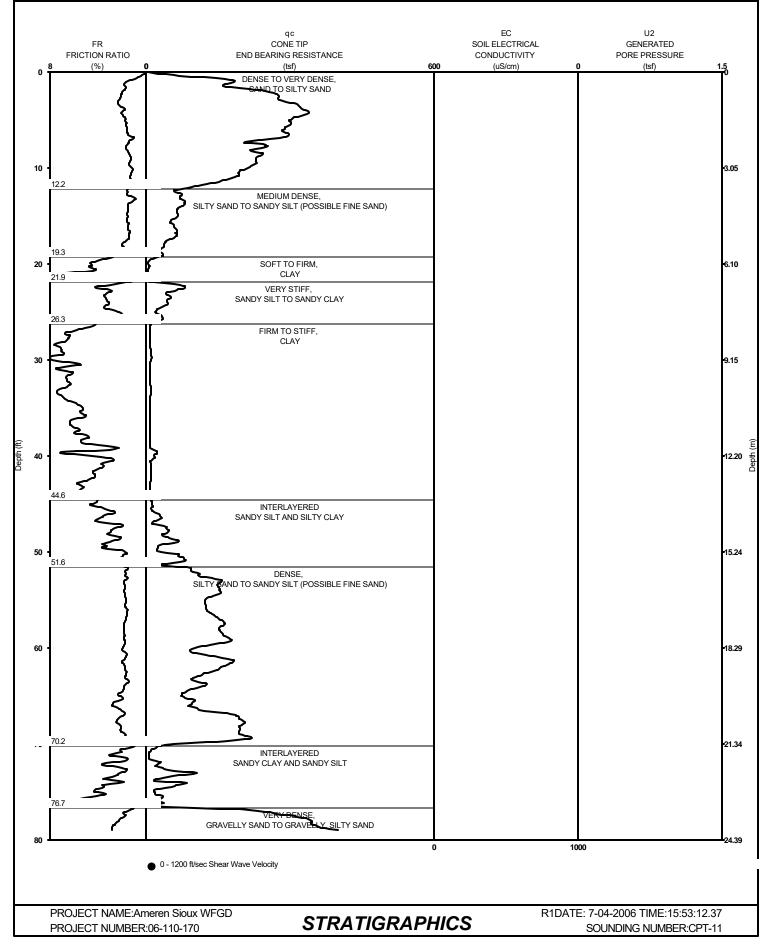






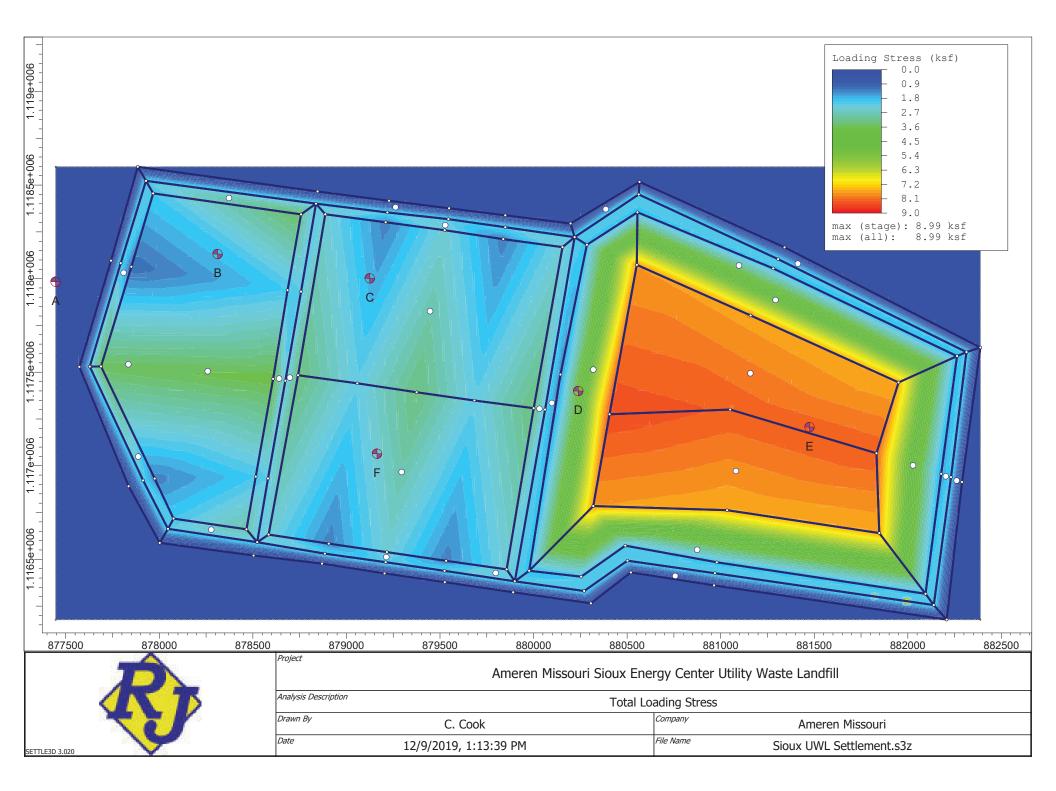


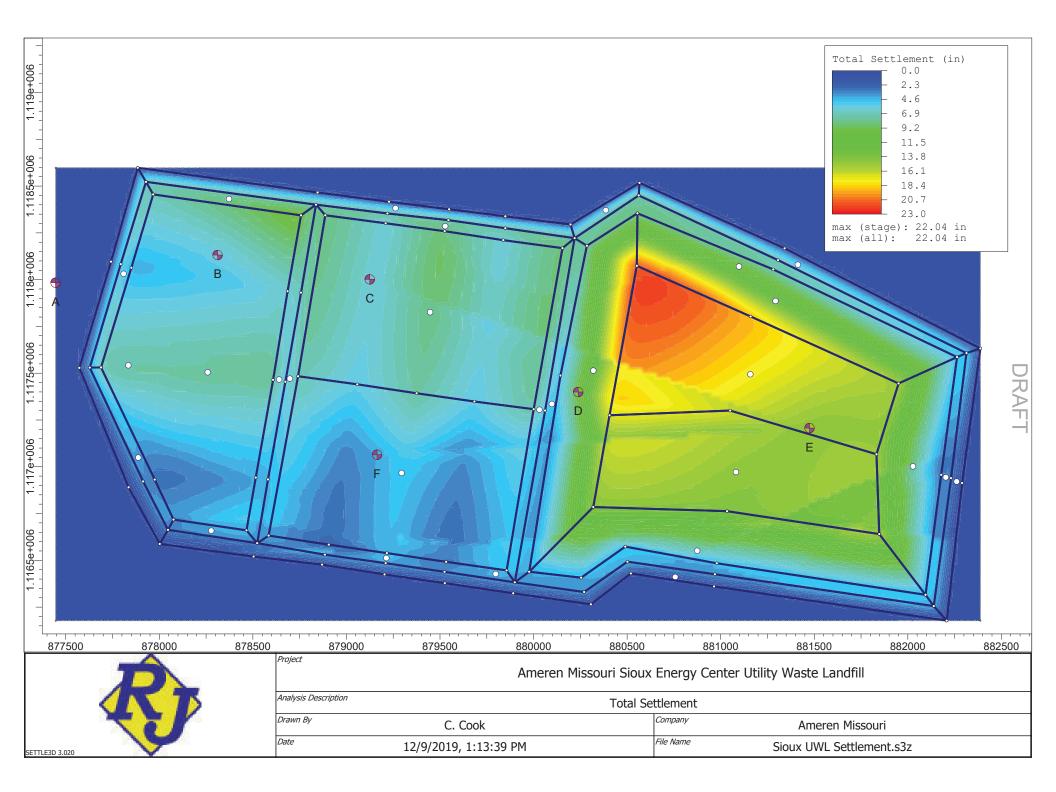




Appendix 10

RESULTS OF SETTLEMENT ANALYSES

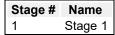

REITZ & JENS, INC.


Ameren Missouri Sioux Energy Center UWL SUMMARY OF SOIL PROPERTIES FOR SETTLEMENT ANALYSES

2 Cc=0.36	6	C=0.36		Profile F
3 c=0.11 4 5	c=0.36	E=422	E=425	E=441
6 Es=407 7 C=0.34 9 O				
10 11 12 13 C=0.1	E=411			E=549
14 15 16 17	E=410	E=487	E=552	
18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5			
22 23 24 25				E=722
26 E=506 27 28 29 E=506	E=611	E=604	E=721	
30 31 E=570 E=570 32 33				
34 35 E=627 36 37 E=626	E=483	E=479	E=721	E=721
38 39 40 41	E=595		E=599	E=600
42 43 44 45		E=590		
46 47 48 E=650 49	E=650			
50 E=650 51 52 53		E=650	E=650	E=650
54 55 56 57 57 54 54 55 55 55 57 55 55 55 55 55 55 55 55 55	_			
58 E=1100 E=110 59 60 61	0 E=1100	E=1100	E=1100	E=1100
62 63 64 65				
66 67 68 E=815 E=815 69	5 E=815			E=815
70 71 72 73		E=815	E=815	
74 75 76 77	E=1100			
78 79 E=1100 E=110 80 81		E=1100	E=1100	E=1100
82 83 84 85				
86 87 88 89	E=950		E=950	E=950
90 E=950 91 92 93		E=950		
94 95 96 97				
98 99 100 101				
102 103 104 105				
106 107 108				

	g (pcf)	g ' (pcf)	eo	ES (ksf)	CC	CR	Pc (psf)
CH	113	50.6	1.125	0	0.36	0.07	5100
CL-ML	111	48.6	1.182	0	0.11	0.01	4260
ML	111	48.6		400	0	0	0
SP-SM	110	47.6		500	0	0	0
SP1	110	47.6		600	0	0	0
SP2	110	47.6		650	0	0	0
SP3	110	47.6		721	0	0	0
SP4	110	47.6		815	0	0	0
SP5	110	47.6		950	0	0	0
SP6	110	47.6		1100	0	0	0
	х	У					
Profile A	877446	1117983					
Profile B	878312	1118131					
Profile C	879125	1118001					
Profile D	880239	1117399					
Profile E	881475	1117206					
Profile F	879164	1117064					

REITZ & JENS, INC.


Settle3D Analysis Information Sioux UWL

Project Settings

Document Name Project Title Analysis Author Company Date Created Stress Computation Method Use average properties to calculate layered stresses Improve consolidation accuracy Ignore negative effective stresses in settlement calculations

Sioux UWL Settlement.s3z Sioux UWL Total Settlement C. Cook Ameren Services 12/9/2019, 1:13:39 PM Boussinesq

Stage Settings

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [in]	0	22.0367
Consolidation Settlement [in]	0	6.9319
Immediate Settlement [in]	0	16.5623
Loading Stress [ksf]	0	8.98723
Effective Stress [ksf]	0	14.1519
Total Stress [ksf]	0	21.4426
Total Strain	0	0.241847
Pore Water Pressure [ksf]	0	7.3008
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00562808	14.1408
Over-consolidation Ratio	1	9.87743e+006
Void Ratio	0	1.182
Hydroconsolidation Settlement [in]	0	0
Undrained Shear Strength	0	1.45341

Loads

Load Type	Flexible
Area of Load	1.30936e+006 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878515	1.11694e+006	1.98
878608	1.11746e+006	3.74
878686	1.11794e+006	1.98
878757	1.11834e+006	3.52
877967	1.11846e+006	1.98
877851	1.11806e+006	1.1
877688	1.11753e+006	3.52
877975	1.11693e+006	1.32
878076	1.11672e+006	1.98
878466	1.11666e+006	2.86

2. Polygonal Load

Load Type	Flexible
Area of Load	1.11592e+006 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878742	1.11748e+006	3.3
879058	1.11744e+006	2.2
879375	1.11739e+006	3.3
879684	1.11735e+006	2.2
880000	1.11731e+006	3.3
880155	1.11817e+006	2.42
879838	1.11821e+006	1.32
879525	1.11826e+006	2.42
879209	1.1183e+006	1.32
878887	1.11834e+006	2.42

3. Polygonal Load

Load Type	Flexible
Area of Load	1.11097e+006 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
879684	1.11735e+006	2.2
879375	1.11739e+006	3.3
879058	1.11744e+006	2.2
878742	1.11748e+006	3.3
878584	1.11663e+006	2.42
878905	1.11658e+006	1.32
879216	1.11654e+006	2.42
879533	1.11649e+006	1.32
879856	1.11645e+006	2.42
880000	1.11731e+006	3.3

4. Polygonal Load

Load Type	Flexible
Area of Load	734334 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880319	1.11678e+006	7.74
881034	1.11676e+006	7.568
881848	1.11664e+006	7.568
881833	1.11707e+006	8.256
881051	1.1173e+006	8.256
880406	1.11728e+006	8.428

5. Polygonal Load

Load Type	Flexible
Area of Load	803038 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
881950	1.11745e+006	7.568
881160	1.1178e+006	7.654
880552	1.11807e+006	7.74
880406	1.11728e+006	8.428
881051	1.1173e+006	8.256
881833	1.11707e+006	8.256

6. Polygonal Load

Load Type	Flexible
Area of Load	458740 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
882263	1.11759e+006	1.72
881281	1.11805e+006	1.892
880555	1.11835e+006	1.892
880552	1.11807e+006	7.74
881160	1.1178e+006	7.654
881950	1.11745e+006	7.568

Load TypeFlexibleArea of Load329946 ft²Depth0 ftInstallation StageStage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
882095	1.11632e+006	1.892
882178	1.11696e+006	1.548
882263	1.11759e+006	1.72
881950	1.11745e+006	7.568
881833	1.11707e+006	8.256
881848	1.11664e+006	7.568

8. Polygonal Load

Load Type	Flexible
Area of Load	513704 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
881848	1.11664e+006	7.568
881034	1.11676e+006	7.568
880319	1.11678e+006	7.74
879977	1.11644e+006	1.806
880255	1.11641e+006	1.978
880490	1.11657e+006	1.987
880979	1.11648e+006	1.892
882095	1.11632e+006	1.892

9. Polygonal Load

Load Type	Flexible
Area of Load	481941 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880319	1.11678e+006	7.74
880406	1.11728e+006	8.428
880552	1.11807e+006	7.74
880555	1.11835e+006	1.892
880285	1.11818e+006	1.892
880144	1.11749e+006	1.376
879977	1.11644e+006	1.806

Load TypeFlexibleArea of Load25905.6 ft²Depth0 ftInstallation StageStage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878076	1.11672e+006	1.98
878046	1.11666e+006	2.16
878523	1.11659e+006	2.16
878466	1.11666e+006	2.86

11. Polygonal Load

Load Type	Flexible
Area of Load	120910 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878581	1.11693e+006	2.16
878674	1.11745e+006	2.16
878757	1.11793e+006	2.16
878837	1.1184e+006	2.16
878757	1.11834e+006	3
878686	1.11794e+006	1.98
878608	1.11746e+006	3.74
878515	1.11694e+006	1.98
878466	1.11666e+006	2.86
878523	1.11659e+006	2.16

12. Polygonal Load

Load Type	Flexible
Area of Load	105431 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878523	1.11659e+006	2.16
878584	1.11663e+006	2.43
878742	1.11748e+006	3.3
878887	1.11834e+006	2.42
878837	1.1184e+006	2.16
878757	1.11793e+006	2.16
878674	1.11745e+006	2.16
878581	1.11693e+006	2.16

Load TypeFlexibleArea of Load78466.8 ft²Depth0 ftInstallation StageStage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878837	1.1184e+006	2.16
878887	1.11834e+006	2.42
879209	1.1183e+006	1.32
879525	1.11826e+006	2.42
879838	1.11821e+006	1.32
880155	1.11817e+006	2.42
880220	1.11822e+006	2.16
879849	1.11827e+006	2.16
879545	1.11832e+006	2.16
879219	1.11835e+006	2.16

14. Polygonal Load

Load Type	Flexible
Area of Load	104549 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880220	1.11822e+006	2.16
880155	1.11817e+006	2.42
880000	1.11731e+006	3.3
879856	1.11645e+006	2.42
879900	1.11638e+006	2.16
880062	1.1173e+006	2.16

15. Polygonal Load

Load Type	Flexible
Area of Load	72824.6 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878885	1.11653e+006	2.16
879210	1.11648e+006	2.16
879524	1.11644e+006	2.16
879900	1.11638e+006	2.16
879856	1.11645e+006	2.42
879533	1.11649e+006	1.32
879216	1.11654e+006	2.42
878905	1.11658e+006	1.32
878584	1.11663e+006	2.42
878523	1.11659e+006	2.16

16. Polygonal Load

Load Type	Flexible
Area of Load	55332.9 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878837	1.1184e+006	2.16
877929	1.11852e+006	2.16
877967	1.11846e+006	1.98
878757	1.11834e+006	3.52

17. Polygonal Load

Load Type	Flexible
Area of Load	58655.3 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
877929	1.11852e+006	2.16
877794	1.11808e+006	2.16
877628	1.11753e+006	2.16
877688	1.11753e+006	3.52
877851	1.11806e+006	1.1
877967	1.11846e+006	1.98

18. Polygonal Load

Load Type	Flexible
Area of Load	52912 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
877628	1.11753e+006	2.16
877913	1.11692e+006	2.16
878046	1.11666e+006	2.16
878076	1.11672e+006	1.98
877975	1.11693e+006	1.32
877688	1.11753e+006	3.52

Load Type	Flexible	
Area of Load	107034 ft ²	
Depth	0 ft	
Installation Stage	Stage 1	

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
879977	1.11644e+006	1.86
880144	1.11749e+006	1.376
880285	1.11818e+006	1.892
880220	1.11822e+006	2.16
880062	1.1173e+006	2.16
879900	1.11638e+006	2.16

20. Polygonal Load

Load Type	Flexible
Area of Load	141551 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
879900	1.11638e+006	2.16
880270	1.11633e+006	2.16
880502	1.11649e+006	2.16
880969	1.11643e+006	2.16
882139	1.11626e+006	2.16
882095	1.11632e+006	1.892
880979	1.11648e+006	1.892
880490	1.11657e+006	1.987
880255	1.11641e+006	1.978
879977	1.11644e+006	1.806

21. Polygonal Load

Load Type	Flexible
Area of Load	68800.3 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
882231	1.11694e+006	2.16
882314	1.11761e+006	2.16
882263	1.11759e+006	1.72
882178	1.11696e+006	1.548
882095	1.11632e+006	1.892
882139	1.11626e+006	2.16

Load Type	Flexible
Area of Load	138996 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
881307	1.1181e+006	2.16
880562	1.11845e+006	2.16
880220	1.11822e+006	2.16
880285	1.11818e+006	1.892
880555	1.11835e+006	1.892
881281	1.11805e+006	1.892
882263	1.11759e+006	1.72
882314	1.11761e+006	2.16

23. Polygonal Load

Load Type	Flexible
Area of Load	150341 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880220	1.11822e+006	2.16
880198	1.11829e+006	0
879849	1.11834e+006	0
879549	1.11838e+006	0
879228	1.11842e+006	0
878846	1.11847e+006	0
877885	1.1186e+006	0
877929	1.11852e+006	2.16
878837	1.1184e+006	2.16
879219	1.11835e+006	2.16
879545	1.11832e+006	2.16
879849	1.11827e+006	2.16

24. Polygonal Load

Load Type	Flexible
Area of Load	130672 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
877885	1.1186e+006	0
877742	1.1181e+006	0
877573	1.11753e+006	0
877836	1.11689e+006	0
878002	1.11659e+006	0
878046	1.11666e+006	2.16
877913	1.11692e+006	2.16
877628	1.11753e+006	2.16
877794	1.11808e+006	2.16
877929	1.11852e+006	2.16

25. Polygonal Load

Load Type	Flexible
Area of Load	273720 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
878002	1.11659e+006	0
878504	1.11652e+006	0
878870	1.11648e+006	0
879203	1.11642e+006	0
879526	1.11638e+006	0
879891	1.11632e+006	0
880306	1.11626e+006	0
880520	1.11643e+006	0
880964	1.11636e+006	0
882208	1.11618e+006	0
882139	1.11626e+006	2.16
880969	1.11643e+006	2.16
880502	1.11649e+006	2.16
880270	1.11633e+006	2.16
879900	1.11638e+006	2.16
879524	1.11644e+006	2.16
879210	1.11648e+006	2.16
878885	1.11653e+006	2.16
878523	1.11659e+006	2.16
878046	1.11666e+006	2.16

26. Polygonal Load

Load Type	Flexible
Area of Load	96270.2 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
882290	1.11691e+006	0
882388	1.11763e+006	0
882314	1.11761e+006	2.16
882231	1.11694e+006	2.16
882139	1.11626e+006	2.16
882208	1.11618e+006	0

27. Polygonal Load

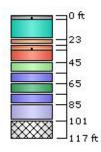
Load Type	Flexible
Area of Load	26866.1 ft ²
Depth	0 ft
Installation Stage	Stage 1

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880198	1.11829e+006	0
880220	1.11822e+006	2.16
880562	1.11845e+006	2.16
880566	1.11852e+006	0

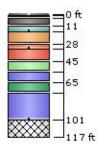
28. Polygonal Load

Load Type	Flexible
Area of Load	129286 ft ²
Depth	0 ft
Installation Stage	Stage 1

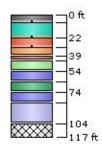

Coordinates and Load

X [ft]	Y [ft]	Load Magnitude [ksf]
880566	1.11852e+006	0
880562	1.11845e+006	2.16
881307	1.1181e+006	2.16
882314	1.11761e+006	2.16
882388	1.11763e+006	0
881341	1.11817e+006	0

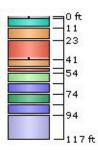
Soil Layers


A: (877446, 1.11798e+006)

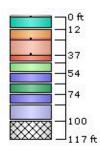
Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	4	0
2	CL-ML	0	4
3	CH	0	4
4	CL-ML	0	4
5	ML	19	4
6	SP-SM	5	23
7	SP1	5	28
8	SP3	0	33
9	SP-SM	0	33
10	SP1	12	33
11	SP2	10	45
12	SP6	10	55
13	SP4	10	65
14	SP6	10	75
15	SP5	16	85


B: (878312, 1.11813e+006)

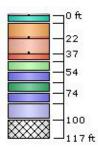
Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	1	0
2	CL-ML	3	1
3	CH	7	4
4	CL-ML	5	11
5	ML	0	16
6	SP-SM	12	16
7	SP1	5	28
8	SP3	0	33
9	SP-SM	0	33
10	SP1	12	33
11	SP2	10	45
12	SP6	10	55
13	SP4	10	65
14	SP6	26	75
15	SP5	0	101


C: (879125, 1.118e+006)

Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	7	0
2	CL-ML	0	7
3	CH	0	7
4	CL-ML	0	7
5	ML	15	7
6	SP-SM	0	22
7	SP1	9	22
8	SP3	0	31
9	SP-SM	8	31
10	SP1	5	39
11	SP2	10	44
12	SP6	10	54
13	SP4	10	64
14	SP6	10	74
15	SP5	20	84


D: (880239, 1.1174e+006)

Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	2	0
2	CL-ML	0	2
3	CH	0	2
4	CL-ML	0	2
5	ML	9	2
6	SP-SM	12	11
7	SP1	18	23
8	SP3	0	41
9	SP-SM	8	41
10	SP1	5	49
11	SP2	10	54
12	SP6	10	64
13	SP4	10	74
14	SP6	10	84
15	SP5	23	94


E: (881475, 1.11721e+006)

Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	0	0
2	CL-ML	0	0
3	CH	0	0
4	CL-ML	0	0
5	ML	12	0
6	SP-SM	10	12
7	SP1	0	22
8	SP3	15	22
9	SP-SM	0	37
10	SP1	7	37
11	SP2	10	44
12	SP6	10	54
13	SP4	10	64
14	SP6	10	74
15	SP5	16	84

F: (879164, 1.11706e+006)

Layer #	Туре	Thickness [ft]	Depth [ft]
1	CH	0	0
2	CL-ML	0	0
3	CH	0	0
4	CL-ML	0	0
5	ML	7	0
6	SP-SM	15	7
7	SP1	0	22
8	SP3	15	22
9	SP-SM	0	37
10	SP1	7	37
11	SP2	10	44
12	SP6	10	54
13	SP4	10	64
14	SP6	10	74
15	SP5	16	84

Soil Properties

Property	СН	CL-ML	ML	SP-SM	SP1	SP2	SP3	SP4	SP5	SP6
Color										
Unit Weight [kips/ft ³]	0.113	0.111	0.111	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Saturated Unit Weight [kips/ft ³]	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115
Immediate Settlement	Disabled	Disabled	Enabled							
Es [ksf]			400	500	600	650	721	815	950	1100
Esur [ksf]			400	500	600	650	721	815	950	1100
Primary Consolidation	Enabled	Enabled	Disabled							
Material Type	Non- Linear	Non- Linear								
Cc	0.36	0.11								
Cr	0.07	0.01								
e0	1.125	1.182								
Pc [ksf]	5.1	4.26								
OCR			1	1	1	1	1	1	1	1
Undrained Su A [kips/ft2]	0	0	0	0	0	0	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1	1	1	1	1	1	1

Groundwater

Groundwater method Piezometric Lines Water Unit Weight 0.0624 kips/ft³

Piezometric Line Entities

 ID
 Depth (ft)

 1
 0 ft

Field Point Grid

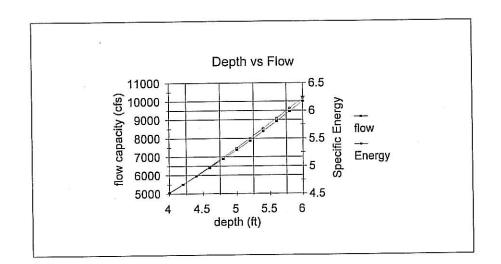
Number of points 19998 Expansion Factor 1

Grid Coordinates

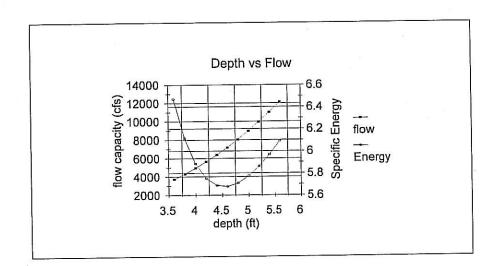
X [ft]	Y [ft]
884311	1.12052e+006
884311	1.11426e+006
875523	1.11426e+006
875523	1.12052e+006

<u>Appendix 11</u>

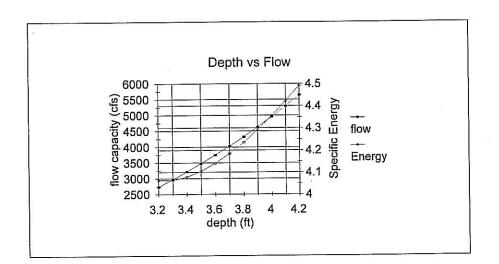
DESIGN OF RIPRAP FOR PERIMETER BERM

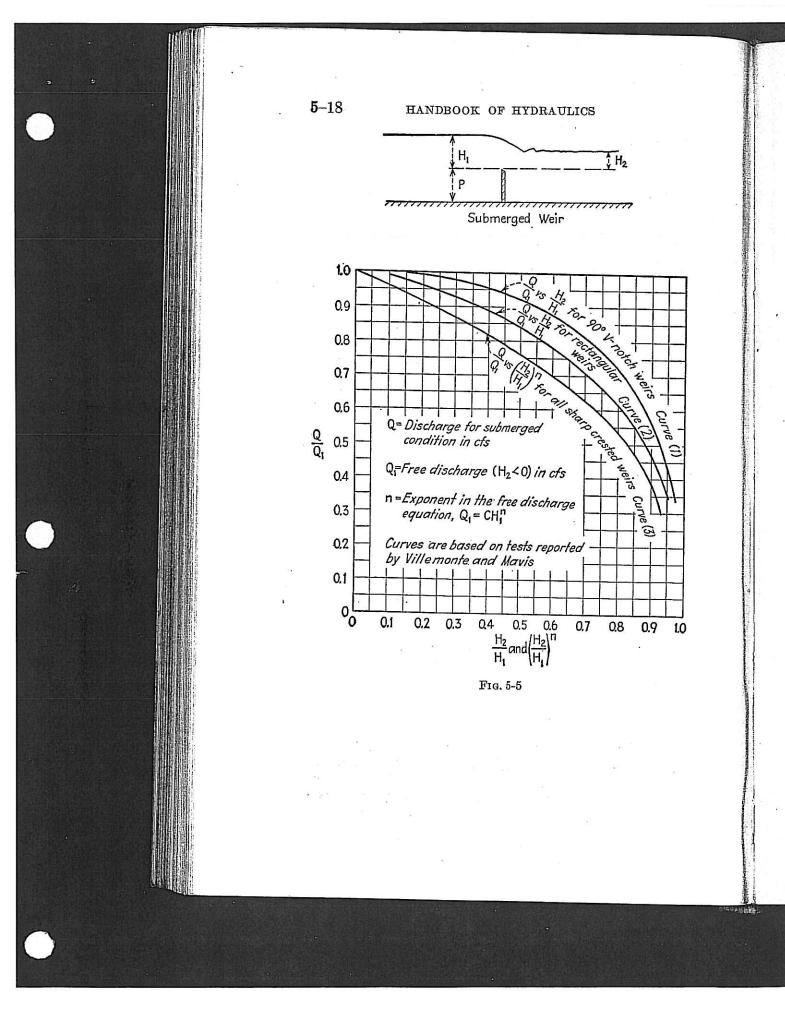

REITZ & JENS, INC.

12/26/06 RAPID PONDING to elev 430.1 MAX A h20 = 435 (RR 0.T.) Sh= 4.9' MAX Flow = C.LH^{3/2} = 2.6 × 160 × 4.9^{3/2} = 4512 gp Section 5 = ,0014 A-A 440 - 0 from South Opening J percolahert. 430 - 30 431 - 135 W-405' D= 3.7' + for all flow Than south opening. 430 - 250 430 - 435----V = 2.8 fpro. 433 - 448 435 - 470 Brunch WAVE - (Improved Velocity.) MAX DIFF = 4.9' (from alm) song 3' @ face of embandment. Not LIKELY for 1/2 = 3' V = J3x6+ = 13.8 fpx impact. initial flow part. 4305 = 4Z = 67.5270'4294304304304304304304304304304315 = 31502 = 501502 = 501502 = 50150lepel = 3.87' + V = 5,2 fper insaat. check needed us a submerged weir. (see pg 2)


12/27/06 SIOUX UWL Breache Blow hole 2 For a Broad custed weri max flow value accus @ entreal depet. Q = 3.087 LH3/ (KING & Brater 5-24) = $3.087 \times 160 \times 4.9^{3/2} = 3357 cfo.$ AS A SUDMERGED WEIR. 435 Mar. 435 MAX. 91 4.9 A.9 A.1'± $H_1 = 9.0$ $H_2 = 4.1$ Q1= 2.8×160×93/2= 12096 for. $\int tem \ O \ Fig \ 5-5 \\ \left(\frac{H_{2}}{1}\right)^{n} = \left(\frac{4.1}{9.0}\right)^{3/2} = 0.307 \quad \vdots \quad \overrightarrow{Q_{1}} = 0.86$ Q= 0.86× 12096= 10 402 cfr for Q=10 to2 d=H2 = 5.3'= (from imposed flow specolded) if H1 = 9 and H2 = 5.3 $\begin{pmatrix} H_{1} \\ H_{1} \end{pmatrix}^{n} = \begin{pmatrix} \frac{5}{3} \\ \frac{3}{9} \end{pmatrix}^{1.5} = 0.45 \quad \frac{Q}{Q_{1}} = 0.79 \quad Q = .79 \times 1209 L = 955 \text{J}.$ l = 5.1' me d = 5,2' Q = 9961 v= 6,53 fps. Soud Exit Channel. d = 6.0' elev = 436 to hi. Q is slightly lower. une V max e sile channel = 3.8 fps.

SIUGE UWL 12/27 Blowhold Breach. 3 CONCLUSIONS. 8 1) Ignove NARROW Openin @ Mend 2) Max Breach Flow for 160' Wide Breach (a repeat of 1993) is ~ 9800 cfs. Impact Velocity on lever face 2 6.5 fps. A Parallel Flour @ South Construction. Q= 9800 fs. V= 3.9 for vary 4 for. B me Min 15" Thick 9" to 4" on 2" Minus bedding UWL


Channel C oject	omputation Sioux UWI all flow to	Breach flo	computed o	on by	12/27/06 DSE					
Channel S roughness bottom wid	factor	0.0014 0.045 405		Right Side Left Sides		2 3				
Design Flo	ow (cfs)	9555.00		Required	A*R^(2/3)	7733.2202				
Depth 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00	Top Width 425.00 426.00 427.00 428.00 429.00 430.00 431.00 432.00 433.00 433.00 435.00	Area 1660.000 1745.100 1830.400 1915.900 2001.600 2087.500 2173.600 2259.900 2346.400 2433.100 2520.000	Wetted Perimeter 426.5934 427.6731 428.7527 429.8324 430.9121 431.9917 433.0714 434.1511 435.2307 436.3104 437.3901	Hydraulic Radius 3.89129 4.08045 4.26913 4.45732 4.64503 4.83227 5.01903 5.20533 5.39116 5.57653 5.76145	A*R^(2/3) 4106.80489 4456.14459 4816.94942 5189.05933 5572.32436 5966.60361 6371.76439 6787.68150 7214.23655 7651.31740 8098.81763	ž	Velocity (fps) 5.76 5.48 5.22 4.99 4.77 4.58 4.40 4.23 4.07 3.93 3.79	Velocity Head 0.51 0.47 0.42 0.39 0.35 0.33 0.30 0.28 0.26 0.24 0.22	Capacity Manning Flow (cfs) 5074.28 5505.92 5951.72 6411.49 6885.04 7372.21 7872.81 8386.71 8913.75 9453.80 10006.72	Specific Energy (D+Vel Hd 4.514469 4.665516 4.823139 4.986216 5.153851 5.325329 5.500066 5.677586 5.857497 6.039472 6.223241



Channel Computation	computed	d on by	12/27/06 DSE		~			
alaat waaree e	L Breach flows w channel)			
Channel Slope roughness factor bottom width	0.01 0.045 1	Right Side Left Sidesl	States - Contract	50 67.5				
Design Flow (cfs)	10402.00	Required	A*R^(2/3)	3150.0000				
Top Depth Width	Wetted Area Perimete	Hydraulic r Radius	A*R^(2/3)		Velocity (fps)	Velocity Head	Capacity Manning Flow (cfs)	Specific Energy (D+Vel Hd
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	765.000424.062852.150447.566944.000471.0691040.550494.5731141.800518.0761247.750541.5801358.400565.0831473.750588.5871593.800612.0901718.550635.5941848.000659.097	1 1.90396 6 2.00395 1 2.10394 6 2.20392 1 2.30391 5 2.40389 0 2.50388 5 2.60386 0 2.70385	1133.65881 1309.04707 1500.47901 1708.51157 1933.69254 2176.56103 2437.64811 2717.47717 3016.56443 3335.41925 3674.54452		13.60 12.21 11.02 10.00 9.11 8.34 7.66 7.06 6.53 6.05 5.63	2.87 2.31 1.89 1.55 1.29 1.08 0.91 0.77 0.66 0.57 0.49	3743.59 4322.76 4954.92 5641.88 6385.48 7187.49 8049.66 8973.71 9961.37 11014.30 12134.16	6.470946 6.113746 5.885401 5.751751 5.688747 5.679177 5.710526 5.773571 5.861424 5.968884 6.091976

Channel		L Breach flo	computed ws	on by	12/26/06 DSE					
	impact flo	w channel								
Channel roughnes bottom w	s factor	0.01 0.045 1	×	Right Side Left Sides		50 67.5				
Design F	low (cfs)	4512.00		Required	A*R^(2/3)	1366.3526				
	Тор		Wetted	Hydraulic			Velocity	Velocity	Capacity Manning	Specific Energy
Depth	Width	Area	Perimeter	Radius	A*R^(2/3)		(fps)	Head	Flow (cfs)	(D+Vel Hd
3.20 3.30 3.40 3.50 3.60 3.70 3.80	377.00 388.75 400.50 412.25 424.00 435.75 447.50	604.800 643.088 682.550 723.188 765.000 807.988 852.150	377.0557 388.8074 400.5592 412.3109 424.0627 435.8144 447.5661	1.75399 1.80398 1.85397 1.90396	828.73554 899.41557 973.74743 1051.80434 1133.65881 1219.38267 1309.04707		7.46 7.02 6.61 6.24 5.90 5.58 5.29	0.86 0.76 0.68 0.60 0.54 0.48 0.44 0.39	2736.67 2970.07 3215.53 3473.29 3743.59 4026.67 4322.76 4632.10	4.064229 4.064385 4.078552 4.104436 4.140169 4.18422 4.235332 4.29246
3.90 4.00 4.10 4.20	459.25 471.00 482.75 494.50	897.488 944.000 991.687 1040.550	459.3179 471.0696 482.8214 494.5731	2.00395 2.05394	1402.72255 1500.47901 1602.38577 1708.51157		5.03 4.78 4.55 4.34	0.39 0.35 0.32 0.29	4832.10 4954.92 5291.43 5641.88	4.29246 4.354739 4.421442 4.491962

SIOUX2

12/27/06

WEST Consultants, Inc. 2111 Palomar Airport Rd. Suite 180 Carlsbad, CA 92009-1419 Riprap 2.0

PROGRAM OUTPUT

	Average yezoidal Yes N/A 6.50 N/A N/A 155.00 1.50 6.00 3.00 2.00
Output Results: AAAAAAAAAAAAAAA Computed Local Depth Average Velocity, ft/sec	6.50

computed Local Depth Average velocity, it/sec	0.30
Local Velocity / Avg. Channel Velocity	1.00
Correction for Layer Thickness	0.88
Side Slope Correction Factor	1.01
Correction for Secondary Currents	1.00

*** Using Gradation from COE ETL 1110-2-120 ***

e	Computed D30, ft Specific Weight, Layer Thickness, Selected Minimum Selected Minimum	pcf ft D30,	$\begin{array}{c} 0.30 \\ 155.00 \\ 1.125 \\ 0.37 \\ 0.53 \end{array}$	(Increased by 50%)	
			Stong Wai	aht lha	

Percent Lighter by Weight XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Minimum Ma	aximum
w100	14	34
w50	7	10
W15	2	5

Description: BREACH FAILURE Page 1

SIOUX2

Average Channel Velocity, ft/sec 6.50

•

Output Results: AAAAAAAAAAAAAAA Computed D50, ft 0.58

. .

*** Using Gradation from COE ETL 1110-2-120 ***

Computed D30, ft Specific Weight, pcf Layér Thickness, ft Selected Minimum D30, Selected Minimum D90,	ft ft	0.47 155.00 1.00 0.49 0.71
		Stone Weight, lbs

Percent Lighter by Weight	Minimum AAAAAAAAAA	Maximum
W100	32	81
w50	16	24
w15	5	12

Average Channel Velocity, ft/sec 6.50

Output Results: AAAAAAAAAAAAAAAA Computed D50, ft 0.96

*** Using Gradation from COE ETL 1110-2-120 ***

Computed D30, ft	0.79
Specific Weight, pcf	155.00
Layer Thickness, ft	1.75
Selected Minimum D30, ft	0.85
Selected Minimum D90, ft	1.23
Percent Lighter by Weight AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Stone Weight, lbs Minimum Maximum AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Average Channel Velocity, ft/sec 6.50 Unit Weight of Stone, lbs/cu ft 155.00 Turbulence Level Low SIOUX2

0.31

*** Using Gradation from COE ETL 1110-2-120 ***

0.25 155.00 0.75 0.37 Computed D30, ft Specific Weight, pcf Layer Thickness, ft Selected Minimum D30, ft Selected Minimum D90, ft 9" to 4" 0.53 15" Thick MIN Percent Lighter by Weight 14 7 2 34 10 5 W100 W50 W15

Ameren Missouri Sioux Energy Center Evaluation of CCR Units October 2024

APPENDIX B

HAZARD CLASSIFICATION

REITZ & JENS, INC.

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

APPENDIX B: PERIODIC HAZARD POTENTIAL CLASSIFICATION 257.74(a)(2)

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION1
1.1	Purpose1
2.0	SIOUX ENEREGY CENTER CCR UNITS
2.1	SCPD (Cell 2)
3.0	CONCLUSION
4.0	REFERENCES

LIST OF FIGURES

Figure 1S	ite Map
-----------	---------

LIST OF TABLES

Table 1	Active Surface Impoundments at the Sioux Energy Center
	Methodology Used in the FEMA Hazard Classification of Dams

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS ST. CHARLES COUNTY, MISSOURI

APPENDIX B: PERIODIC HAZARD POTENTIAL CLASSIFICATION §257.74(a)(2)

1.0 INTRODUCTION

The Sioux Energy Center (SEC) is located in northeast St. Charles County, Missouri along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River and approximately 3 miles east of Portage de Sioux, Missouri. The SEC is located within the floodplain of the Mississippi and Missouri Rivers and has one active CCR surface impoundments that is approximately 40-acres in size. The CCR surface impoundment, designated as Cell 2 (SCPD), is used for managing coal combustion residuals (CCR). SCPA, SCPB and SCPC no longer receive CCRs, have been dewatered, and are closed. SCPD is currently receiving CCRs. Decant water in SCPD discharges into the Recycle Pond where pumps recirculate the water back to the power plant. Cell 2 is permitted by the Missouri Department of Natural Resources Solid Waste Management Program (MDNR-SWMP) as a Solid Waste Disposal Area under Operating Permit Number 0918301. A map showing the location of the surface impoundment and the Recycle Pond is attached as Figure 1.

1.1 Purpose

40 CFR Part \$257.74(a)(2) requires the owner or operator of an existing surface impoundment to conduct an initial and periodic hazard potential classification assessment of the CCR unit. The owner or operator must document the hazard classification of each CCR unit as either a high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment. The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and each subsequent periodic classification was conducted in accordance with the requirements of \$257.74(a)(2). The following documents Reitz & Jens, Inc.'s initial hazard potential classification for active surface impoundments SCPD at the Ameren Missouri Sioux Energy Center.

2.0 SIOUX ENEREGY CENTER CCR UNITS

SCPD is an active surface impoundment that is incised with perimeter berms extending above the natural ground surface. The surface impoundment locations and the centerline of the embankments are shown in Figure 1.

The initial hazard potential classification was determined for the active surface impoundment at the Sioux Energy Center based on the Federal Emergency Management Agency (FEMA) hazard potential classification criteria. Pertinent data regarding the surface impoundment is shown in Table 1.

Table 1 – Active Surface Impoundment SCPD at the Sioux Energy Center

CCR Unit	Maximum Surface Area (acres)	Dam Height (feet)	Crest Length (feet)	Normal Pool Elevation (feet)
SCPC (Cell 1 – Gypsum)	40.3	24	5,283	441.1

The FEMA classification system has three levels of Hazard Potential Classification: Low, Significant, and High. The hazard potential classification system categorizes dams based on the probable loss of human life and the impacts on economic, environmental, and lifeline interests should the dam fail. The classification system relies heavily on judgement and common sense, because all possibilities cannot be defined. Allowances for evacuation or emergency actions by the population were not considered because emergency procedures should not be a substitute for appropriate design, construction, and maintenance of dam structures. A summary for the FEMA hazard classification system of dams is shown in Table 2.

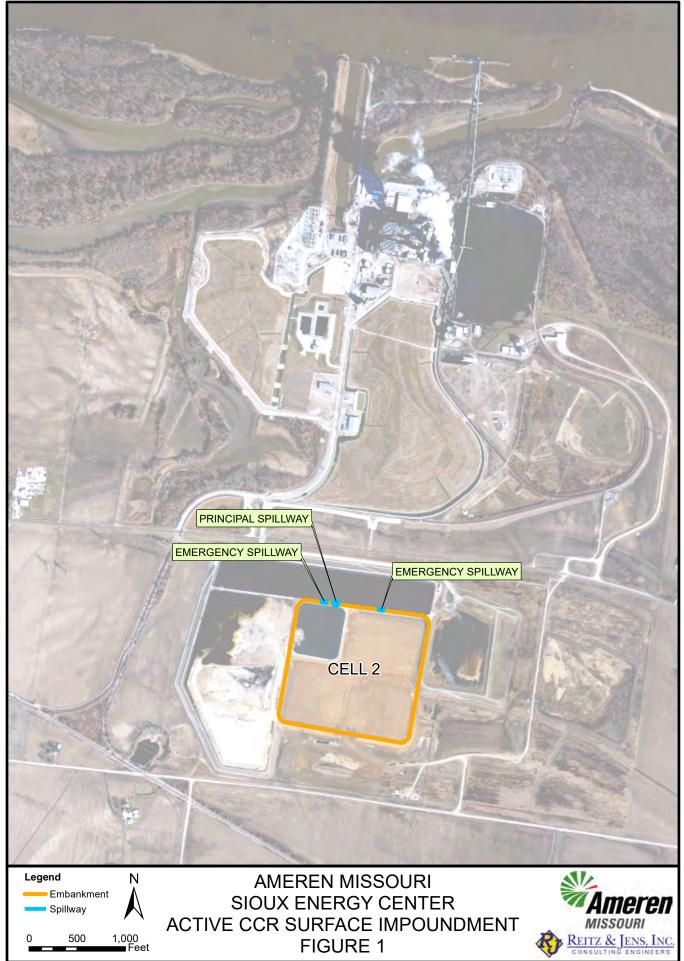
Table 2 - FEMA Hazard Classification System of Dams

Hazard Potential Classification	Loss of Human Life	Economic, Environmental, Lifeline Losses
Low	None expected	Low and generally limited to
Significant	None expected	owner Yes
High	Probable. One or more expected	Yes (but not necessary for this classification)

2.1 SCPD (Cell 2)

SCPD is incised with a compacted earth fill embankment dam. The dam has a crest length of 5,283 lineal feet, minimum crest width of 12 feet, and the steepness of the side slopes is 3H to 1V. Currently, the maximum height of the dam is 24 feet. Gypsum slurry discharges into the cell at the approximate midpoint of the west embankment. The gypsum settles out into the pond and decant water flows into the Recycle Pond through a set of triple box culverts with an invert elevation of 441 feet. SCPD also has two emergency spillways on the north side of the impoundment. The bottom and side slopes of SCPD are lined with 80-mil HDPE liner, which was constructed over 24 inches of compacted, impervious clay.

Failure of SCPD would result in the release of water and CCR into the surrounding Ameren property and adjacent agricultural fields. Failure of the impoundment is not expected to cause a loss of human life, and the economic, environmental and lifeline losses are expected to be low and generally limited to the owner. Therefore, according to the FEMA Hazard Potential Classification of Dams, the SCPD should have a Low Hazard Potential Classification.


3.0 CONCLUSION

The initial hazard potential classifications for the active CCR surface impoundment SCPD at the Sioux Energy Center is Low Hazard Potential. The hazard potential classification should be re-evaluated within 5 years of the initial hazard potential classification. Ameren Missouri Sioux Energy Center Evaluation of CCR Units – Periodic Hazard Potential Classification October 2024

4.0 **REFERENCES**

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

Federal Emergency Management Agency. (2004). "Federal Guidelines for Dam Safety, Hazard Potential Classification System for Dams." Interagency Committee on Dam Safety.

Ameren Missouri Sioux Energy Center Evaluation of CCR Units October 2024

APPENDIX C

STRUCTURAL STABILITY ASSESSMENT

REITZ & JENS, INC.

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

APPENDIX C: INITIAL STRUCTURAL STABILITY ASSESSMENT 257.74(d)(1)

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	. 1
1.1	Purpose	. 1
2.0	FIELD INSPECTION	. 2
2.1	SCPD	. 2
3.0	OPERATIONS AND MAINTENANCE REVIEW	. 4
3.1	SCPD	. 4
4.0	DESIGN AND CONSTRUCTION DOCUMENT REVIEW	. 6
4.1	SCPD	. 6
5.0	PERIODIC STRUCTURAL STABILITY ASSESSMENT SUMMARY	. 7
6.0	REFERENCES	. 8

LIST OF FIGURES

Section

Figure 1	Site Map
Figure 2-9	

LIST OF TABLES

Table 1.....Volume and Depth of Impounded CCR in SCPD

LIST OF APPENDICES

APPENDIX I SCPD WEEKLY INSPECTION CHECK SHEETS SCPD ANNUAL INSPECTION CHECK SHEETS

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS ST. CHARLES COUNTY, MISSOURI

APPENDIX C: INITIAL STRUCTURAL STABILITY ASSESSMENT 257.74(d)

1.0 INTRODUCTION

The Sioux Energy Center (SEC) is located in northeast St. Charles County, Missouri along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River and approximately 3 miles east of Portage de Sioux, Missouri. T The SEC is located within the floodplain of the Mississippi and Missouri Rivers and has one active CCR surface impoundments that is approximately 40-acres in size. The CCR surface impoundment, designated as Cell 2 (SCPD), is used for managing coal combustion residuals (CCR). SCPA, SCPB and SCPC no longer receive CCRs, have been dewatered, and are closed. SCPD is currently receiving CCRs. Decant water in SCPD discharges into the Recycle Pond where pumps recirculate the water back to the power plant. Cell 2 is permitted by the Missouri Department of Natural Resources Solid Waste Management Program (MDNR-SWMP) as a Solid Waste Disposal Area under Operating Permit Number 0918301. A map showing the location of the surface impoundment and the Recycle Pond is attached as Figure 1.

1.1 Purpose

40 CFR Part 257.74(d)(1) specifies that the owner or operator of all existing CCR surface impoundments, except for incised CCR units, shall conduct initial and periodic structural stability assessments and document whether the design, construction, operation and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein.

The purpose of this periodic structural stability assessment for the SCPD at the Sioux Energy Center is to provide the information required by 40 CFR Part 257.74(d)(1). The initial structural stability assessment consisted of field inspections, design and construction document review. The SCPD is a new CCR surface impoundment, no operation and maintenance records were available for review. Additional information for SCPD at the Sioux Energy Center is included in the History of Construction Report.

2.0 FIELD INSPECTION

Reitz & Jens was the lead Construction Quality Assurance (CQA) firm during construction of SCPD at the Sioux Energy Center from the start of construction on April 19, 2022 to completion on December 6, 2023. Reitz & Jens was responsible for Quality Control (QC) pertaining to construction of general fill, clay liner, crushed rock pavement and other fill materials, and CQA for the HDPE membrane, HDPE pipes, and other appurtenances such as revetments, spillways and perimeter fence. The field operations were performed under the direction of Melissa Choflet, EI and under the oversight of Jeff Bertel, PE.

Reitz & Jens documented observations, test results and narratives of field activities from Reitz & Jens' engineers and soil technicians in Daily Field Reports. The daily field reports and additional supporting documentation including soil laboratory test results, the contractors QC test results and third-party conformance test data were compiled in Construction Quality Assurance (CQA) Reports and submitted to the Missouri Department of Natural Resources (MDNR) Waste Management Program (WMP). The following CQA reports were prepared and submitted for review:

- 1. Interim Cell 2 Construction Quality Assurance (CQA) Report, Part 1 Clay Liner and Berms, Rev. October 6, 2022
- 2. Interim Cell 2 Construction Quality Assurance (CQA) Report, Part 2 HDPE Geomembrane and Appurtenances, Rev. November 2, 2022
- 3. Cell 2 Construction Quality Assurance (CQA) Report, Part 1 Clay Liner and Berms, Revised November 10, 2023
- 4. Cell 2 Construction Quality Assurance (CQA) Report, Part 1 HDPE Geomembrane and Appurtenances, Revised November 10, 2023
- 5. Cell 2 Construction Quality Assurance (CQA) Report, Part 3 HDPE Pipes and Appurtenances, December 27, 2023

All CQA reports were certified that the construction was in accordance with the intent of the construction plans and specifications and the requirements of the MDNR Construction Permit. The CQA reports are attached as Appendix I to this report. The WMP reviewed the reports for compliance with the Missouri State Solid Waste Management Law and the terms and conditions of Permit Number 0918301. The WMP concluded that compliance was satisfactorily demonstrated and issued an Authorization to Operate (ATO) on November 17, 2023.

2.1 SCPD

2.1.1 Embankment and Foundation Stability

The Cell 2 subgrade was stripped 6 to 18 inches across the cell floor depending on the thickness of topsoil as determined by Reitz & Jens field observations, and 18 inches at the berm locations. Prior to fill placement, the subgrade was inspected to confirm a suitable thickness of topsoil had been removed, and then it was proof-rolled with a scraper pulling one or two loaded pans. Reitz & Jens' geotechnical engineer observed the proof-roll. The subgrade was approved for fill placement if it was not yielding or pumping. If yielding or pumping was observed the subgrade was scarified with a disc and allowed to dry, compacted and proof-rolled.

General fill placed for the Cell 2 floor, berms and anchor trenches was imported from Ft. Belle Quarry and generally consisted of silty clay with varying amounts of silt and clay. Laboratory tests were run on samples of the soil which included Atterberg liquid and plastic limit tests, grain-size distribution, and standard Proctor moisture-density tests. The testing was supplemented by historical soil laboratory tests by Reitz & Jens. The soils from the Ft. Belle Quarry borrow source were determined to be suitable for general fill.

The imported fill was placed and graded on the cell floor and berms into approximate 12-inch loose lifts by a GPS-equipped dozer prior to compaction. The fill was generally too wet when it arrived onsite and required moisture conditioning which was achieved by discing. The fill was compacted with padfoot compactors that was supplemented as needed with wheel rolling by scrapers pulling loaded pans. Backfill from the anchor trenches generally consisted of general fill excavated from the berms to form the trenches. Anchor trenches were backfilled in two twelve-inch lifts and compacted with a vibrating plate tamper attached to an excavator.

Each lift of fill was tested and approved prior to placement of the subsequent lift. Fill that initially failed to meet the moisture and density requirements was reworked as necessary with additional compaction and/or conditioned to increase or lower the moisture content and compacted until a passing test was measured.

The site was closed for winter and no work was performed. Once work resumed, all surfaces across the cell and on the berms were scarified 6 to 8 inches deep with the disc, recompacted with the CAT 815, and tested to ensure sufficient compaction of the subgrade which had been unprotected over the winter.

Compilations of all field moisture/density tests for general fill placed on the cell floor, perimeter berms and anchor trenches are presented in the CQA Reports in Appendix A. The maximum measured dry unit weight was 116.6 pcf, the minimum measured dry unit weight was 95.6 pcf, and the average measured dry unit weight was 105.4 pcf. The compaction criterion for the cell floor, berms and anchor trench was a minimum of 95% of the maximum dry unit weight determined from the standard Proctor Moisture-Density Test (ASTM D698).

2.1.2 Slope Protection

The upstream slopes are lined with 80 mil HDPE geomembrane liner up to el. 444. The liner provides sufficient slope protection to prevent erosion from wave action from impounded water. The downstream slopes are vegetated. The existing CCR Units at the UWL also have vegetated downstream slopes which have provided adequate slope protection to prevent surface erosion.

2.1.3 Hydraulic Structures

The principal spillway for SCPD is a set of three box culverts. Each box culvert has a width of 6 feet and height of 3 feet. The flowline of the box culverts is at elevation 441 feet. The box culverts discharge into the Recycle Pond. The precast concrete box culverts were placed with a crane without damage to the HDPE geomembrane or clay liner. Reitz & Jens performed the field density tests on the MoDOT Type 5 backfill that was placed and compacted around the effluent structure box culverts. The spillway construction drawings are presented in Figure 7.

SCPD also has two broad crested weir emergency spillway located near the northeast corner of the impoundment. The spillway is lined with concrete. The spillway invert elevation is at 445.0 feet. At the invert elevation the spillway has a width of 12 feet, and the sides are tapered up to the top of the embankment elevation over a distance of 12 feet. Reitz & Jens observed placement of aggregate beneath the structures, concrete, dowels and joint material. The concrete placement was observed to be in accordance with the plans and specifications. A typical cross-section of the emergency spillway is shown in the construction drawings presented in Figure 3.

2.1.4 SCPD Conclusions

Cell 2 was constructed in accordance with the intent of the construction plans and specifications and the requirements of the Construction Permit for the Ameren Missouri Sioux Utility Waste Landfill.

3.0 OPERATIONS AND MAINTENANCE REVIEW

The available operations and maintenance records were reviewed as part of the periodic structural stability assessment. The review included the Operation and Maintenance (O&M) Manual for SCPC and Recycle Pond. The O&M Manuals specifies minimum requirements for surveillance, maintenance and establishes operational requirements for CCR placement. The manual states that no alterations or repairs to structural elements should be made without the approval of the Chief Dam Safety Engineer. The O&M Manual is attached in Appendix A of the *Ameren Missouri Sioux Energy Center: Evaluation of CCR Units* report.

3.1 SCPD

3.1.1 Operations

The SCPD receives gypsum sluice flow. There is no contributing watershed to the impoundment outside of the perimeter dike. Gypsum slurry is discharged near the center of the west embankment. Flow is conveyed south to north towards the box culverts that discharge into the Recycle Pond. The gypsum stack is spreading radially from the gypsum slurry discharge location along the east embankment.

Table 1 includes pertinent data regarding the volume and depth of impounded CCR in the SCPD.

Table 1 - Volume and Depth of Impounded CCR in the SCPD

CCR Unit	Est. Volume of Water and CCR (CY)	Est. Bottom Elev. of CCR Unit (feet)	Est. Minimum CCR Elev. (feet)	Est. Minimum Depth of CCR (feet)	Est. Maximum CCR Elev. (feet)	Est. Maximum Depth of CCR (feet)
SCPC (Cell 2 – Gypsum)	54,500	432	432	0	441.1	8.1

REITZ & JENS, INC.

There was no instrumentation installed for monitoring the SCPD pool level. Pool levels relative to the flowline of the box culverts are recorded during weekly inspections. The normal pool elevation is 441.1 feet, which is approximately the flowline of the box culverts. The normal pool elevation is 3.9 feet below the emergency spillway elevation.

Ameren states there are no planned operational changes for the SCPD. Prior to the next periodic structural stability assessment, a topographic survey of the pond interior will be required to update the estimated volume and depth of impounded CCR.

3.3.2 Maintenance

Weekly and annual inspection check sheets for SCPD are included in Appendix I. The Sioux UWL Cells 1, 2 & 4A and Recycle Pond O&M manual outline objectives, responsibilities, and procedures for Ameren personnel who are responsible for the management of the Sioux CCR units. The embankments of the CCR units are visually inspected weekly by Ameren plant operations staff. Ameren Missouri Dam Safety Group personnel perform annual inspections and periodic inspections or assessments with plant operations staff.

4.0 DESIGN AND CONSTRUCTION DOCUMENT REVIEW

4.1 SCPD

4.1.1 Embankment and Foundation Stability

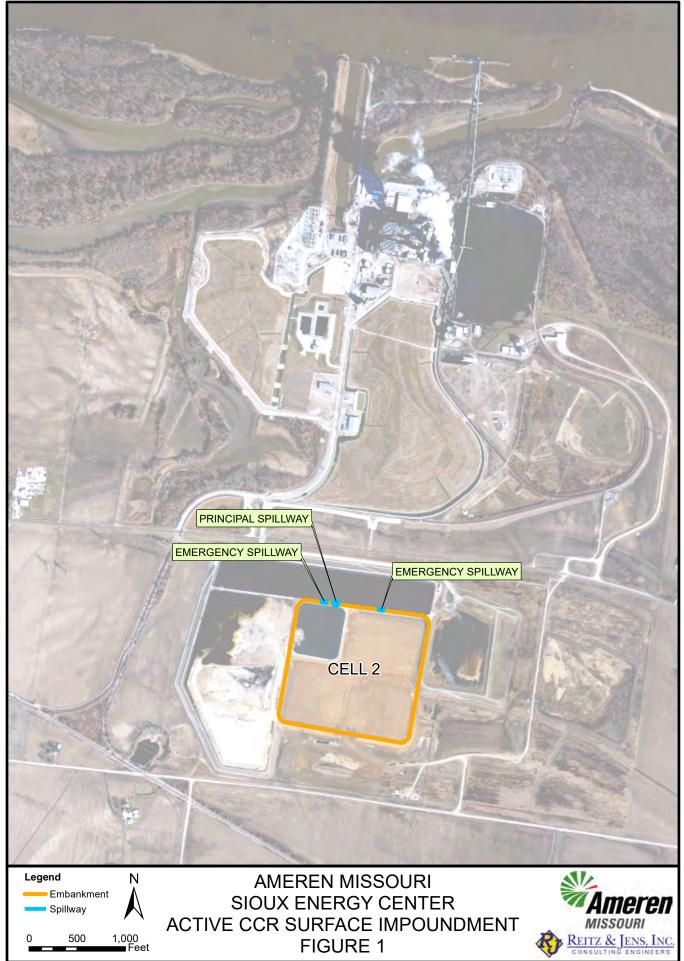
The safety factor assessment is provided in the *Ameren Missouri Sioux Energy Center: Evaluation of CCR Units* report Appendix D. This report shows that the minimum factors of safety specified in 40 CFR Part 257.74(d)(1) for the critical embankment cross sections are achieved for the range of loading expected.

4.1.2 Slope Protection

The perimeter berm was designed with vegetated downstream slopes and upstream slopes lined with 80mil HDPE. Based on observations during previous Annual and Periodic Structural Stability Assessments the slopes of the existing CCR Units at the Sioux UWL appear to be functioning adequately. There is good sod cover on the downstream slopes and there were no tears or punctures in the liner.

4.1.3 Spillway

The principal spillway for SCPC is a set of triple box culverts that discharge into the Recycling Pond. The *Ameren Missouri Sioux Energy Center: Evaluation of CCR Units* report in Appendix E shows that the outlet works adequately manages flow during the 24-hour, 100-year storm event.


5.0 INITIAL STRUCTURAL STABILITY ASSESSMENT SUMMARY

The initial periodic structural stability assessment found no structural stability deficiencies, no significant issues with the operations and maintenance, and that the design and construction of the embankments and spillways were adequate for the range of loading conditions under which the CCR unit should be subjected.

6.0 **REFERENCES**

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

REITZ & JENS, INC.

APPENDIX I

SCPD WEEKLY INSPECTION CHECK SHEET SCPD ANNUAL INSPECTION CHECK SHEET

REITZ & JENS, INC.

SIOUX ENERGY CENTER

Cell 2 (SCPD) Weekly Inspection Checklist

Date	
Inspector	
River Level	
Temperature	
Weather	

	ltem	Condition Code	Comments
nt	Vertical & Horizontal Alignment of Crest		
	Seepage/Wetness/ Ponding Areas		
	Erosion/Rutting		
nkme	Vegetation		
Earth Embankment	Sloughs/Slides/Cracks		
arth E	Animal Control		
Ŭ	Perimeter Roads and Ramps		
	Perimeter Drainage Swale		
	Other		
	HDPE Liner		
terim Cell	Emergency Spillway		
	Imminent Discharge thru Emergency Spillway		
	Effluent Structure		
	Interim/Primary Spillway		
	Sump Outlet and Gravel Cover		
	Other		

_	ltem	Condition Code	Comments
	HDPE Liner		
	Emergency Spillway		
	Imminent Discharge thru Emergency Spillway		
	Offloading Station and ABM		
	Gypsum Slurry Pipes		
	Gypsum Slurry Flowing Unobstructed		
ell 2	Height from Discharge Pipe FL to Gypsum Level		
Primary Cell 2	Eastern Sump Outlet and FCM		
Prim	Western Sump Outlet and FCM		
	Northeast Bottom Drain Outlet and FCM		
	Northwest Bottom Drain Outlet and FCM		
	Southeast Bottom Drain Outlet and FCM		
	Southwest Bottom Drain Outlet and FCM		
	Stormwater Discharge from Cell 4A		
	Fencing		
	Other		

SIOUX ENERGY CENTER

	-		
Recycle	Pond and	Cell 4A	(SCL4A)
Weekly	Inspection	Checklis	st

Date	
Inspector	
River Level	
Temperature	
Weather	

Recycle Pond Level by Visual Reading:	
Recycle Pond Level Reading through DCS:	

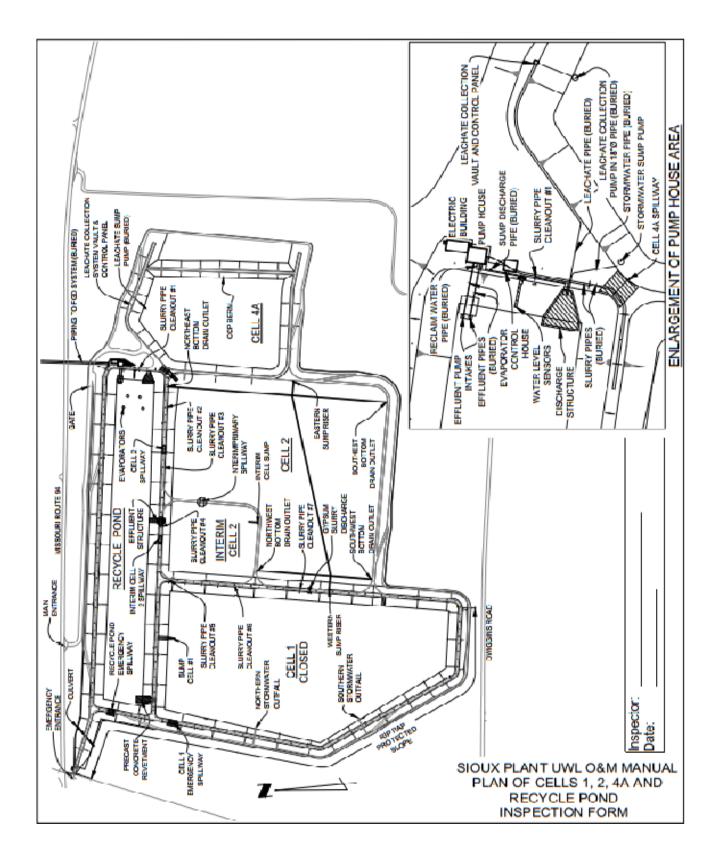
	ltem	Condition Code	Comments
	Erosion, sloughing, sliding, seepage		
	Condition of grass cover, woody vegetation, burrows		
	Recycle Pond between EL. 428 and 443		
	Settlements, Depressions, or Cracks in Embankment		
	Effluent Pump Intake Structures (when visible)		
le Ponc	Gravel Ballast Covering Pump Intake Pipes		
	Damage to transducer level controls or pipes		
	Unevenness, movement of triple box culverts		
	HDPE Recirculation Pipe		
Re	Pump House Sump Discharge Pipe		
	Erosion/Rutting of Gravel Top & Perimeter Roads		
	HDPE Liner		
	Precast Concrete Revetments Below Box Culverts		
	Precast Concrete Revetments Below Discharge Pipes		
	Emergency Spillway		
	Imminent Discharge through Emergency Spillway		

	Item	Condition Code		Co	mments	
	Condition of Vegetative Cover					
	Erosion, sloughing, sliding, boils, seepage					
∢	Settlement, depression or crack in embankment					
Cell 4A	Interior Drainage/Sump Pump					
	Leachate Vault, Pipes and Pump Controls					
	Leachate Discharge (color and/or sediment)					
	Leachate Time from hour meter and level readings		Hour Readings		Level (inches)	
Other	Holes or breaks in perimeter fence, vandalism					
0	Main and emergency gates locked					

Drive slowly around tops of embankments looking for visible signs of present or developing major problems. Indicate location(s) of problems or anomalies on inspection plan - sign, date and attach sheet to report.

If a problem is noted, email or FAX report to appropriate persons. If emergency condition is noted, immediately contact the Shift Operations Supervisor and Chief Dam Safety Engineer.

Condition Codes


EC	Emergency Condition	A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.
м	limmodiato Maintonanco	Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.
мм	Minor Maintenance	Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.
ОВ	Observation	Condition requires regular observation and potential future minor maintenance.
GC	Good Condition	
NE	No evidence of a problem	
NI	Not Inspected	State reason in comment column.

SIOUX ENERGY CENTER

Cell 1 (SCPC) Weekly Inspection Checklist

Date	
Inspector	
River Level	
Temperature	
Weather	

	ltem	Condition Code	Comments
d	Erosion/Rutting		
e Cap	Vegetation		
Closure Cap	Settlement/ Depressed Areas/ Ponding		
U	Other		
	Vertical & Horizontal Alignment of Crest		
	Seepage/Wetness/ Ponding Areas		
Earth Embankment	Perimeter Roads and Ramps		
	Erosion/Rutting		
	Fencing		
	Vegetation		
mban	Sloughs/Slides/Cracks		
rth Ei	Riprap		
Еа	Animal Control		
	Settlement Along Outfall Alignments		
	Backflow Preventers		
	Erosion Downstream of Outfalls		
	Unusual/Discolored/ Sediment Discharge from Outfalls		

Page 1 of 4

Sioux Energy Center Cell 2 Annual Inspection Checklist

Date	
River Level	
Temperature	
Weather	
Inspector	

Date of Previous Annual Inspection: Date of Previous Periodic Inspection:

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection:

Describe any action taken to restore or improve safety and integrity of impounding structure:

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

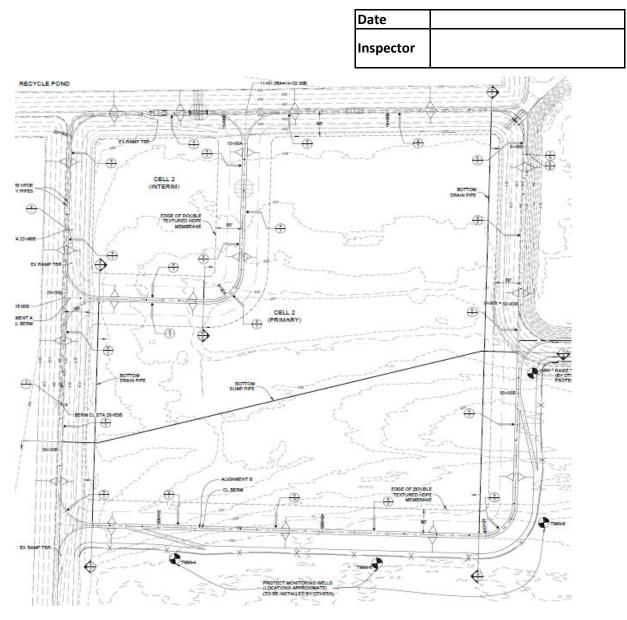
List the approximate remaining storage capacity of the impounding structure: <u>CY</u>

List the approximate maximum, minimum, and present depth and elevation of the impounded water in Interim Cell 2 since the previous annual inspection:

List the approximate maximum, minimum, and present depth and elevation of the impounded CCR in Interim Cell 2 since the previous annual inspection:

List the approximate volume of CCR at the time of inspection: _____ CY

Describe any changes to the downstream watershed:


Date	
Inspector	

		Condito	
	Item	Conditon	Comments
_		Code*	
	Vertical & Horizontal		
	Alignment of Crest		
	Seepage/Wetness/		
	Ponding Areas		
t	Erosion/Rutting		
Jkme	Vegetation		
Earth Embankment	Sloughs/Slides/Cracks		
rth E	Animal Control		
Еа	Perimeter Roads and		
	Ramps		
	Perimeter Drainage		
	Swale		
	Other		
	HDPE Liner		
	Emergency Spillway		
2	Imminent Discharge thru		
ell	Emergency Spillway		
Interim Cell	Effluent Structure		
Inte	Interim/Primary Spillway		
	Sump Outlet and Gravel Cover		
	Other		

Date	
Inspector	

	ltem	Conditon Code*	Comments
	HDPE Liner		
	Emergency Spillway		
	Imminent Discharge thru Emergency Spillway		
	Offloading Station and ABM		
	Gypsum Slurry Pipes		
	Gypsum Slurry Flowing Unobstructed		
(٨	Height from Discharge Pipe FL to Gypsum Level		
Cell 2 (Primary)	Eastern Sump Outlet and FCM		
I 2 (P	Western Sump Outlet and FCM		
Cel	Northeast Bottom Drain Outlet and FCM		
	Northwest Bottom Drain Outlet and FCM		
	Southeast Bottom Drain Outlet and FCM		
	Southwest Bottom Drain Outlet and FCM		
	Stormwater Discharge from Cell 4A		
	Fencing		
	Other		

Note location of observation on attached plan sheet

* Condition Codes

EM	Emergency Condition. A serious dam safety condition exists that needs immediate action; Emergency measures implemented as instructed by Chief Dam Safety Engineer, pool drawdown, work stoppage, plant stoppage.
м	Immediate Maintenance, Item needing immediate maintenance to rectore or ensure its safety and
	Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

Ameren Missouri Sioux Energy Center Evaluation of CCR Units October 2024

APPENDIX D

SAFETY FACTOR ASSESSMENT

REITZ & JENS, INC.

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.74(e)

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION	1
1.1	Purpose	. 1
2.0	SCPD - PERIODIC SAFETY FACTOR ASSESSMENT METHODOLOGY	2
2.1	Stability Analyses	2
2.2	Seismic Stability Analyses	2
2.3	Liquefaction Stability Analyses	3
3.0	SCPD – STABILITY ANALYSES RESULTS	3
4.0	CONCLUSIONS	3
5.0	REFERENCES	. 4

LIST OF FIGURES

Figure 1	Site Map
Figure 2	1
Figures 3 to 6	SCPD Stability Analyses

LIST OF TABLES

Table 1	Minimum Safety Factors
Table 2	Cell 2 - Stability Analyses Results

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS ST. CHARLES COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.74(e)

1.0 INTRODUCTION

The Sioux Energy Center (SEC) is located in northeast St. Charles County, Missouri along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River and approximately 3 miles east of Portage de Sioux, Missouri. The SEC is located within the floodplain of the Mississippi and Missouri Rivers and has one active CCR surface impoundment that is approximately 40-acres in size. The CCR surface impoundment, designated as Cell 2 (SCPD), is used for managing coal combustion residuals (CCR). SCPA, SCPB and SCPC no longer receive CCRs, have been dewatered, and are closed. SCPD is currently receiving CCRs. Decant water in SCPD discharges into the Recycle Pond where pumps recirculate the water back to the power plant. Cell 2 is permitted by the Missouri Department of Natural Resources Solid Waste Management Program (MDNR-SWMP) as a Solid Waste Disposal Area under Operating Permit Number 0918301. A map showing the location of the surface impoundment and the Recycle Pond is attached as Figure 1.

1.1 Purpose

40 CFR §257.73(e) requires that the owner or operator of an existing CCR surface impoundment conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum factors of safety for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments should be supported by appropriate engineering calculations. The specified minimum safety factors are shown in Table 1.

Table 1 - Minimum Safety Factors

Loading Condition	Minimum Factor of Safety
Static, long-term, maximum storage pool	1.50
Static, maximum surcharge pool	1.40
Seismic	1.00
Liquefaction	1.20

A safety factor assessment has been conducted only for SCPD at the Sioux Energy Center.

2.0 SCPD - PERIODIC SAFETY FACTOR ASSESSMENT METHODOLOGY

2.1 Stability Analyses

The stability of the side slopes of the perimeter berms and the CCR fill were analyzed. Analyses was completed using the short-term and long-term shear strength properties as appropriate. The seismic loading conditions were also analyzed, as well as the postseismic condition with liquefaction occurring in the subsurface soil strata where indicated by the liquefaction analyses. Potential sliding block failures along the interface with the composite liner and aquiclude and the stability of the final cover were also analyzed. All of these analyses demonstrate that the proposed design meets or exceeds the minimum factors of safety for slope stability in accordance with the MDNR-SWMP regulations, the Draft Technical Guidance Document on Static and Seismic Slope Stability for Solid Waste Containment Facilities by MDNR-SWMP and Dr. Timothy Stark, and the EPA CCR Rule. Because the factors of safety against slope failure under the design seismic event were all greater than 1.2, the potential lateral displacement would be minor. The potential lateral displacements due to the seismic load were not estimated.

The slope stability analyses were performed using the computer program SLIDE 8. This program uses the Spencer method, which resolves the static forces on each vertical slice of soil profile along randomly generated failure surfaces. Two methods are used. The first method is to assume circular failure surfaces. A grid of possible centers for the circular failure surface is specified, as well as the possible bottom elevation of the failure surface. The program searches for the minimum factor of safety (FS) against slope failure for each center point in the grid by incrementally varying the radius of the failure surface. The plotted results from the program show the minimum FS, the center and radius of the failure surface with the minimum FS. The output of the program also plots contours of equal FS within the grid of possible center points. The second method is based upon a multi-linear failure surface. This method is used where there is a plane of weak shear strengths, such as along a composite liner or dual liner. The analyses are the same, that is searching for a configuration of a multi-linear failure surface which results in a minimum factor of safety. All of the results are presented graphically in Figure 3 to 6 and Appendix A. Stability analyses were performed at each section for initial and final stages of construction, and using short-term (undrained) properties and long-term properties as appropriate. Stability analyses were also performed for the pseudoseismic loading, and the post-seismic static conditions were liquefaction exist in the natural soil strata below the groundwater table where there is a high risk. The results of the stability analyses are presented in the following Table 2.

2.2 Seismic Stability Analyses

The critical cross-section was analyzed using a pseudo-static acceleration as a horizontal body force on the soil mass to calculate the minimum factor of safety for a seismic event. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground Acceleration (PHGA) for seismic loading event with a 2% probability of exceedance in 50 years. The PHGA was factored for the seismic site class in accordance with ASCE 7 *Minimum Design Loads for Buildings and Other Structures, International Building Code.* A seismic coefficient of 0.5 was applied to the PHGA, which is consistent with MSHA's 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, in particular Chapter 7, "Seismic Design: Stability and Deformation Analyses." The manual cites research by Hynes-Griffen and Franklin (1984) which found that for seismic coefficient of 0.5 would result in deformations of less than 3 feet for a safety factor of 1.0.

Ameren Missouri Sioux Energy Center Evaluation of CCR Units – Initial Safety Factor Assessment October 2024

The published 2014 USGS hazard map for the Sioux Energy Center is reproduced in Figure 2. This is the latest map available from the USGS website. The probabilistic PHGA for the design earthquake at the Sioux site is 0.187g (that is, 18.7% of standard gravity acceleration of 32.2 feet/sec²). This value takes into account attenuation of bedrock shaking with distance from the probable sources and general soil interactions such as damping for a hypothetical soil profile. This value is meant to be a conservative estimate. Based upon the data, the most probable earthquake magnitudes (M_w) for these accelerations are between 7.0 and 8.0. We applied a multiplier of 1.434 to the base PHGA to account for the soil profile at the Sioux Energy Center to obtain a site specific PHGA of 0.268g. Therefore, the pseudo-static seismic load was 0.134g.

2.3 Liquefaction Stability Analyses

The liquefaction slope stability analysis is a post-earthquake, static analysis which includes the effects of potential liquefaction or softening of the soils. Liquefaction occurs when ground shaking is sufficient to produce cyclic particle movements that cause excess pore water pressures to build to the point that some of the shear strength of the soil is lost. Liquefaction occurs in loose sandy soils with less than about 35% fines (soils which are finer than standard U.S. #200 or 0.075mm). Liquefaction can occur in very loose soils with up to 50 percent fines and soils up to the size of fine gravel. Liquefaction only occurs below the ground water table (phreatic surface). The presence of soil susceptible to liquefaction in the top 50 feet of the soil profile at the Sioux Energy Center typically included the silty sand and sand. Conservative estimates of post-earthquake or residual shear strengths in the liquefied strata were assumed.

3.0 SCPD – STABILITY ANALYSES RESULTS

The results of the stability analyses for SCPD for each load case are presented in Table 2. The search for critical failure surfaces was limited to those that significantly impact SCPD's perimeter berm. The analyses showed that the calculated factors of safety exceed the minimum presented in §257.74(e) for each loading condition.

Table 2 – SCPD – Stability Analyses Results

Loading Condition	Minimum Factor of Safety	Calculated Factor of Safety
Static, long-term, maximum storage pool	1.50	1.84
Static, maximum surcharge pool	1.40	1.84
Seismic	1.00	1.48
Liquefaction	1.20	1.74

4.0 CONCLUSIONS

The initial safety factor assessment for SCPD at the Sioux Energy Center found that the calculated factors of safety for the critical cross-sections for this CCR unit exceed the minimum factors of safety for each loading condition required by 40 CFR §257.74(e). The subsequent periodic safety factor assessment should be conducted within 5 years of the date of this report.

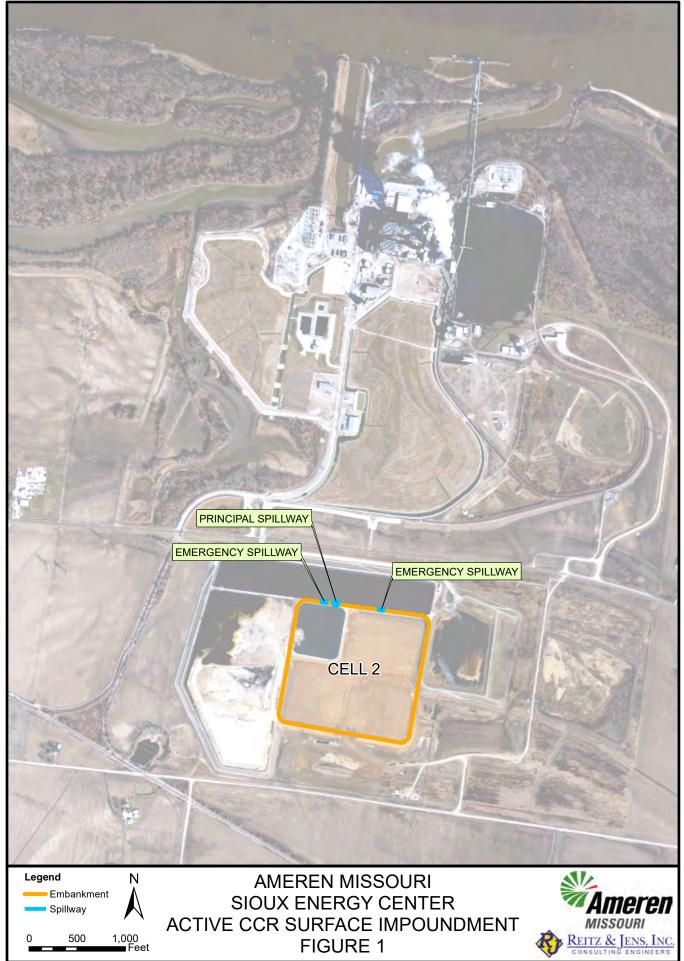
Ameren Missouri Sioux Energy Center Evaluation of CCR Units – Initial Safety Factor Assessment October 2024

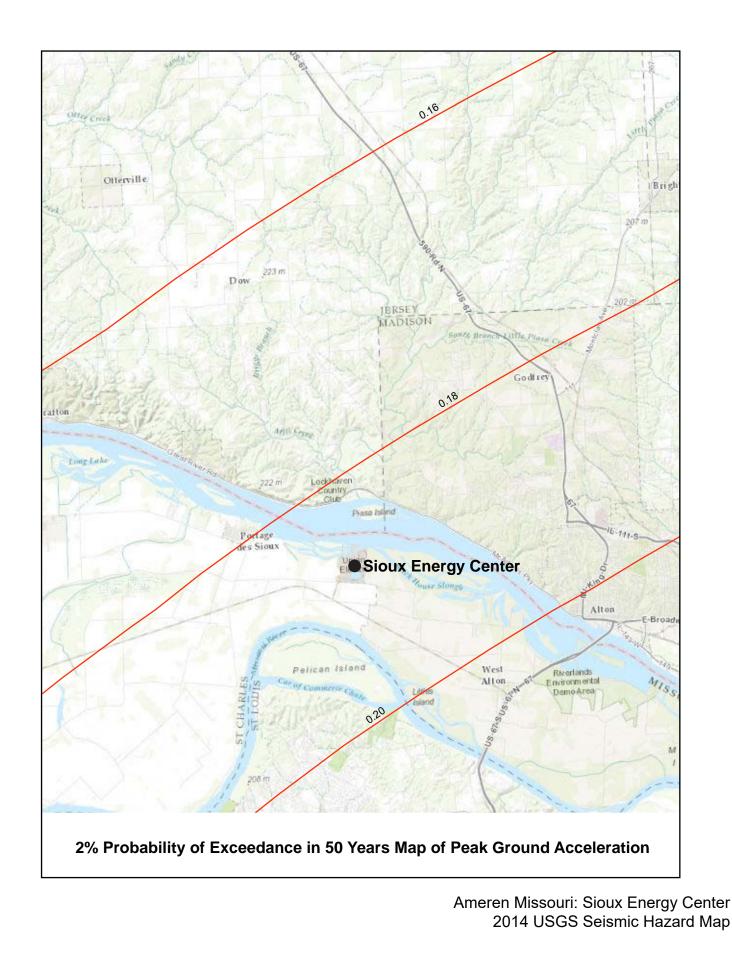
5.0 **REFERENCES**

Ameren Missouri (2011), "Operation and Maintenance Manual; Meramec Ash Pond Embankment, St. Louis, Missouri, St. Louis County." Dam Safety and Hydro Engineering, St. Louis, Missouri.

American Society of Civil Engineers (2013), *Minimum Design Loads for Buildings and Other Structures*, Standards ASCE/SEI 7-10, 3rd Printing.

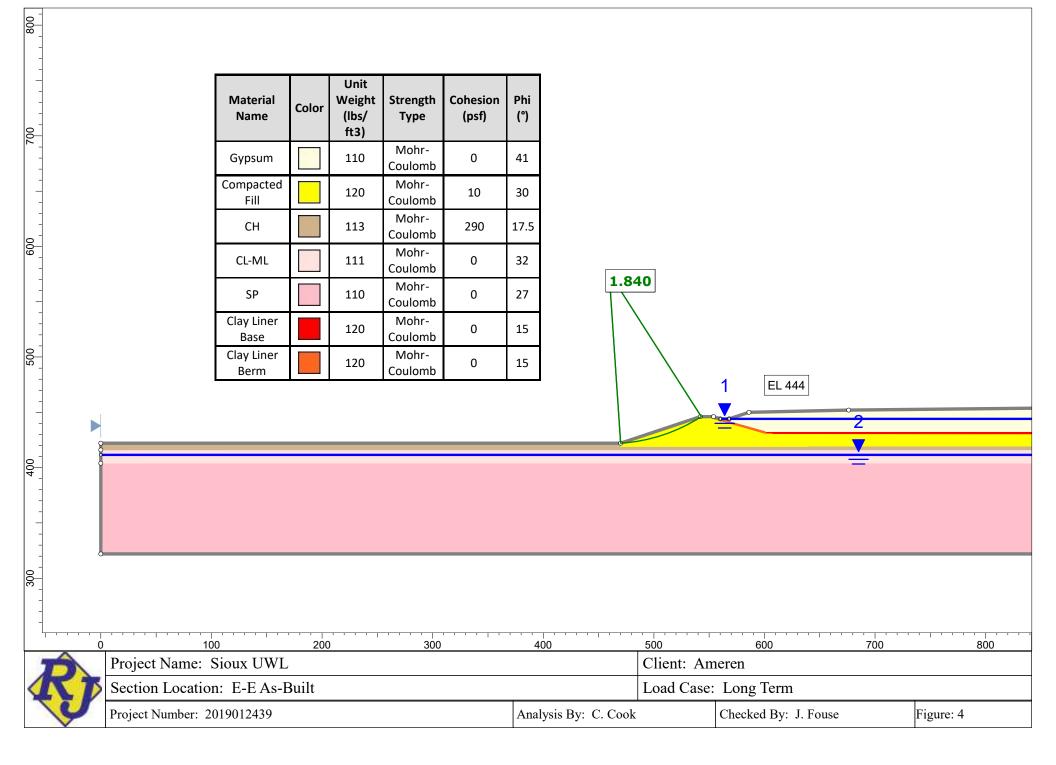
EM1110-2-1902 (2003), Slope Stability. U.S. Army Corps of Engineers, Washington, D.C.


Hynes-Griffen, M.E. and A.G. Franklin (1984), "Rationalizing the Seismic Coefficient Method," Miscellaneous Paper GL-84-13, U.S. Department of the Army, Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.


Idriss, I.M., and R.W. Boulanger, (2007). *SPT- and CPT-based relationships for the residual shear strength of liquefied soils*. Earthquake Geotechnical Engineering, 4th International Conference on Earthquake Geotechnical Engineering-Invited Lectures, K.D. Pitilakis, ed., Springer, Netherlands, pp. 1-22.

Idriss, I.M. and R.W. Boulanger (2008), "Soil Liquefaction During Earthquakes," Earthquake Engineering Research Institute, Oakland, California, EERI Publication No. MNO-12.

Mine Safety and Health Administration (2010), *Engineering and Design Manual, Coal Refuse Disposal Facilities*. Second Edition.


Naval Facilities Engineering Command (1986). *Soil Mechanics, Design Manual 7.01*. Alexandria, Virginia.

	-						
700	-	Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (°)
-	-	Gypsum		110	Mohr- Coulomb	0	41
	-	Compacted Fill		120	Mohr- Coulomb	10	30
0	-	СН		113	Mohr- Coulomb	290	17.5
600	-	CL-ML		111	Mohr- Coulomb	0	32
	-	SP		110	Mohr- Coulomb	0	27
	-	Clay Liner Base		120	Mohr- Coulomb	0	15
500		Clay Liner Berm		120	Mohr- Coulomb	0	15
400	- - - -						
	-						
0	-						
300							1 1 1
		100	· •	200	300		400
,		oject Name: S					
5		ection Location				I	
	Pr	oject Number: 20	1901243	39			Analys

_

-			Material Name	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (°)			
			Gypsum		110	Mohr- Coulomb	0	41			
			Compacted Fill		120	Mohr- Coulomb	10	30			
			СН		113	Mohr- Coulomb	290	17.5			
			CL-ML		111	Mohr- Coulomb	0	32			
			SP		110	Mohr- Coulomb	0	27			
			Clay Liner Base		120	Mohr- Coulomb	0	15			
2 -			Clay Liner Berm		120	Mohr- Coulomb	0	15			
			Liquefiable Layer 1		110	Mohr- Coulomb	760	0		446	
			Liquefiable Layer 2		110	Mohr- Coulomb	980	0			
450 -			Liquefiable Layer 3		110	Mohr- Coulomb	1110	0			0
7									1.738		
1								$\langle \circ \rangle$			
<u></u>				_						432.5	
-											
200											
2 -											
200 - 200											
1	00	150 200	250		300 350	0 40	0	450	500	550 600 650	700
1		Project Name: Sio							Client: Am		
Q	ND	Section Location:	E-E As-Built						Load Case:	Liquefaction	
1	V	Project Number: 2019	0012439				Analysis B	y: C. Cool	ζ.	Checked By: J. Fouse	Figure: 6

Ameren Missouri Sioux Energy Center Evaluation of CCR Units October 2024

APPENDIX E

HYDROLOGY AND HYDRAULICS

REITZ & JENS, INC.

AMEREN MISSOURI SIOUX ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 ST. CHARLES COUNTY, MISSOURI

APPENDIX E: INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN §257.82

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	SCPD (Cell 2)	2
2.1	Pertinent Data	2
2.2	Hydrologic and Hydraulic Analysis	2
2.3	Inflow Design Flood Control System Plan	3
3.0	CONCLUSIONS	3
4.0	REFERENCES	4

LIST OF FIGURES

Figure 1	Site Map
Figure 2	SCPD Area-Capacity Curve

LIST OF TABLES

Table 1SCPD	(Cell 2)) Hydrolog	gic and Hydra	ulic Data
-------------	----------	------------	---------------	-----------

AMEREN MISSOURI SIIOUX ENERGY CENTER EVALUATION OF CCR UNITS ST. CHARLES COUNTY, MISSOURI

APPENDIX E: INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN §257.82

1.0 INTRODUCTION

The Sioux Energy Center (SEC) is located in northeast St. Charles County, Missouri along the Mississippi River, approximately 14 miles upstream of the confluence with the Missouri River and approximately 3 miles east of Portage de Sioux, Missouri. The SEC is located within the floodplain of the Mississippi and Missouri Rivers and has one active CCR surface impoundment that is approximately 40-acres in size. The CCR surface impoundment, designated as Cell 2 (SCPD), is used for managing coal combustion residuals (CCR). SCPA, SCPB and SCPC no longer receive CCRs, have been dewatered, and are closed. SCPD is currently receiving CCRs. Decant water in SCPD discharges into the Recycle Pond where pumps recirculate the water back to the power plant. SCPD is permitted by the Missouri Department of Natural Resources Solid Waste Management Program (MDNR-SWMP) as a Solid Waste Disposal Area under Operating Permit Number 0918301. A map showing the location of the surface impoundment is attached as Figure 1.

1.1 Purpose

40 CFR §257.82 requires the owner or operator of an existing CCR surface impoundment to prepare an inflow design flood control system plan for the CCR unit. The plan should document how the inflow design flood control system has been designed, constructed, operated and maintained to meet the requirements of §257.82. The section specifies that the inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood and must manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood. Because the existing CCR surface impoundments at the Sioux Energy Center are classified as Low Hazard Potential dams, 40 CFR §257.82 requires that the 100-Year flood is used as the design flood in this analysis. The periodic inflow design flood control system plan has been developed for the active Sioux Energy Center surface impoundment SCPD.

2.0 SCPD (CELL 2)

2.1 Pertinent Data

The SCPD was brought online in 2022 and is incised with a perimeter dike. The Flue Gas Desulfurization (FGD) system produces gypsum as a byproduct. The gypsum slurry is pumped to SCPD where it is managed for long-term or permanent storage. The pond does not receive any additional stormwater run-off outside its bounded area. The gypsum slurry point of discharge is moved periodically by temporary pipes, but the origin of the discharge is at the approximate midpoint of the west embankment. The gypsum settles out into the pond and the decant water flows into the Recycle Pond through a set of triple box culverts. SCPD and the Recycle Pond are separated by an embankment. Triple box culverts connect SCPD with the Recycle Pond, and the culverts control the maximum normal water level in SCPD to el. 441. SCPD also has two emergency spillways on the north side of the impoundment. The outlet works construction drawings are shown in the as-built plans presented in Appendix A.

The normal pool elevation of the SCPD is el. 441.1 feet and the top of the embankment elevation is at 446 feet. The flowline of the emergency spillways are at el. 445 feet. The estimated volume of CCR impounded in the SCPD is about 54,500 cubic yards, leaving an approximate remaining storage capacity of about 669,000 cubic yards below el. 445. Table 5 includes pertinent hydrologic and hydraulic data regarding SCPC.

Table 1 – SCPD (Cell 2) Hydrologic and Hydraulic Data

CCR Unit	Normal Pool Elev. (feet)	Normal Pool Water Surface Area (acres)	Max. Pool Elev. (feet)	Max. Pool Water Surface Area (acres)	Total Watershed Area (acres)	Sluice Flow (cfs)
SCPD (Cell 2)	441.1	38.5	445.0	40.3	42.5	2.0

2.2 Hydrologic and Hydraulic Analysis

Hydrologic and hydraulic analysis was completed for SCPD to confirm the adequacy of the current inflow design flood control system. The total volume of stormwater and process water over a 24-hour time period was compared to the available storage. The 24-hour, 100-year precipitation event was taken from Bulletin 71, Rainfall Frequency Atlas of the Midwest (Huff and Angel, 1992). The total rainfall over the 24-hour period was 7.21 inches. The discharge of process water was assumed as 2 cfs, or the nominal flow rate assumed for design. The total volume of stormwater and process water over a 24-hour time period during the 24-hour, 100-year precipitation event is approximately 29.5 acre-feet.

The area-capacity curve for SCPD is presented in Figure 2. Based on the available storage and assuming no flow through the box culvert, the pool level would rise to about el. 442.0 during the 24-hour, 100-year storm event and with the assumed process water flow. This analysis suggests the inflow design flood control system for SCPD adequately manages flow into this CCR unit during the 24-hour, 100-year storm event as required by §257.82 even without a functioning primary spillway.

REITZ & JENS, INC.

Ameren Missouri Sioux Energy Center Evaluation of CCR Units – Inflow Design Flood Control System Plan October 2024

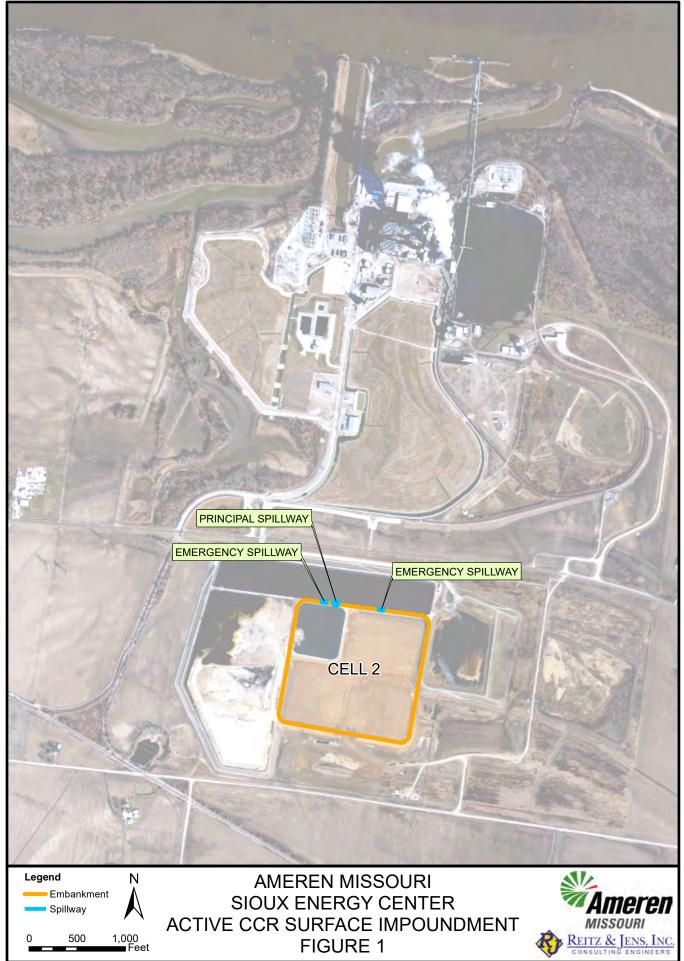
2.3 Inflow Design Flood Control System Plan

The Area-Capacity Curve presented in Figure 4 shows that provided SCPD is operated with a normal pool elevation of 441.1 feet, the pond has adequate storage capacity to contain the total rainfall from the 24-hour, 100-year flood event without the primary spillway operating. The area capacity curve is based on the as-built plans. Additional CCR disposal in this pond will lower the available storage. A topographic survey should be completed for the interior of the SCPD to confirm the necessary storage is available prior to developing the next periodic inflow design flood control system plans.

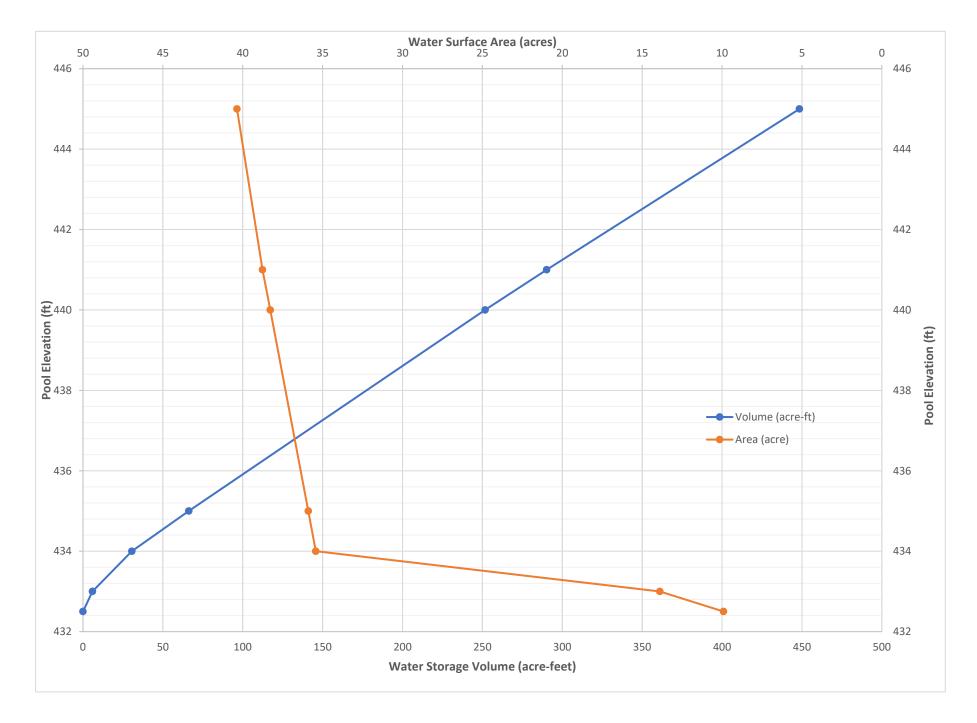
3.0 CONCLUSIONS

The periodic inflow design flood control system has been evaluated for the SCPD at the Sioux Energy Center. The inflow control system for this pond can adequately handle and discharge the 24-hour, 100-year design storm event. The following summarizes the conclusions of this report, and outlines recommendations for surveillance and operation of each CCR unit.

- If the water levels exceed the maximum surcharge pool elevations, special inspections of the primary spillways should be completed, and temporary measures should be implemented to prevent the water from overtopping the pond embankments until the primary spillways are functioning as designed.
- Before completing additional evaluations of the Periodic Inflow Design Flood Control System Plan, topographic surveys should be completed on the interior of all active ponds to confirm the necessary water storage is available.
- Pool level readings should be recorded during weekly inspections to confirm the assumed normal pool elevations.


Ameren Missouri Sioux Energy Center Evaluation of CCR Units – Inflow Design Flood Control System Plan October 2024

4.0 **REFERENCES**


Ameren Missouri. (2015). "Operation and Maintenance Manual for Cells 1 & 4A and Recycle Pond, Sioux Energy Center Utility Waste Landfill, St. Charles County, Missouri." Power Operations Services, St. Louis, Missouri.

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

Huff, F.A. and J.R. Angel. (1992). "Rainfall Frequency Atlas of the Midwest." Bulletin 71, Midwestern Climate Center and Illinois State Water Survey.

SCPD AREA-CAPACITY CURVE

